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Abstract: This paper presents an Energy Management System (EMS) for solving the problem regard-
ing the optimal daily operation of Photovoltaic (PV) distributed generators in Alternate Current (AC)
distribution grids. To this effect, a nonlinear programming problem (NLP) was formulated which
considered the improvement of economic (investment and maintenance costs), technical (energy
losses), and environmental (CO2 emission) grid indices as objective functions, considering all techni-
cal and operating constraints for the operation of AC networks with the presence of PV sources. To
solve this mathematical formulation, a master–slave methodology was implemented, whose master
stage employed the antlion optimizer to find the power dispatch of PV sources in each period of
time considered (24 h). In the slave stage, an hourly power flow based on the successive approxi-
mations method was used in order to obtain the values of the objective functions and constraints
associated with each possible PV power configuration proposed by the master stage. To evaluate
the effectiveness and robustness of the proposed methodology, two test scenarios were used, which
included three installed PV sources in an urban and a rural network, considering the PV power
generation and demand located reported for Medellín and Capurganá, respectively. These systems
correspond to connected and standalone grids located in two different regions of Colombia. Further-
more, the proposed methodology was compared with three optimization methodologies reported in
the literature: the Chu and Beasley genetic algorithm, the particle swarm optimization algorithm,
and the vortex search optimization algorithm. Simulation results were obtained via the MATLAB
software for both test scenarios with all the optimization methodologies. It was demonstrated that
the proposed methodology yields the best results in terms of solution quality and repeatability, with
shorter processing times.

Keywords: distribution grids; photovoltaic generators; mathematical optimization; master–slave
methodology; antlion optimizer; optimal power flow; minimization of operating costs; minimization
of energy losses; minimization of CO2 emissions
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1. Introduction
1.1. General Context

In recent years, the growing dependence of human beings on electrical systems has
led to the use and exploitation of fossil fuels in order to meet the demand for electrical
energy, with negative impacts on the environment, since polluting gases are emitted into
the atmosphere [1–3]. In order to overcome this problem, various governments worldwide
have promoted the integration and use of power generation from renewable sources. The
most widely used renewable energy sources worldwide are solar panels and wind turbines,
as they are considered to provide clean and unlimited energy (in the scale of human energy
consumption), in addition to the fact that their acquisition costs have been reduced thanks
to the different technological advances made in the last decades [4–6].

In the Colombian context, approximately 68.3% of electricity is generated from hy-
droelectric plants that depend directly on the country’s weather conditions [7]. It is for
this reason that thermal power plants play an important role, as not only do they support
hydroelectric plants but also cover 30.7% of the power demanded by users. However,
these plants use fossil fuels such as natural gas (13.3%), coal (9.6%), and diesel (7.8%),
which contribute to the emission of polluting gases [7]. Therefore, the integration of energy
generation sources based on renewable sources for electrical systems has been promoted in
the national territory (Colombia) by means of regulations and legislation, e.g., Law 1715 of
2014 and CREG Resolutions 030 of 2018 and 068 of 2020.

On the other hand, due to the geographical location of the country, it has been possible
to use, develop, and generalize the use of renewable energies based on solar resources [8].
This has allowed Colombia to start developing large-scale projects related to photovoltaic
(PV) solar energy [8]. Although the installed capacity is currently far from the maximum
usable levels, this has made it possible to propose incentives and updates in the form of
laws, standards, regulations, and policies for the rational and efficient use of renewable
energies [8]. However, due to the variation and uncertainty of the solar resource, which is
caused by weather conditions that depend on the location of the electrical system, as well
as on the period of the year [6,9], the operation of PV generators in traditional electrical net-
works and in electrical distribution grids poses many technical and operations challenges,
as an incorrect operation can entail stability and reliability issues in the electrical system [10].
To deal with this problem, it is necessary to implement Energy Management Systems (EMS).
One of the main objectives of these systems is to determine the optimal power dispatch
of energy sources based on renewable resources to economically feed system loads while
ensuring a high-quality service that is reliable and environmentally sustainable [11–13].
An EMS can operate in two different ways: in centralized and decentralized operation
schemes [11]. In this research, a decentralized EMS is implemented which seeks to provide
PV generators with a greater degree of freedom, thus achieving a correct balance between
generation and demand for all periods of operation of the distribution system.

1.2. Motivation

In the Colombian context, the isolated or non-interconnected zones (ZNI) correspond
to 52% of the national territory, where, due to their difficult access, are energetically isolated
from the rest of the national territory, and the costs of providing the electricity service are
high when compared to urban areas that are connected to the National Interconnected
System (SIN). This affects more than 2 million people (out of which more than 1.2 million
do not have access to electricity), causing energy generation to be produced mainly through
diesel generation plants [14]. It is important to note that the diesel fuel used in these remote
areas is efficient and easy to obtain in the market, but its use produces great amounts of
polluting gases that contribute to global warming. Thereupon, the main motivation of this
research is to propose an EMS that allows correctly and intelligently managing the power
injected by PV generators, which will allow distribution grids to deliver a high-quality
electrical service that is as economically as possible and has a low environmental impact to
each one of their users not only in urban areas but also in rural or isolated areas.
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1.3. Literature Review

Energy management in a distribution grid can be oriented toward meeting technical,
economic, or environmental criteria [15]. Thus, in the specialized literature, different
techniques and approaches have been proposed for the implementation of EMS. Some of
the most recent publications are presented below.

The authors of [16] propose a second-order conic programming model to optimally
manage an interconnected distribution grid. The main objective of this document is to
minimize CO2 emissions and the energy loss costs for one day of operation. The results ob-
tained show the applicability and efficiency of the proposed methodology. In [17], an EMS
for dispersed generators dispatch is proposed for distribution grids operating with direct
current under a specified demand condition. The main objective is to reduce power losses
in different penetration scenarios using dispersed generators. To this effect, a master–slave
methodology is presented, which is based on the black hole algorithm in conjunction with
the Gauss–Seidel method. The authors of this document validate the applicability of the
proposed methodology by comparing the results obtained with three other metaheuristic
algorithms and the GAMS software. However, a statistical analysis aimed at determining
the repeatability of the solutions was not performed nor were the required processing
times analyzed. Likewise, the minimization of power losses through dispersed generators
dispatch in DC distribution grids under a given demand condition has also been solved
by implementing sequential quadratic programming models [18] and convex quadratic
programming models [19]. In these works, the authors demonstrate the efficiency of the
proposed approaches by comparing their results with different methodologies reported
in the literature that are mainly based on metaheuristic optimizers. The authors of [20]
address the distribution grid management problem through a nonlinear programming
model whose objective is to minimize CO2 emissions and the costs of energy losses for one
day of operation. In this case, the distribution grid is made up of photovoltaic panels, wind
turbines, and energy storage devices. This model is solved by using the specialized GAMS
software, with which it is possible to observe significant reductions in polluting gases and
energy losses.

To better illustrate the publications associated with EMS in distribution grids, Table 1
summarizes the main energy management strategies reported in the literature.

Table 1. Main reports involving EMS applied to electrical distribution grids.

Reference Methodology Indicator Computation Time Statistical Analysis Comparison with
Other Methodologies

[21] HOMER pro Technical–economic No No Yes

[22] MATLAB Optimization
Toolbox Technical No No No

[17] Master–Slave Technical No No Yes

[18] Quadratic
Programming Technical Yes No Yes

[19] MATLAB CVX Technical No No Yes

[23] Master–Slave Technical No No Yes

[24] Fuzzy Logic Environmental No Yes Yes

[16] MATLAB CVX Environmental–
economic No No No

[20] GAMS Environmental–
economic No No No

[25] Genetic Algorithm Economic No No No

[26] MATLAB linprog
Particle Swarm Economic No No No

[27] Quadratic
Programming Economic No No No

[28] Universal Generator
Function Technical–economic No No Yes



Sustainability 2022, 14, 16083 4 of 35

Table 1. Cont.

Reference Methodology Indicator Computation Time Statistical Analysis Comparison with
Other Methodologies

[29] Online EMS Technical–economic No No No

[30] Particle Swarm Economic No No No

[31] Metaheuristic
Algorithms Economic No Yes Yes

[32] Artificial Fish Swarm Economic No No No

[33] Particle Swarm Technical–economic No No No

[34] Dynamic Programming Economic No No Yes

[35] Master–Slave Economic Yes Yes Yes

[36] Genetic Algorithm Technical–economic No Yes Yes

[37] HOMER pro Technical–economic No No No

[38] SAM Technical–economic No No Yes

[39] SAM Technical–economic No No Yes

As seen in Table 1, the EMS seeks the correct operation of power generation devices
that may be present in an MG, so that the owner and/or operator of the network can obtain
greater benefits both in technical, economic, and environmental aspects while observing
the technical-operative conditions of the system. It was also possible to identify a greater
interest in methodologies that seek to improve the economic indicators of distribution grids,
with the improvement of technical and environmental indicators being currently under
development. Likewise, a high use of specialized software can be appreciated, as is the
case of HOMER pro, SAM, GAMS, and CVX, in order to implement EMS. In the same way,
statistical analysis and computation times are not widely adopted criteria nor is the use of
comparison methodologies, which makes it difficult to identify the effectiveness and speed
of the proposed solution strategies. In addition, the vast majority of the methodologies
presented in this review of the state of the art do not consider the telescopic characteristic
of radial networks, which does not allow representing what actually happens with existing
electrical networks within a distributed generation environment.

1.4. Contribution and Scope

This research proposes the implementation of an EMS designed upon the basis of
a master–slave methodology, which seeks to improve the technical, economic, and environ-
mental indicators associated with the operation of electrical distribution grids. Additionally,
the mathematical model includes the set of constraints that represent the operation of a dis-
tribution grid in a PV generation environment, i.e., the balance of active and reactive power,
voltage regulation, the thermal limit of the conductors, the variations in the solar resource,
and typical demand behaviors. Based on the review presented above, this study makes the
following contributions:

i. The use and presentation of a detailed mathematical formulation that contemplates the
thermal limit of distribution grid conductors, which allows representing the operation
of PV generators in telescopic radial networks with a higher degree of realism. The
objective function of this mathematical model is the minimization of the technical,
economic, and environmental indicators, and the set of constraints manages to capture
the behavior of a distribution grid in a PV generation environment.

ii. The implementation of a new master–slave methodology that allows designing an EMS
for the optimal dispatch of PV generators. The master stage uses the antlion optimizer
(ALO) to define the power injection of the PV generators in the MG. Regarding the
slave stage, the successive approximations power flow method is used to evaluate the
technical, economic, and environmental indicators associated with the operation of
the system.
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iii. A methodology that finds the global optimal solution for a complex optimization
problem from a dimensional perspective, such as the PV generator operation problem
in distribution grids, thus achieving the best results in terms of solution quality
and repeatability.

Due to the fact that Colombia is a country located between the tropics of Cancer
and Capricorn, its energy consumption habits are not influenced by seasonal changes,
so the resource with the greatest potential to be exploited is solar PV generation [40]. In
this sense, in order to carry out this research, two Colombian regions, namely Medellín
and Capurganá, were considered for the implementation of an EMS. These regions were
selected for the following reasons:

i. Each region has different climatic conditions. Medellín is a city located at latitude
6.2518◦ N and longitude 75.5636◦ W (Figure 1) and has an average annual temperature
of 23 ◦C. Likewise, the municipality of Capurganá is located at latitude 8.6167◦ N and
longitude 77.3333◦ W (Figure 1) and has an average annual temperature of 28 ◦C.

ii. The selected regions have different PV power potentials. In Figure 1, it can be high-
lighted that the solar energy potential of Medellín is approximately 4.6 kWh/m2/day,
while in Capurganá, the solar energy potential is approximately 3.7 kWh/m2/day [41].

iii. Due to their locations, the energy consumption habits of the two Colombian regions
are very different [42]. Medellín is a city that belongs to the SIN and therefore has
access to electricity 24 h a day. Its economic activities are based on industry and
commerce, and it is also the second most important and populated city in the country.
On the other hand, the municipality of Capurganá is a ZNI located in a place of
difficult access, so its electricity generation is based on diesel, with an average of
19 h of access to electricity per day. Thus, its economic activities are based on fishing
and agriculture.

As shown in Figure 1, these two regions are completely different in terms of solar
generation and energy consumption habits. In addition, due to the fact that the country is
divided into two large regions (from the point of view of energy infrastructure) based on
how easy (i.e., regions belonging to the SIN) or difficult (i.e., regions belonging to the ZNI)
it is to supply the energy demand of end users, the authors of this document have proposed
a mathematical model that considers the variations in power generation and demand in
order to evaluate the impact of implementing an EMS on the technical, economic, and
environmental indicators of distribution systems located in urban areas and rural areas
(i.e., Medellín and Capurganá, respectively).

1.5. Document Structure

This research paper is structured as follows: Section 2 presents the mathematical for-
mulation of the operation problem regarding PV generators in distribution grids; Section 3
presents the EMS designed through a master–slave methodology that integrates the ALO
with the successive approximations power flow method; Section 4 shows the generation
and demand curves used to implement the proposed optimization strategy; Section 5
presents the main characteristics of the 27- and 33-node test systems used for validation as
well as the parametric information necessary to calculate the value of each fitness function;
Section 6 shows the results obtained for the operation of PV generators in each proposed
simulation scenario; and Section 7 presents the conclusions and future works derived from
this research project.
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Capurgana

Figure 1. Solar energy potential in Colombia.

2. Optimal Operation of PV Generators

The problem regarding the optimal operation of PV generators in distribution grids
can be represented through a nonlinear programming (NLP) model, where the decision
variables of the problem (i.e., variables of a continuous nature) are associated with the
injection of power by the PV generators, while nonlinearities of the model appear in the
power flow formulation, given the nonlinear and non-convex nature of its equations [43].
This section presents the formulation of the objective functions and the set of constraints
that represent the problem of optimal PV generator operation in distribution grids.

2.1. Formulation of the Objective Function

In distribution grids with PV generators, the objective function may be aimed at
improving technical, economic, or environmental conditions, through which the following
may be sought: minimizing power or energy losses, system operating costs, or CO2
emissions; improving voltage profiles; or reducing the loadability of distribution lines [44].
The selection of said objective function only depends on the needs and requirements of the
network operator.

The objective functions selected for this research work were the minimization of
operating costs, energy losses, and CO2 emissions, aiming to bring the distribution grid to
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an optimal point of operation while ensuring that the demand is met as economically as
possible and with a low environmental impact.

2.1.1. Economic Indicator

The objective function considered in this study to improve the economic indices of
the distribution grid is the minimization of the operating costs of the network, which is
composed of the costs associated with the generation or purchase of energy at the main
supply node (i.e., slack node or substation node) and the operation and maintenance costs
of the PV generators installed within the [44] system. Each component of the objective
function is presented in Equations (1)–(3).

min Ecost = f1 + f 2, (1)

f1 = CkWh

(
∑

h∈H
∑

i∈N
ps

i,h∆h

)
, (2)

f2 = CO&M

(
∑

h∈H
∑

i∈N
ppv

i,h∆h

)
, (3)

where Ecost represents the total operating costs of the MG; f1 is the component of the
objective function related to the purchase of energy at the terminals of the substation
node; f2 is the component of the objective function associated with the operation and
maintenance costs of the PV generators; CkWh refers to the average cost of purchasing
power at the substation node; ps

i,h is the active power provided by a conventional generator
connected to a node i during a period of time h; ∆h is the duration of the period of time
in which the electrical variables are assumed to be constant; CO&M is the maintenance
and operation cost of a PV generator; ppv

i,h is the active power generated by a PV source
connected to a node i during a period of time h; and N andH are the sets that contain all
the network nodes and the time periods in a daily operation scenario, respectively.

2.1.2. Technical Indicator

To improve the technical indicators of the MG, the minimization of network energy
losses is taken as the objective function. This function goal is presented in Equation (4) [44].

min Eloss = ∑
h∈H

∑
l∈L

Rl I2
l ∆h, (4)

where the value of Eloss represents the energy losses of the MG; Rl is the resistance associ-
ated with a line l; and Il is the magnitude of the current flowing through the section of the
network l. Note that L is the set containing all the distribution lines of the MG.

2.1.3. Environmental Indicator

Finally, aiming to improve the environmental indicators of the MG, the minimization
of CO2 emissions is taken as the objective function. This objective function comprises the
emissions associated with power generation at the substation node and those related to
power generation at the PV generators [45]. This objective function is shown in Equation (5).

min ECO2 = CEs

(
∑

h∈H
∑

i∈N
ps

i,h∆h

)
, (5)

where ECO2 represents the total emissions due to the operation of the distribution grid and
CEs refers to the CO2 emission factor associated with conventional generation sources.

2.2. Set of Constraints

The set of constraints corresponds to the different operational limitations that can
be found in electrical systems within a distributed generation environment, such as the
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balance of active and reactive power in each node, the voltage regulation limits, and the
thermal limit of the drivers present in the network, among others [46]. In this vein, the
complete list of constraints is presented below. Note that the set of restrictions is presented
as a function of the real and imaginary parts of the nodal voltage and the current that
circulates through the network sections.

Equality constraints (6) and (7) represent the balance of active and reactive power for
each node of the system in each period of time.

ps
i,h + ppv

i,h − Pd
i,h = ∑

l∈L
Ai,l

(
Vre

i,h Ire
l,h + Vim

i,h Iim
l,h

)
,
{
∀i ∈ N ,
∀h ∈ H

}
, (6)

qs
i,h −Qd

i,h = − ∑
l∈L

Ai,l

(
Vre

i,h Iim
l,h −Vim

i,h Ire
l,h

)
,
{
∀i ∈ N ,
∀h ∈ H

}
, (7)

where Pd
i,h and Qd

i,h are the active and reactive power demanded at a node i in a period of
time h, respectively; qs

i,h is the reactive power generated by each conventional generator
connected to a node i in a period of time h; Vre

i,h and Vim
i,h are the real and imaginary parts of

the voltage at a node i during a period of time h; Ire
i,h and Iim

i,h are the real and imaginary parts
of the current that circulates through a distribution line l during a period of time h; and Ai,l
is the node-to-branch incidence matrix and can be constructed as shown below [47].

• Ail = 1 if line l is connected to the node i and the current flow is leaving this node.
• Ail = −1 if line l is connected to the node i and the current flow arrives at this node.
• Ail = 0 if line l is not connected to the node i.

On the other hand, inequality constraints (8) and (9) define the lower and upper limits
for the injection of active and reactive power by conventional generators. Similarly, (10) is
an inequality constraint that defines the lower and upper limits of active power generation
for the PV generators present in the MG.

Ps,min
i ≤ ps

i,h ≤ Ps,max
i ,

{
∀i ∈ N ,
∀h ∈ H

}
, (8)

Qs,min
i ≤ qs

i,h ≤ Qs,max
i ,

{
∀i ∈ N ,
∀h ∈ H

}
, (9)

Ppv,min
i ≤ ppv

i,h ≤ Ppv,max
i ,

{
∀i ∈ N ,
∀h ∈ H

}
, (10)

where Ps,min
i and Ps,max

i are the active power limits associated with each conventional
generator connected to a node i; Qs,min

i and Qs,max
i are the reactive power limits associated

with each conventional generator connected to a node i; and Ppv,min
i and Ppv,max

i are the
active power limits associated to each PV generator connected to a node k.

Equality constraints (11) and (12) define the real and imaginary parts of the currents
that circulate in the distribution lines.

Ire
l,h =

1
R2

l + X2
l

∑
i∈N

Ai,l

(
RlVre

i,h + XlVim
i,h

)
,
{
∀l ∈ L,
∀h ∈ H

}
, (11)

Iim
l,h =

1
R2

l + X2
l

∑
i∈N

Ai,l

(
RlVim

i,h − XlVre
i,h

)
,
{
∀l ∈ L,
∀h ∈ H

}
, (12)

where Xl is the reactance value associated with the distribution line l.
Equality constraints (13) and (14) present the voltage magnitude at a node i and the

current magnitude in a distribution line l, respectively.
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Vi,h =

√(
Vre

i,h

)2
+
(

Vim
i,h

)2
,
{
∀i ∈ N ,
∀h ∈ H

}
, (13)

Il,h =

√(
Ire
l,h

)2
+
(

Iim
l,h

)2
,
{
∀l ∈ L,
∀h ∈ H

}
. (14)

Finally, box-type constraints (15) and (16) define the lower and upper limits of voltage
regulation for all nodes as well as the current capacity of all the distribution lines.

Vmin
i ≤ Vi,h ≤ Vmax

i ,
{
∀i ∈ N ,
∀h ∈ H

}
, (15)

0 ≤ Il,h ≤ Imax
l ,

{
∀l ∈ L,
∀h ∈ H

}
. (16)

Note that constraint (16) ensures that the thermal limit of each conductor present in the
distribution grid is respected. With the power flow formulation presented in this section, the
telescopic characteristic of electrical networks can be considered: as the distribution lines
move away from the substation bus, their caliber is reduced in addition to the maximum
current that the conductors can withstand [48].

Traditionally, PV generators are operated with a constant and pre-set generation
factor, which is preserved during the optimization process [49–51]. This means that the PV
generators installed in a distribution grid supply all the power they can generate to the
grid (i.e., maximum power point tracking). One of the main disadvantages of this solution
methodology is that it can negatively impact the operating conditions of the network in
scenarios where PV power generation exceeds power demand [52,53]. To avoid this, the
solution methodology presented in this paper takes advantage of freeing the PV generators,
so that they are not forced to inject all the power they can generate in each period of time
(i.e., deactivating maximum power point tracking), thus making it possible for the PV
generator to operate optimally and ensuring the balance between generation and demand
in each period of time [54]. This behavior can be modeled mathematically, as shown in (17).

ppv
i,h ≤ Ppv

i Cpv
h ,
{
∀i ∈ N ,
∀h ∈ H

}
, (17)

where Ppv
i is the nominal power of the PV generator located at a node i and Cpv

h is the
expected PV generation behavior curve for the area where the distribution grid is located.

Inequality constraints (10) and (17) show that the output power of the PV generator
in a period of time h can take values between the lower limit of power and the product
between the nominal power and the solar generation curve.

Note that the NLP model defined from (1)–(17) is the general representation of the
problem regarding the optimal operation of PV generators in distribution grids. However,
due to the active and reactive power flow constraints, this problem is nonlinear and non-
convex, so optimization techniques and numerical methods must be used to solve it [55].
Consequently, a master–slave methodology combining the antlion optimizer (ALO) and
the successive approximations power flow method is proposed in this research.

3. Master–Slave Solution Methodology

To solve the operation problem regarding PV generators in distribution grids that
was modeled in the previous section, this study proposes the implementation of an EMS
designed with a master–slave methodology that uses the ALO as the master stage [56] and
the successive approximations method as the slave stage [57]. The master stage defines the
power that each PV generator must dispatch for each hour of operation, while the slave
stage deals with the constraints associated with the power flow and defined from (6) to
(17). Next, the coding used to represent the problem will be described as well as each of the
components of the proposed methodology.
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3.1. Proposed Coding

The structure of the coding to adapt to the problem under study is presented in Figure 2.

PV generator 1 PV generator 2 PV generator 𝐍𝐩𝐯

0.01 0.12 0.25 … 0.18 0.1 0.23 0.34 … 0.25 … 0.15 0.20 0.35 … 0.05

1 2 3 … 13 1 2 3 … 13 1 2 3 … 13

Period

Time period under analysis (H)

Figure 2. Coding used for the operation of PV generators.

This figure shows a vector of size 1× (Npv · H), where each column of the vector
corresponds to the power generated by each PV generator in a given period of time, where
Npv is the number of PV generators available in the distribution grid and H is the hours
of availability of the energy resource for each generator. In this vector, each PV generator
has 13 power values to supply to the grid within the period of time in which the solar
resource is available in Colombia [58]. Therefore, to represent this behavior, a vector of
13 × Npv elements is required for Npv PV generators. In the example of Figure 2, PV
generator 1 generates a power of 0.01 MW during time period 1, 0.12 MW during time
period 2, 0.25 MW during time period 3, and 0.18 MW during time period 13. Similarly,
the PV generator Npv generates a power of 0.15 MW during time period 1, 0.20 MW
during time period 2, 0.35 MW during time period 3, and 0.05 MW during time period 13.
Note that the technical limits of PV power generation must be established in advance to
determine the minimum and maximum generation power range assigned to each of the
time periods in which the PV generators will operate. In addition, note that this coding
works adequately with regard to establishing the optimal operation of the existing PV
generators in distribution grids, as it allows considering the hourly variation of generation
based on the power demanded.

3.2. Master Stage: Antlion Optimization

The ALO is a bio-inspired metaheuristic optimization technique based on the hunting
mechanism of antlions in nature [56,59]. The name of this insect originates from its hunting
tactics and its favorite prey (i.e., ants). Its hunting mechanism is based on using its powerful
jaw to dig a cone-shaped hole in the ground [60]. After digging a cone-shaped trap, these
insects hide at the bottom of the pit and wait for their prey to be trapped. Once trapped,
antlions will attack their prey until they eat it. After feeding, they clean and prepare the
den for the next hunt. This behavior can be modeled mathematically through some simple
rules of evolution, which will be explained below [56,59–61].

3.2.1. Initial Population

The initial populations of ants and antlions take the structure shown in (18) and (19),
respectively.

At =


at

11 at
12 · · · at

1,Nv
at

21 at
22 · · · at

2,Nv
...

...
. . .

...
at

Ni1
at

Ni2
· · · at

Ni ,Nv

, (18)

Alt =


alt

11 alt
12 · · · alt

1,Nv
alt

21 alt
22 · · · alt

2,Nv
...

...
. . .

...
alt

Ni1
alt

Ni2
· · · alt

Ni ,Nv

, (19)
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where At and Alt are the arrays that store the position of the ants and the position of the
antlions’ hiding places in iteration t, respectively; Ni is the number of individuals that
make up each population; and Nv is the number of variables or the dimension of the
solution space, i.e., the product between the number of PV generators available in the
distribution grid and the hours of availability of the solar resource (Npv · 13). To create
an initial population of individuals that are capable of maintaining the structure shown in
Figure 2, Equation (20) is used, which generates a matrix X of random numbers within the
operating range of PV generators.

X = Xminones(Ni, Nv) + (Xmax − Xmin)rand(Ni, Nv), (20)

where ones(Ni, Nv) is a matrix filled by ones; rand(Ni, Nv) is an array of random numbers
that can take values between 0 and 1 and are generated by means of a uniform distribution;
and Xmin and Xmax are vectors representing the lower and upper bounds of the solution
space, as shown below:

Xmin =
[

Xmin
1 , · · · , Xmin

Npv

]
,

Xmax =
[

Xmax
1 , · · · , Xmax

Npv

]
,

with Xmin
i and Xmax

i being the vectors that contain the lower and upper limits of the
decision variables associated with the dispatch of a PV generator i, as shown below:

Xmin
i =

[
xmin

i,1 , · · · , xmin
i,H

]
,

Xmax
i =

[
xmax

i,1 , · · · , xmax
i,H

]
.

Once the initial population of ants and antlions has been generated, the function of
each of the individuals is evaluated, as shown in (21) and (22), respectively.

Ff (At) =


Ff (At

1)
Ff (At

2)
...

Ff (At
Ni
)

 (21)

Ff (Alt) =


Ff (Alt

1)
Ff (Alt

2)
...

Ff (Alt
Ni
)

 (22)

During this process, the best antlion is selected as the best solution found so far (Albest).

Remark 1. Ff (·) represents the adaptation function to be minimized. In this research document,
the minimization of operating costs (see (1)), the minimization of energy losses (see (4)), or the mini-
mization of emissions of CO2 (see (5)) can be selected according to the needs of the network operator.

3.2.2. Building the Trap

In the ALO, each ant can fall into only one trap in each iteration. It is for this reason
that the roulette operator is used to model the hunting capacity of antlions (for more
information, see [56]). By means of this operator, the antlion is selected according to its
adaptation function value, which allows selecting the most suitable antlion for hunting [59].
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3.2.3. The Ants Slide Toward the Antlion

Considering the above, it is possible to deduce that antlions are capable of building
traps of a quality proportional to their adaptation function. In this sense, when an ant falls
into a trap, the antlion starts shooting sand from the center of the pit to prevent the ant
from escaping [59,61]. This behavior is modeled mathematically by reducing the space
of solutions an ant can move through [56]. Therefore, the lower and upper bounds of all
decision variables are reduced and updated, as shown in (23) and (24).

ct =
Xmin

R
(23)

dt =
Xmax

R
, (24)

where ct and dt are the modified vectors of the lower and upper bounds of the solution
space at iteration t, and R is the radius defined in (25).

R = 10w t
tmax

, (25)

where tmax is the maximum number of iterations defined for the exploration and exploita-
tion of the solution space, and w is a constant that takes a value according to the current
iteration, as can be seen in (26).

w =



2 if t > 0.1tmax

3 if t > 0.5tmax

4 if t > 0.75tmax

5 if t > 0.9tmax

6 if t > 0.95tmax

(26)

The constant w is in charge of adjusting the level of precision of the exploitation in
addition to ensuring the convergence of the algorithm. This is due to the fact that as the
iterations increase, the space of the solutions is reduced [60].

3.2.4. Trapping the Ants in the Antlion Pits

As seen in the previous step, the traps limit the solution space through which the ants
can move. To mathematically model this behavior, the lower and upper bounds of the
solution space are adjusted in each iteration, so that the ant moves around the previously
selected antlion trap, as shown in Equations (27) and (28).

ct =

{
Alt

i + ct if rand < 0.5
Alt

i − ct otherwise
(27)

dt =

{
Alt

i + dt if rand < 0.5
Alt

i − dt otherwise
, (28)

where Alt
i is the antlion i selected by the roulette operator in iteration t, and rand is a random

number between 0 and 1.

3.2.5. Random Ant Walks

On the other hand, ants move randomly throughout the solution space in search for
food. It is for this reason that random walks are used to represent their movement, which
can be expressed as shown in (29) [56].
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RW = [0, cumsum(2r1 − 1), cumsum(2r2 − 1), · · · ,

cumsum(2rt − 1), · · · , cumsum(2rtmax − 1)],
(29)

where RW is the vector containing the positions of the ants’ random walk, cumsum com-
putes the cumulative sum, and rt is a stochastic function defined as:

rt =

{
1 if rand > 0.5
0 otherwise

(30)

According to Equation (29), the ants randomly update their position randomly. How-
ever, due to the effect of Equations (27) and (28), as the iterations progress, the space of
solutions through which an ant can move is reduced. Therefore, (31) must be applied so
that random walks occur within the solution space.

RWt =

(
RWt − a

)(
dt − ct)

(b− a)
+ ct, (31)

where a and b represent the minimum and maximum values of the random walk.

3.2.6. Elitism

This step is one of the most important steps in the ALO, as it allows keeping the best
solutions obtained during the optimization process within the antlion population [56,59].
In this sense, the best solution obtained so far (Albest) is capable of affecting the way in
which the ants move within the solution space as the iterations advance. Therefore, the ant
walks randomly around the roulette-selected antlion, which is the best antlion found so far,
as shown in (32).

At
i =

RWt
A + RWt

best
2

, (32)

where At
m represents the position of an ant m at iteration t. RWt

i is the random walk around
the antlion selected by the roulette wheel at iteration t, while RWt

best is the random walk
around the best antlion found so far in iteration t.

3.2.7. Catching Prey and Rebuilding the Pit

In the last stage of the antlion’s hunt, the ant has fallen to the bottom of the pit and
has been caught in its jaw. Later, the antlion eats its prey and cleans and prepares the pit to
hunt its next prey. The ALO replicates this process by assuming that the objective function
value of the ants’ new position is better than that of the antlion selected by the roulette
mechanism [56,59]. In this sense, the antlion updates its position, taking the position of the
hunted ant to increase its chances of finding new prey. This behavior can be modeled as
shown in (33).

Alt+1
i =

{
At+1

m if Ff (At+1
m ) < Ff (Alt

i )

Alt
i otherwise

(33)

Similarly, the position of the best antlion found so far should be updated if there is an antlion
whose fitness function is better than that of the former, as shown by the expression (34).

Alt+1
best =

{
At+1

i if Ff (Alt+1
i ) < Ff (Alt

best)

Alt
best otherwise

(34)

3.2.8. Stopping Criteria

It is common for metaheuristic algorithms to apply a stopping criterion in order to
decide whether the algorithm stops or continues in the next iteration [59]. This is completed
in order to reduce the computation time it takes for the algorithm to arrive at a solution. In
this research paper, the following two stopping criteria for the ALO are proposed:
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• Maximum number of iterations: the execution of the ALO will stop when the iteration
counter t reaches a maximum number (tmax).

• Number of non-improvement iterations: the execution of the ALO will stop when the best
antlion found so far is not updated after tnon consecutive iterations.

3.3. Slave Stage: Successive Approximations Power Flow Method

By using the successive approximations method, it is possible to iteratively solve the
active and reactive power balance equations described in (6) and (7), respectively. This
numerical method allows the slave stage to determine the value of the objective function
for each of the individuals that make up the population, evaluating the set of restrictions
presented in the NLP model (Section 2). Considering the above, the following is the power
flow formulation using successive approximations, as originally described by [57]. These
authors take advantage of the characteristics of distribution systems (where there is a single
slack node and n− 1 loading nodes) to arrive at the recursive formula shown in (35).

Vt+1
d,h = −Y−1

dd

[
diag−1(Vt,∗

d,h)(S
∗
d,h − S∗pv,h) + YdsVs,h

]
, (35)

where t is the iterative counter; Vd is the vector containing the voltages at the demand
nodes; Ydd is the component of the admission matrix that associates the demand nodes
with each other; Sd corresponds to the complex power demanded at all load nodes; Spv,h is
the vector that contains the active power for each PV generator in each time period h; Yds is
the component of the admission matrix that associates the demand nodes with the slack
node; and Vs is the vector containing the voltage at the slack node. Note that the value of
Spv is provided by the master stage and is a vector that respects the encoding shown in
Figure 2. Note that the iterative process ends when the maximum difference of the demand
voltage magnitudes between two consecutive iterations is less than a maximum admissible
error (i.e., convergence criterion), as shown in (36):

max
{
||Vt+1

d,h | − |V
t
d,h||

}
≤ ε, (36)

where ε is the convergence error, which, for this research paper, has a value of 1× 10−10, as
recommended by the authors of [62].

Once the power flow has been solved using the successive approximations method
for all the time periods h, it is possible to calculate the value of Eloss. To this effect, it is
necessary to calculate the current that circulates through the distribution lines in each
period of time h, as shown in (37) [63].

Il,h = YpAT
[
Vs,h
Vd,h

]
, (37)

where Il,h is the vector in the complex domain that contains the current flowing through the
distribution lines of the system; Yp is the primitive admission matrix containing the inverse
of the impedance of each line on its diagonal; and A is the incidence matrix. Likewise, to
obtain the value of Ecost and ECO2 , it is necessary to calculate the power generated at the
terminals of the conventional generator, as shown in (38).

S∗s,h = diag(V∗s,h)(YssVs,h + YsdVd,h), (38)

where Ss,h is the vector containing the complex power produced at node slack, and Yss is
the component of the admission matrix associated with the slack node.

In this way, it is possible to solve (37) and (38) and, consequently, to determine the
value of the objective functions proposed in (1), (4) and (5). Additionally, in order to discard
the potentially unfeasible solutions of the master stage, i.e., they violate the restrictions
shown in (6)–(17), the objective functions described in (1), (4) and (5) are replaced by the
adaptation functions shown in (39)–(41).
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Ff 1 =


Ecost + α1 max

h

{
0, Vi,h −Vmax

i
}

−α2 min
h

{
0, Vi,h −Vmin

i
}

−α3 min
h

{
0, real(ps

i,h − Ps,min
i )

}
+α4 max

h

{
0, Il,h − Imax

l
}

, (39)

Ff 2 =


Eloss + α1 max

h

{
0, Vi,h −Vmax

i
}

−α2 min
h

{
0, Vi,h −Vmin

i
}

−α3 min
h

{
0, real(ps

i,h − Ps,min
i )

}
+α4 max

h

{
0, Il,h − Imax

l
}

, (40)

Ff 3 =


ECO2 + α1 max

h

{
0, Vi,h −Vmax

i
}

−α2 min
h

{
0, Vi,h −Vmin

i
}

−α3 min
h

{
0, real(ps

i,h − Ps,min
i )

}
+α4 max

h

{
0, Il,h − Imax

l
}

, (41)

where Ff 1, Ff 2, and Ff 3 correspond to the value of the adaptation function related to the
economic, technical, and environmental indicators, respectively; and α1, α2, α3, and α4 are
the penalty factors applied to each objective function. These penalty factors apply as long
as the solutions provided by the master stage include the NLP model constraints described
in Section 2. In this research paper, the value of the penalty factors is set as 1× 103, where
each factor has its corresponding units.

Algorithm 1 provides a general description of the procedure followed by the pro-
posed master–slave methodology to solve the problem regarding the optimal operation of
PV generators.

Algorithm 1: General implementation of the master–slave methodology to solve
optimization problems.

1 Define parameters Ni, Nv, tmax, xmin, and xmax;
2 Generate the initial population of ants and antlions using Equation (20);
3 Do t = 0;
4 Calculate the value of the adaptation function of each ant and antlion using

Equation (39), (40) or (41) ;
5 Identify the best solution for the antlion population and select it as the best antlion

(Al0
best);

6 for t ≤ tmax do
7 for m = 1 : Ni do
8 Select an antlion using the roulette mechanism;
9 Update the size of the solution space (i.e., c and d) using Equations (27) and

(28);
10 Create a random walk and fit it into the solution space using Equations (29)

and (31);
11 Update the ant’s position using Equation (32);

12 Evaluate the adaptation function for the new position of the ant using
Equation (39), (40) or (41);

13 Update the position of the antlions using Equation (33);
14 Update the position of the best antlion found so far using Equation (34);
15 Check the stop criterion for iterations of no improvement;

16 Result: The best solution is found for Alt
best, and its objective function is Ff (Alt

best)
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4. Variable Power Demand and Generation

To implement the strategy, it is necessary to have the energy generation curves of
the solar resource as well as the energy demand curves of the distribution system’s users.
The main characteristic of the data that make up these curves is that they are variable and
depend on weather conditions and consumption habits in the region where the network
is located. This study considers the behavior of the user and the solar resource for two
areas of Colombia in particular. The first zone is the city of Medellín, in the department of
Antioquia, which is an urban zone [64]. The second area is the municipality of Capurganá,
Chocó, which is a rural area [65].

4.1. Solar Generation Curves

The power generated at the terminals of the PV generation systems depends on the
weather conditions associated with solar radiation and the temperature to which the solar
panels are exposed, which makes this type of generation source non-dispatchable [66]. It
is for this reason that in order to correctly operate electrical networks with the presence
of PV generators in urban and rural areas, the power produced with the available solar
resource must be accurately known. In the specialized literature, different formulations
have been proposed to determine the power produced by the radiation and the temperature
of the panel. The ones that stand out the most are those based on energy balance and
on the efficiency of the solar panel [67]. However, according to [67], the most accurate
formulations are those based on the energy balance of the panel, since the solar energy
absorbed by a panel is converted into electrical energy and heat.

To calculate the output power of a PV generator, Equation (42) is used.

ppv
i,h = Ppv

i fpv

(
GT

h

GT,STC
i

)[
1 + αp

(
Tc

i,h − Tc,STC
i

)]
(42)

where fpv is a PV power reduction factor that considers external conditions that may affect
the power production of a panel (i.e., impurities, shading, and reduced efficiency, among
others); GT

h is the solar radiation that falls on a PV generator in a period of time h; GT,STC
i is

the solar radiation of the PV generator located at node i under standard test conditions; αp
is the power temperature coefficient; Tc

i,h is the surface temperature of the PV generator

located at a node i during a period of time h; and Tc,STC
i is the surface temperature of the

PV generators located at a node i under standard testing conditions. Note that the surface
temperature of the PV generator can be calculated as shown in (43).

Tc
i,h = Ta

h + GT
h

(
Tc,NOCT

i − Ta,NOCT
i

GT,NOCT
i

)(
1−

ηc
i

τα

)
, (43)

where Ta
h is the ambient temperature to which the PV generator is exposed in a period of

time h; Tc,NOCT
i is the nominal surface temperature of the PV generator located at node

i when exposed to radiation GT,NOCT
i at an ambient temperature of Ta,NOCT

i ; ηc
i is the

electrical efficiency of the PV generator located at a node i; τ is the solar transmittance of
the PV generator; and α is the solar absorption of the PV generator.

By analyzing Equations (42) and (43), it can be concluded that the output power of
a PV generator is a function of solar radiation and the ambient temperature of the area
where the distribution grid is located, since the rest of the variables are constant parameters
that depend on the standard testing conditions and the type of material with which the
panels of the PV generator are built.

To determine the behavior curve for power generation based on the solar resource
available in the study areas (i.e., urban and rural), the parametric information shown in
Table 2 is used. This information was taken from [67,68], assuming that the material of the
solar panels is polycrystalline silicon.
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Table 2. Parametric information of the PV generation sources.

Parameter Value Unit

Ppv
i 1 W

fpv 0.95 -

GT,STC
i 1000 W/m2

αp −0.0045 1/◦C

Tc,STC
i 25 ◦C

Tc,NOCT
i 46 ◦C

GT,NOCT
i 800 W/m2

Ta,NOCT
i 20 ◦C

ηc
i 0.141 -

τα 0.9 -

Remark 2. Note that by setting the nominal power of the PV generators at 1 W, a generation
curve is obtained which varies between 0 and 1. That is to say, a curve is obtained using a per-unit
representation that denotes the behavior of the solar resource in the areas under study (Cpv

h ), which
serves as input to solve the NLP model presented in Section 2.

4.1.1. Urban Case: Medellín, Antioquia, Colombia

For the urban area, climatological data regarding solar radiation and ambient temper-
ature were taken from the NASA database [69], which was created for predicting energy
resources worldwide. Solar radiation and ambient temperature data for 2019 (i.e., from
1 January to 31 December) were taken with a 1 h sampling.

For this study, the collected solar radiation and ambient temperature data were av-
eraged per hour, as shown in Table 3. Thus, when applying (42) and (43) with the data
in Table 3, together with the data presented in Table 2, the average behavior of the solar
resource for a typical day in Medellín is obtained, as shown in Figure 3 and Table 3.

Table 3. Solar radiation data (W/m2), ambient temperature (◦C), and behavior (p.u.) for an average
day in the regions under study.

Region Medellín Capurganá

Hour GT Ta Cpv GT Ta Cpv

1 0 16.14132 0 0 24.44252 0

2 0 15.90636 0 0 24.32474 0

3 0 15.68132 0 0 24.22545 0

4 0 15.46022 0 0 24.14674 0

5 0 15.27545 0 0 24.08422 0

6 0 15.10329 0 0 24.03482 0

7 46.02425 15.15718 0.04541 29.14570 24.10367 0.02770

8 190.83559 16.15636 0.18424 142.11066 24.78126 0.13277

9 362.83753 17.43868 0.34100 291.61926 25.68211 0.26622

10 526.64647 18.87312 0.48161 431.95384 26.63671 0.38547

11 640.99058 20.27438 0.57375 540.61581 27.47515 0.47362

12 709.05312 21.36342 0.62572 605.16362 28.10252 0.52397
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Table 3. Cont.

Region Medellín Capurganá

Hour GT Ta Cpv GT Ta Cpv

13 701.86370 21.98721 0.61809 606.93027 28.46775 0.52442

14 626.82690 22.12107 0.55716 583.07479 28.56923 0.50519

15 499.86074 21.83071 0.45236 490.55904 28.42334 0.43065

16 346.26581 21.20351 0.32052 359.22033 28.03460 0.32148

17 186.66671 20.38668 0.17693 204.48775 27.44945 0.18722

18 52.33403 19.35951 0.05066 64.51775 26.69008 0.06034

19 0.50986 18.32258 0.00050 3.17460 25.89016 0.00300

20 0 17.72414 0 0 25.39227 0

21 0 17.29586 0 0 25.09285 0

22 0 16.96148 0 0 24.87663 0

23 0 16.67395 0 0 24.70841 0

24 0 16.40545 0 0 24.56926 0
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Figure 3. Average behavior of PV power generation for a typical day in Colombia.

4.1.2. Rural Case: Capurganá, Chocó, Colombia

The same methodology was applied in the rural study area. The solar radiation and
ambient temperature data reported in Table 3 were taken in order to obtain the average behavior
of the solar resource for a typical day in Capurganá, as shown in Figure 3 and Table 3.

4.2. Demand Curves

Having the demand behavior of the users, it becomes of vital importance to solve
the problem regarding the operation of PV generators in distribution grids, as it allows
determining how the power injection level should behave at the substation node, the
PV generators to meet the user demand, and the power losses associated with energy
transportation. To identify the behavior of the user energy demand in urban and rural
areas, the demand history reported by the network operators is used.

4.2.1. Urban Case: Medellín, Antioquia, Colombia

For the urban area, power consumption data were taken from the historical reports
made by the network operator Empresas Públicas de Medellín (EPM) [70]. Consumption
data from 1 January to 31 December 2019 were taken with a sampling of 1 h. As for the
power generation curves, the data collected were averaged per hour as shown in Table 4.
With the data consigned in this table, the average power consumption behavior for a typical
day in Medellín was obtained, as shown in Figure 4 and Table 4.
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Figure 4. Average behavior of power demand for a typical day in Colombia.

Table 4. Power consumption data (kW) and behavior (pu) for an average day in the regions un-
der study.

Region Medellín Capurganá

Hora Pd Pd,pu Pd Pd,pu

1 1,012,876.20 0.65509 428.04117 0.84573

2 974,315.40 0.63015 409.76717 0.80962

3 951,768.01 0.61557 317.81654 0.62795

4 952,169.92 0.61583 256.70648 0.50720

5 996,601.97 0.64457 51.70864 0.10217

6 1,080,667.80 0.69894 11.05835 0.02185

7 1,135,234.91 0.73423 32.49553 0.06421

8 1,226,850.93 0.79348 62.77491 0.12403

9 1,303,895.33 0.84331 119.17381 0.23547

10 1,354,781.01 0.87622 281.26057 0.55572

11 1,417,860.03 0.91702 333.09429 0.65813

12 1,462,589.11 0.94595 358.36076 0.70805

13 1,459,381.62 0.94388 368.01140 0.72712

14 1,439,889.28 0.93127 369.70917 0.73048

15 1,430,823.70 0.92541 379.97901 0.75077

16 1,426,481.64 0.92260 388.65478 0.76791

17 1,404,019.24 0.90807 386.78365 0.76421

18 1,373,896.43 0.88859 395.19266 0.78083

19 1,463,002.74 0.94622 430.88177 0.85134

20 1,478,398.44 0.95618 464.61670 0.91800

21 1,415,579.31 0.91555 476.40313 0.94128

22 1,310,824.08 0.84779 473.67462 0.93589

23 1,187,930.28 0.76831 467.29281 0.92328

24 1,086,900.38 0.70297 452.18590 0.89344

4.2.2. Rural Case: Capurganá, Chocó, Colombia

Regarding the rural area, power consumption data were taken from the reports of
historical events by the IPSE [71], which is in charge of monitoring and supervising the
non-interconnected electrical areas in Colombia with the purpose of promoting, developing,
and implementing solutions. As in the previous case, the data collected were averaged per
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hour, as shown in Table 4. Similarly, it was possible to obtain the average consumption
behavior for a typical day in Capurganá, as shown in Figure 4 and Table 4.

Remark 3. It is important to mention that this research was carried out with data on solar radiation,
ambient temperature, and power consumption for 2019 because it was the last normal year for the
electricity sector worldwide (i.e., before the pandemic caused by the virus SARS-CoV-2).

Figure 5 summarizes the general methodology for obtaining the average behavior
curves for solar generation and the demand by the end users of the two regions under
study. This can be completed regardless of the region as long as there is access to historical
data on solar radiation, ambient temperature, and power demand.

Start

Acquisition of GT ,
Ta and Pd data
from databases,

and make h = 1

Averaging the data
for time period h

h ≥ hmax?

Increase the h value,
i.e., h = h + 1

Convert the Pd
data into its per
unit equivalent

Apply Equations
(42) and (43) with
data GT and Ta to
obtain Cpv in its

per unit equivalent

Generation of the
average generation
and demand curves

End

no

yes

Figure 5. Flowchart of the methodology adopted to obtain the generation and demand curves.

4.3. Other Considerations for the Proposed Ems

To determine the value of the objective functions defined in (1) and (5), the parametric
information shown in Table 5 is used.

Table 5. Parameters used to calculate the economic and environmental indicators.

Parameter Value Unit Parameter Value Unit

CUrban
kWh 0.1302 USD/kWh CEUrban

s 0.1644 kg/kWh

CRural
kWh 0.2913 USD/kWh CERural

s 0.2671 kg/kWh

Cpv
O&M 0.0019 USD/kWh - - -
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Table 5 shows the costs of generating energy in urban and rural areas, as well as the
costs associated with the maintenance of PV generation systems. The energy generation
costs for the study areas were taken from the reports made by the network operators to the
Unified Information System (SUI) in 2019 [72,73]. The operation and maintenance costs
of the PV generators were taken from [74]. Similarly, the emission factors associated with
power generation in urban and rural areas are also shown in this table. The emissions factor
for the urban area is the factor established by XM for the interconnected electrical system,
to which EPM [75] belongs. The emissions factor for the rural area is the one associated
with diesel fuel and was taken from the database of the Emission Factors of Colombian
Fuels (FECOC) [76].

Finally, the voltage regulation limits for electrical systems with a voltage level greater
than 1 kV and less than 62 kV were defined as +5 and −10% of the nominal voltage, as
established by Colombian Technical Standard (NTC) No. 1340 [77].

5. Test Systems

This section presents the main characteristics of the test systems used in order to
validate the proposed methodology for the operation of PV generators in distribution grids
in both urban and rural areas. The 33-node test system was selected as the urban power
grid, while the 27-node test system was selected for the rural study area.

5.1. Urban Test Feeder: 33-Node System

The 33-node test system is a radial distribution network originally proposed by the
authors of [78]. This system is composed of 32 distribution lines and has a single conven-
tional generator located at node 1 (the substation bus), which operates at a nominal voltage
of 12.66 kV. The electrical configuration of this test system is depicted in Figure 6, and
Table 6 shows the parametric information of the system [78]. Similarly, this table shows the
maximum current that can be supported by each section of the network in order to correctly
evaluate the constraint stipulated in (16). These values are determined from the maximum
currents calculated using the power flow for the time with maximum power demand and
the NTC 2050, assuming that the conductors operate at a temperature of about 60 ◦C.

Table 6. Parametric information of the 33-node test system.

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
l (A)

1 1 2 0.0922 0.0477 100 60 385

2 2 3 0.4930 0.2511 90 40 355

3 3 4 0.3660 0.1864 120 80 240

4 4 5 0.3811 0.1941 60 30 240

5 5 6 0.8190 0.7070 60 20 240

6 6 7 0.1872 0.6188 200 100 110

7 7 8 1.7114 1.2351 200 100 85

8 8 9 1.0300 0.7400 60 20 70

9 9 10 1.0400 0.7400 60 20 70

10 10 11 0.1966 0.0650 45 30 55

11 11 12 0.3744 0.1238 60 35 55

12 12 13 1.4680 1.1550 60 35 55

13 13 14 0.5416 0.7129 120 80 40

14 14 15 0.5910 0.5260 60 10 25

15 15 16 0.7463 0.5450 60 20 20
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Table 6. Cont.

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
l (A)

16 16 17 1.2890 1.7210 60 20 20

17 17 18 0.7320 0.5740 90 40 20

18 2 19 0.1640 0.1565 90 40 40

19 19 20 1.5042 1.3554 90 40 25

20 20 21 0.4095 0.4784 90 40 20

21 21 22 0.7089 0.9373 90 40 20

22 3 23 0.4512 0.3083 90 50 85

23 23 24 0.8980 0.7091 420 200 85

24 24 25 0.8960 0.7011 420 200 40

25 6 26 0.2030 0.1034 60 25 125

26 26 27 0.2842 0.1447 60 25 110

27 27 28 1.0590 0.9337 60 20 110

28 28 29 0.8042 0.7006 120 70 110

29 29 30 0.5075 0.2585 200 600 95

30 30 31 0.9744 0.9630 150 70 55

31 31 32 0.3105 0.3619 210 100 30

32 32 33 0.3410 0.5302 60 40 20

Slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 6. Electrical configuration of the IEEE 33-bus grid.

It is important to mention that this system has three PV generators, all with a nominal
power of 2400 kW, located at nodes 12, 15 and 31.

5.2. Rural Test Feeder: 27-Node System

The 27-node test system also has a radial structure and was originally reported in [79].
Likewise, this system is made up of 26 distribution lines and has a single conventional
generator located at node 1 (the substation bus), which operates at a nominal voltage of
23 kV. The electrical configuration of this test system is illustrated in Figure 7, and Table 7
shows the parametric information of the system [79,80] and the current thermal limit. Note
that this system has three PV generators, all with a nominal power of 2400 kW, located at
nodes 5, 9 and 19.
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Table 7. Parametric information of the 27-node test system.

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
l (A)

1 1 2 0.0140 0.6051 0 0 240

2 2 3 0.7463 1.0783 0 0 165

3 3 4 0.4052 0.5855 297.50 184.37 95

4 4 5 1.1524 1.6650 0 0 85

5 5 6 0.5261 0.7601 255.00 158.03 70

6 6 7 0.7127 1.0296 0 0 55

7 7 8 1.6628 2.4024 212.50 131.70 55

8 8 9 5.3434 3.1320 0 0 20

9 9 10 2.1522 1.2615 266.05 164.88 20

10 2 11 0.4052 0.5855 85.00 52.68 70

11 11 12 1.1524 1.6650 340 210.71 70

12 12 13 0.5261 0.7601 297.50 184.37 55

13 13 14 1.2358 1.1332 191.25 118.53 30

14 14 15 2.8835 2.6440 106.25 65.85 20

15 15 16 5.3434 3.1320 255.00 158.03 20

16 3 17 1.2942 1.1867 255.00 158.03 70

17 17 18 0.7027 0.6443 127.50 79.02 55

18 18 19 3.3234 1.9480 297.50 184.37 40

19 19 20 1.5172 0.8893 340 210.71 25

20 20 21 0.7127 1.0296 85.00 52.68 20

21 4 22 8.2528 2.9911 106.25 65.85 20

22 5 23 9.1961 3.3330 55.25 34.24 20

23 6 24 0.7463 1.0783 69.70 43.20 20

24 8 25 2.0112 0.7289 255.00 158.03 20

25 8 26 3.3234 1.9480 63.75 39.51 20

26 26 27 0.5261 0.7601 170 105.36 20

Slack

1

2

3

4

5

6 7 8 9 10

17 18 19 20 21

22

23

24

11 12 13 14 15 16

25

26 27

Figure 7. Electrical configuration of the 27-node test feeder.

6. Numerical Results and Discussion

This section presents the numerical results obtained with the proposed methodology.
Here, the ALO is compared against the following methodologies, which have been selected
due to their excellent results when it comes to solving the problem of optimal power
flow in electrical distribution systems [81–83]: (i) the particle swarm optimization (PSO)
approach [84], (ii) the Chu and Beasley genetic algorithm (CBGA) [85], and (iii) the vortex
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search algorithm (VSA) [86]. The NLP model that represents the addressed problem has
been implemented and solved in MATLAB version 2022a using our own scripts on a Dell
Precision 3450 workstation with an Intel(R) Core(TM) i9-11900 CPU@2.50Ghz and 64.0 GB
RAM running Windows 10 Pro 64-bit.

Additionally, to validate the EMS proposed in this document, the following three simu-
lation scenarios are proposed: operating the PV generators with a focus on minimizing the
economic indicator (S1), the technical indicator (S2), and the environmental indicator (S3).

6.1. Optimization of the Algorithms’ Parameters

In order to ensure a fair comparison between the ALO and the optimization algorithms
selected for comparison, each of them was tuned to guarantee the best performance when
solving the studied problem. For instance, to select the parameters, the CBGA was used
with an initial population of 40 individuals and a maximum number of iterations of 400.
Table 8 presents a summary of the parameters tuned for each optimization algorithm as
well as their value and the interval in which they were selected.

Likewise, the selected algorithms were executed 100 consecutive times to find the best,
the average, and the worst value of the proposed adaptation functions. In the same way,
this study calculated the standard percentage deviation and the average computation time
that each algorithm takes to find the power vector which each existing PV generator must
inject in both test systems.

Table 8. Parameters of the optimization algorithms used to solve the problem of PV generator operation.

Algorithm Parameter Value Range

ALO
Number of individuals (Ni) 162 [1–200]
Number of iterations (tmax) 1048 [1–2000]

Number of non-improvement iterations (tnon) 546 [1–1000]

cPSO

Number of individuals (Ni) 180 [1–200]
Number of iterations (tmax) 1559 [1–2000]

Number of non-improvement iterations (tnon) 417 [1–1000]
Cognitive component (C1) 1.1773 [0–2]

Social component (C2) 1.5640 [0–2]
Maximum inertia (Wmax) 0.5549 [0–1]
Minimum inertia (Wmin) 0.4377 [0–1]

CBGA

Number of individuals (Ni) 40 [1–200]
Number of iterations (tmax) 1561 [1–2000]

Number of non-improvement iterations (tnon) 1561 [1–1000]
Number of random mutations (nM) 2 [0–Nv]

VSA

Number of individuals (Ni) 126 [1–200]
Number of iterations (tmax) 1591 [1–2000]

Number of non-improvement iterations (tnon) 312 [1–1000]
Interval of radius reduction (x) 0.0655 [0–0.1]

6.2. Urban Zone Simulations

The results obtained after implementing the optimization methodology in the urban
test system are shown in Table 9. The information in this table is presented from left to
right as follows: the methodology used, the value obtained for the evaluated function, the
reduction obtained for each algorithm with respect to the base case, the computation time,
the percentage standard deviation, the minimum voltage and the node and the time at
which it occurs, the maximum voltage and the node and the time at which it occurs, and,
finally, the maximum chargeability, its distribution line, and the time when it occurs. In the
same way, Figure 8 shows the power injected by each PV generator, as obtained by the ALO,
during daily operation in the urban area for each of the simulation scenarios evaluated.
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Table 9. Numerical results in the 33-bus system for the urban area.

Scenario 1: Economical Index

Method Ecost
(USD)

Reduction
(%) Time (s) SDT (%) Vmin(pu)/Node/Hour Vmax(pu)/Node/Hour Imax(%)/Line/Hour

Bench. Case 9931.66 - - - 0.9084/18/20 1/1/All 94.4924/14/20
CBGA 7409.25 25.40 2.6258 0.4816 0.9084/18/20 1/1/All 97.7687/11/14
PSO 7317.89 26.32 31.4035 1.4559 0.9084/18/20 1/1/All 100/11/16
VSA 7276.05 26.74 42.4710 0.5786 0.9084/18/20 1/1/All 100/30/14
ALO 7220.09 27.30 141.9966 0.0088 0.9084/18/20 1/1/All 100/11/10

Scenario 2: Technical Index

Method Eloss(kWh) Reduction
(%) Time (s) SDT (%) Vmin(pu)/Node/Hour Vmax(pu)/Node/Hour Imax(%)/Line/Hour

Bench. Case 3379.07 - - - 0.9084/18/20 1/1/All 94.4924/14/20
CBGA 2346.00 30.57 2.6054 0.1918 0.9084/18/20 1/1/All 99.1658/14/14
PSO 2332.05 30.98 31.9980 0.1045 0.9084/18/20 1/1/All 94.4924/14/20
VSA 2331.61 30.99 37.9801 0.0034 0.9084/18/20 1/1/All 94.4924/14/20
ALO 2331.51 31.00 140.1495 0.0009 0.9084/18/20 1/1/All 94.4924/14/20

Scenario 3: Environmental Index

Method ECO2 (kg
CO2)

Reduction
(%) Time (s) SDT (%) Vmin(pu)/Node/Hour Vmax(pu)/Node/Hour Imax(%)/Line/Hour

Bench. Case 12,541.22 - - - 0.9084/18/20 1/1/All 94.4924/14/20
CBGA 9309.57 25.77 2.6236 0.4513 0.9084/18/20 1/1/All 99.2224/11/10
PSO 9198.27 26.66 30.0663 1.2151 0.9084/18/20 1/1/All 100/30/14
VSA 9152.05 27.02 43.9550 0.3082 0.9084/18/20 1/1/All 100/11/14
ALO 9068.94 27.69 140.5316 0.0075 0.9084/18/20 1/1/All 100/11/12

The results obtained for the urban test system during one day of operation reveal
the following:

X The proposed methodology achieves the best results regarding the evaluation of
the adaptation function. In S1, it reaches a response of 7220.09 USD, evidencing
an improvement of 2711.57 USD with respect to the base case, 189.16 USD with respect
to the CBGA, 97.81 USD with respect to the PSO, and 55.96 USD with respect to the
VSA. In S2, the ALO obtains a response of 2331.51 kWh, showing an improvement
of 1047.56 kWh with respect to the base case, 14.50 kWh with respect to the CBGA,
0.54 kWh with respect to the PSO, and 0.10 kWh with respect to the VSA. Finally, in
S3, the proposed methodology achieves a response of 9068.94 kg of CO2, evidencing
an improvement of 3472.28 kg of CO2 with respect to the base case, 240.63 kg of CO2
with respect to the CBGA, 129.33 kg of CO 2 compared to PSO, and 83.11 kg of CO2
when compared to the VSA.

X In S1, all the methodologies used allow for reductions of more than 25% in comparison
with the base case, with ALO reporting the highest value (27.30%). When this method-
ology is compared with the other metaheuristic algorithms, there is a reduction in
operating costs of approximately 1.90% with respect to the CBGA, 0.98% with respect
to PSO, and 0.56% with respect to the VSA. In S2, all techniques allow obtaining
reductions of more than 30% with respect to the base case, with ALO reporting the
highest value (31%). The ALO achieves a reduction in energy losses of approximately
0.43% with respect to the CBGA, 0.02% with respect to PSO, and 0.01% with respect
to the VSA. Moreover, in S3, the evaluated methodologies allow for reductions of
more than 25% with respect to the base case, with the proposed methodology showing
the highest value, with 27.69%. When this methodology is compared to the other
metaheuristic algorithms, there is a reduction in CO2 emissions of approximately
1.92% with respect to the CBGA, 1.03% when compared to the PSO, and 0.67% when
compared to the VSA.

X Regarding the computation times, the CBGA, PSO, and the VSA are faster than the pro-
posed ALO in the three simulation scenarios. The ALO takes approximately 141.9966 s
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in S1, 140.1495 s in S2, and 140.5316 s in S3 to solve the PV generator operation prob-
lem. This shows that in order to solve a multidimensional (39-dimensional) NLP
model with continuous variables (i.e., a solution space with infinite combinations),
the proposed methodology takes less than 2.5 min to converge to an optimal solution.
This allows grid operators in an urban area to implement an EMS that is capable of
evaluating infinite combinations of PV power injection for one day of operation with
low processing times in order to find the best solution from an economic, technical,
and environmental point of view.

X As for the standard deviation, the superiority of the proposed ALO can be appreciated
in all simulation scenarios. In S1, it achieves a reduction of 5386.42% with respect to
the CBGA, 16,485.55% with respect to PSO, and 6491.21% with respect to the VSA.
In S2, the proposed methodology obtains a reduction of 21,768.05% with respect to
the CBGA, 11,808.53% with respect to PSO, and 282.49% with respect to the VSA.
Finally, in S3, the ALO reports a reduction of 5887.46% when compared to the CBGA,
16,019.70% when compared to the PSO, and 3988.20% when compared to the VSA.

X Likewise, it can be noted that for the three simulation scenarios, the results obtained
with the ALO satisfactorily comply with voltage regulation, staying within −10 and
+5% of the nominal voltage in all periods under analysis. The minimum voltage is
found at node 18 and hour 20 (i.e., the time of maximum power demand in the urban
area), with a value of 0.9084 p.u. Meanwhile, the maximum voltage is found at the
slack node, with a value of 1 p.u. in all time periods. The proposed EMS allows
managing and taking advantage of the solar resource, making it possible to inject
PV power in time periods 7 to 19 without exceeding the minimum and maximum
voltages of the distribution grid when PV power is not generated and there is a peak
in power demand.

X Finally, the results obtained by the ALO show that in S1, the maximum chargeability is
reported in distribution line 11 at hour 10, with a value of 100%. In S2, the maximum
chargeability takes place in distribution line 14 at hour 20, with a value of 94.4924%.
Moreover, in S3, the maximum chargeability occurs in distribution line 11 at hour 12,
with a value of 100%. The proposed optimization methodology allows for a smart
operation of the PV generators, making it possible to respect the maximum bearable
current for each conductor in the system while also allowing the efficient management
of the solar resource between time periods 7 and 19.

The above demonstrates the efficiency and robustness of the ALO in solving the
problem regarding the operation of PV generators in distribution systems with the aim of
optimizing the system from an economic, technical, or environmental point of view. The
methodology obtains the best performance; it has the best response and repeatability as
well as low processing times (less than 2.5 min). This makes it the best option to address
this problem in the urban test system, as it obtains an optimal solution for each simulation
scenario which respects the technical-operating conditions of the network (i.e., minimum
voltage, maximum voltage, and maximum withstand current per conductor).

Figure 8 shows the response obtained by the ALO for the operation of each PV
generator in the three proposed simulation scenarios. This figure illustrates the maximum
power that can be injected by each PV generator (black curve) according to the climate
conditions presented in Section 4 for the city of Medellín, Antioquia, Colombia. Similarly,
the power injected by each PV generator is illustrated (red, green, and blue curves).

Figure 8 also shows the injection of PV power for the three simulation scenarios. In time
periods 7, 8, 17, 18 and 19, the PV generators inject the maximum possible power, as it is
then that less than 20% of the solar resource is available (Figure 3). Similarly, the maximum
possible power is injected because the demand is between 70 and 90% (Figure 4). In time
periods 9 to 16, when the power demand is between 80 and 100%, the PV generators operate
intelligently, injecting enough power to guarantee the power balance of the MG, as well
as to ensure that the technical-operating conditions of the network are not violated, since,
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if the maximum possible power was generated (i.e., maximum power point tracking), the
demanded power would be exceeded in periods 10 to 14 (up to 28% at hour 12).
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Figure 8. Power generation behavior of PV generators during a daily operation in the urban area for
each one of the simulation scenarios: (a) S1, (b) S2 and (c) S3.

Additionally, the injected power is greater in scenarios S1 and S3, with approxi-
mately 2183.7 kW being generated in the period of time with the highest solar radiation
(i.e., hour 12), with which it is possible to cover 62% of the energy demand. In this case, the
aim is to reduce the dependence of the system on the slack generator, which means that the
network seeks to generate the least amount of power with the conventional generator and
supply the greatest amount of demand through PV generators. With this, it is possible to
greatly reduce the energy purchasing costs by the network operator and the CO2 emissions
caused by the conventional generator. On the other hand, in S2, approximately 1869.6 kW
are generated during hour 12, which is enough to supply 53% of the demand. In this
scenario, unlike the two previous cases, the aim is to inject the necessary power to improve
the voltage profiles of the distribution grid, thus reducing energy losses to the maximum in
one day of operation.

6.3. Rural Zone Simulations

The numerical results obtained after implementing the methodology in the rural test
system are shown in Table 10, which presents the same parameters as Table 9. In the
same way, as in the previous case study, Figure 9 shows the power generated by each PV
generator, as obtained by the ALO during a daily operation in the rural area for each of the
simulation scenarios.
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Table 10. Numerical results in the 27-bus system for the rural area.

Scenario 1: Economical Index

Method Ecost(USD) Reduction
(%) Time (s) SDT (%) Vmin(pu)/Node/Hour Vmax(pu)/Node/Hour Imax(%)/Line/Hour

Bench. Case 18,543.84 - - - 0.9664/10/21 1/1/All 91.4469/5/21
CBGA 12,282.02 33.77 1.8066 0.4548 0.9664/10/21 1.0013/9/9 99.2995/8/14
PSO 12,104.61 34.72 21.8934 0.6662 0.9664/10/21 1.0020/9/8 100/8/16
VSA 12,052.94 35.00 30.7303 0.2148 0.9664/10/21 1.0025/9/9 100/8/16
ALO 12,022.40 35.16 125.9021 0.0007 0.9664/10/21 1.0009/9/8 99.9987/8/15

Scenario 2: Technical Index

Method Eloss(kWh) Reduction
(%) Time (s) SDT (%) Vmin(pu)/Node/Hour Vmax(pu)/Node/Hour Imax(%)/Line/Hour

Bench. Case 691.15 - - - 0.9664/10/21 1/1/All 91.4469/5/21
CBGA 559.51 19.05 1.8311 0.0649 0.9664/10/21 1/1/All 91.4469/5/21
PSO 558.28 19.22 27.8036 0.0717 0.9664/10/21 1/1/All 91.4469/5/21
VSA 558.22 19.23 30.2881 0.0170 0.9664/10/21 1/1/All 91.4469/5/21
ALO 558.20 19.24 126.5206 0.0005 0.9664/10/21 1/1/All 91.4469/5/21

Scenario 3: Environmental Index

Method ECO2 (kg
CO2)

Reduction
(%) Time (s) SDT (%) Vmin(pu)/Node/Hour Vmax(pu)/Node/Hour Imax(%)/Line/Hour

Bench. Case 17,005.21 - - - 0.9664/10/21 1/1/All 91.4469/5/21
CBGA 11,192.67 34.18 1.8213 0.5073 0.9664/10/21 1.0026/9/8 96.4822/8/10
PSO 11,064.72 34.93 21.0702 1.3339 0.9664/10/21 1.0009/9/8 99.9999/8/15
VSA 11,023.51 35.18 30.4519 0.1853 0.9664/10/21 1.0012/9/9 100/8/15
ALO 10,985.75 35.38 131.3081 0.0004 0.9664/10/21 1.0012/9/9 99.9995/8/15

The results shown in Table 10 reveal the following:

X In the rural test system, the proposed methodology achieves the best results regarding
the evaluation of the adaptation function. In S1, it reaches a response of 12,022.40 USD,
evidencing an improvement of 6521.44 USD with respect to the base case, 259.62 USD
with respect to the CBGA, 82.21 USD with respect to PSO, and 30.54 USD with respect
to the VSA. In S2, the ALO obtains a response of 558.20 kWh, i.e., an improvement
of 132.95 kWh with respect to the base case, 1.30 kWh with respect to the CBGA,
0.080 kWh with respect to PSO, and 0.013 kWh with respect to the VSA. Finally, in S3,
it achieves a response of 10,0985.75 kg of CO2, which represents an improvement of
6019.45 kg of CO2 with respect to the base case, 206.91 kg of CO2 with respect to the
CBGA, 78.97 kg of CO2 with respect to PSO, and 37.76 kg of CO2 when compared to
the VSA.

X In S1, all the methodologies allow for reductions of more than 33% with respect
to the base case, with ALO being the methodology that reports the highest value,
with 35.16%. There is a reduction in operating costs of approximately 1.40% when
compared to the CBGA, 0.44% with respect to PSO, and 0.16% with respect to the VSA.
In S2, the studied methodologies allow obtaining a reduction of more than 18.5% with
respect to the base case, with ALO reporting the highest value (19.24%). By comparing
ALO with the other selected optimization algorithms, a reduction in energy losses of
approximately 0.19% is obtained with respect to the CBGA, 0.012% with respect to
PSO, and 0.002% with respect to the VSA. Finally, in S3, there are reductions of more
than 34% with respect to the base case, with the proposed methodology reporting
the highest reduction (35.38%). This constitutes a reduction in CO2 emissions of
approximately 1.22% when compared to the CBGA, 0.46% when compared to PSO,
and 0.22% in comparison with the VSA.

X As for the computation time, the CBGA, PSO, and the VSA are faster than the proposed
methodology in the three simulation scenarios. The ALO took an average time of
125.9021 s in S1, 126.52 s in S2, and 131.3081 s in S3 to solve the PV generator operation
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problem. Similarly, it took less than 2.5 min to reach an optimal solution to a complex
problem from the dimensional and solution space point of view.

X Regarding the standard deviation, it can be seen that in S1, the ALO obtained a re-
duction of 68,355.35% when compared to the CBGA, 100,180.36% when compared to
PSO, and 32,227.72% when compared to the VSA. In S2, it achieved a reduction of
14,199.43% with respect to the CBGA, 15,699.79% with respect to PSO, and 3646.82%
with respect to the VSA. Finally, in S3, the ALO reported a reduction of 122,168.07%
with respect to the CBGA, 321,417.59% with respect to the PSO, and 44,565.02% with
respect to the VSA.

X Similarly, for the three simulation scenarios, the results obtained by the proposed
methodology comply satisfactorily with voltage regulation. The minimum voltage
was found for node 10 during hour 21 (i.e., the time of maximum power demanded
in the rural area), with a value of 0.9664 p.u. Meanwhile, the maximum voltage was
found for node 9 during hour 8, with a value of 1.0009 p.u.

X In S1, the maximum chargeability was reported for distribution line 8 during hour 15,
with a value of 99.9987%. In S2, the maximum chargeability was observed in distribution
line 5 during hour 21, with a value of 91.4469%. Finally, in S3 the maximum chargeability
ttook place in distribution line 8 during hour 15, with a value of 99.9995%.

The results indicate that the proposed ALO shows the best performance, namely
a better response and repeatability, with low processing times (less than 2.5 min). This
makes this solution methodology the best option to address the problem of operating PV
generators in the rural test system, as it obtains an optimal solution for each simulation
scenario which respects the technical-operating conditions of the network.

Finally, Figure 9 shows the response obtained by the ALO for the operation of each PV
generator in the three simulation scenarios proposed for the rural test system. This figure
illustrates the same information as in Figure 8. However, the maximum power that can be
generated varies according to the weather conditions outlined in Section 4 for Capurganá,
Chocó, Colombia.

Figure 9 shows the PV power injection for the three simulation scenarios. In time
periods 17, 18, and 19, the PV generators inject the maximum possible power because
less than 20% is available from the solar resource (Figure 3) and it is necessary to supply
a power demand that is above 70% (Figure 4).

In S1 and S3, from time period 9, when the demand begins to progressively increase,
the generators PV1 and PV3 try to inject a power equal to or very close to the maximum
power that can be supplied in rural areas, while PV2 does not inject its maximum power;
it generates enough power to ensure the power balance of the network and its technical-
operating conditions. The three generators generate approximately 3039.8 kW during hour
14, covering 100% of the demand together with the power losses. Similarly, it can be noted
that not only is the entire demand covered at hour 14, but power consumption and system
losses are also covered from hours 8 to 13, thus allowing for significant operating costs and
CO2 emissions reductions with respect to the base case.

In S2, in time periods 7 to 16, when the power demand is between 0 and 80%, the PV
generators manage the solar resource in such a way that they only provide enough power to
guarantee the power balance of the distribution grid and ensure that the technical-operating
conditions of the network are not violated. This evidences a progressive increase in PV
generation as power demand increases, injecting approximately 1901.49 kW at hour 15 and
managing to cover 62% of the power demanded by users. As in the urban test system, the
operation of the PV generators seeks to inject the necessary power to improve the voltage
profiles of the distribution grid and thus reduce the energy losses to the maximum for one
day of operation.
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Figure 9. Power generation behavior of PV generators during a daily operation in the rural study
area for each one of the simulation scenarios: (a) S1, (b) S2 and (c) S3.

6.4. Complementary Analysis and Discussion

Based on the results obtained in Section 6, the following can be highlighted: (i) by
comparing the reductions in the operating costs of both test systems, a greater reduction
is made evident in the rural area, i.e., 7.86% more than in the urban area. This represents
savings of approximately 3809.87 USD in one day of operation for the Capurganá network
operator with respect to the one in Medellín; (ii) in terms of energy losses, it is possible to
observe a greater reduction in the urban area (11.76% more than in the rural area), which
means that Medellín’s network operator saves 914.61 kWh when compared to the one in
Capurganá; and (iii) by comparing the reductions in CO2 emissions, a behavior similar to
that of the operating costs is observed: it is possible to achieve a reduction of 7.69% more
than in the urban area, which translates into a reduction of 2547.17 kg of CO2 compared to
the urban area.

These results are due to the fact that it is approximately 2.24 times more expensive to
generate energy in Capurganá than it is in Medellín (Table 5), as the former is located in
a non-interconnected electrical zone that requires a greater investment to transport diesel
fuel for power generation. Similarly, when using diesel as fuel in rural areas, 1.62 times
more kg of CO2 are emitted (Table 5). Therefore, it is possible to conclude that in rural
areas, a greater economic and environmental impact is obtained in comparison with urban
areas. However, due to the fact that in Capurganá, electricity is used for about 19 h a day
on average [71], a greater technical impact is obtained in the city of Medellín, since this
area uses electricity 24 h a day and at least 61% of the installed power is required (Figure 4).

One of the main barriers faced in the implementation of the proposed EMS is socio-
economic in nature. In the country’s ZNIs, as is the case of Capurganá, local communities
face difficulties due to: (i) their economic activities, such as fishing and agriculture; (ii) their
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low energy consumption and access to constant and high-quality energy; (iii) their high
level of unsatisfied basic needs, such as the access to education; and (iv) their low payment
capacity, as they do not have the necessary knowledge and capital to adopt, operate, and
maintain PV generation systems, which is why the Colombian government promotes
initiatives (such as this research paper) that seek to propose reliable energy alternatives and
solutions based on the integration and management of non-conventional energy generation
sources. Similarly, due to their complex cultural systems and their own worldviews, the
availability of space for the installation of EMS is a complex issue, which can negatively
affect the projects and investments made by the Colombian government. Therefore, it is
important to educate the community of Capurganá about the operation of PV generators
and the rational and efficient use of energy in order to improve the quality of life of the
inhabitants of this ZNI by means of an EMS.

7. Conclusions and Future Work

The problem regarding the operation of PV generators in distribution grids was
addressed in this paper by implementing an EMS based on a master–slave methodology.
It is important to note the following. (i) The proposed EMS guarantees that the solutions
obtained observe the technical-operating constraints of both test systems for the three
simulation scenarios, as the nodal voltages are within the limits assigned for voltage
regulation in each period of time. In the same way, the current that circulates through
each conductor of the system in each period of time does not exceed the current thermal
limit. (ii) The developed EMS allowed for an optimal dispatch of the solar resource by
the PV generators, which can be implemented by any network operator, regardless of the
geographical location of the electrical system, since the employed mathematical model
contemplates the behavior curves of the solar resource and power consumption by users.
Additionally, it was possible to show that the implementation of an EMS has greater
economic and environmental impacts in distribution grids located in rural areas, and it has
a greater technical impact in distribution grids located in urban areas.

On the other hand, numerical results for the urban (33-node test system) and rural
(27-node test system) areas allow drawing the following conclusions:

X In one day of operation, for the urban area, a reduction of 2711.57 USD is obtained
for the economic indicator, 1047.56 kWh for the technical indicator, and 3472.28 kg of
CO2 for the environmental indicator, which represents reductions of 27.30, 31, and
27.69%, respectively. On the other hand, in rural areas, a reduction of 6521.44 USD
is obtained for the economic indicator, 132.95 kWh for the technical indicator, and
6019.45 kg of CO2 for the environmental indicator, i.e., reductions of 35.16, 19.24, and
35.38%, respectively.

X In the urban area, a standard deviation of 0.0088% is obtained for the total operating
costs, 0.0009% for the energy losses, and 0.0075% for the CO2 emissions, which is at
least 200% lower in comparison with the other solution methodologies. As for the
rural area, a standard deviation of 0.0007% is obtained for the total operating costs,
0.0005% for the energy losses, and 0.0004% for the CO2 emissions, i.e., at least 3000%
lower with respect to the other solution methodologies.

X In the urban test system, the computation times are approximately 141.9966 s, 140.1495 s,
and 140.5316 s for the three proposed simulation scenarios, respectively; while the rural
test system reports about 125.9021 s, 126.52 s, and 131.3081 s. This demonstrates that
the developed methodology allows solving multidimensional optimization problems
with a continuous solution space (infinite combinations of power generation) at a low
computational cost (less than 2.5 min) while guaranteeing the best response when
compared to other metaheuristic algorithms.

As future work, it will be possible to solve the studied problem using metaheuristic
algorithms with high numerical performance, e.g., the multi-verse optimizer, the salp
swarm optimization algorithm, or the crow search algorithm. Likewise, it will be possible
to consider the use of a multi-objective optimization approach that allows improving the
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economic, technical, and environmental indicators of the distribution grids in both rural
and urban areas while observing their technical-operating conditions. An additional work
could be extending the proposed formulation to distribution grid planning, including the
problem regarding the integration of PV generators, as well as their investment costs and
their carbon footprint throughout their useful life.
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86. Doğan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015,

293, 125–145. [CrossRef]

https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
https://sinergox.xm.com.co/Paginas/Home.aspx
https://ipse.gov.co/cnm/informe-mensuales-telemetria/
https://sui.superservicios.gov.co/Reportes-del-sector/Energia/Reportes-comerciales/Consolidado-de-energia-por-empresa-y-departamento
https://sui.superservicios.gov.co/Reportes-del-sector/Energia/Reportes-comerciales/Consolidado-de-energia-por-empresa-y-departamento
https://sui.superservicios.gov.co/Reportes-del-sector/Energia/Reportes-comerciales/Consolidado-de-informacion-tecnica-operativa-ZNI
https://sui.superservicios.gov.co/Reportes-del-sector/Energia/Reportes-comerciales/Consolidado-de-informacion-tecnica-operativa-ZNI
http://dx.doi.org/10.1109/ACCESS.2018.2842119
https://www.xm.com.co/noticias/en-colombia-factor-de-emision-de-co2-por-generacion-electrica-del-sistema-interconectado
https://www.xm.com.co/noticias/en-colombia-factor-de-emision-de-co2-por-generacion-electrica-del-sistema-interconectado
https://bdigital.upme.gov.co/bitstream/handle/001/1285/17%20Factores%20de%20emision%20de%20combustibles.pdf;jsessionid=5016BD31B13035A5FBF551BC26B1293E?sequence=18
https://bdigital.upme.gov.co/bitstream/handle/001/1285/17%20Factores%20de%20emision%20de%20combustibles.pdf;jsessionid=5016BD31B13035A5FBF551BC26B1293E?sequence=18
http://dx.doi.org/10.1109/MPER.1989.4310642
http://dx.doi.org/10.1016/j.jestch.2020.08.002
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1016/j.ins.2014.08.053

	Introduction
	General Context
	Motivation
	Literature Review
	Contribution and Scope
	Document Structure

	Optimal Operation of PV Generators
	Formulation of the Objective Function
	Economic Indicator
	Technical Indicator
	Environmental Indicator

	Set of Constraints

	Master–Slave Solution Methodology
	Proposed Coding
	Master Stage: Antlion Optimization
	Initial Population
	Building the Trap
	The Ants Slide Toward the Antlion
	Trapping the Ants in the Antlion Pits
	Random Ant Walks
	Elitism
	Catching Prey and Rebuilding the Pit
	Stopping Criteria

	Slave Stage: Successive Approximations Power Flow Method

	Variable Power Demand and Generation
	Solar Generation Curves
	Urban Case: Medellín, Antioquia, Colombia
	Rural Case: Capurganá, Chocó, Colombia

	Demand Curves
	Urban Case: Medellín, Antioquia, Colombia
	Rural Case: Capurganá, Chocó, Colombia

	Other Considerations for the Proposed Ems

	Test Systems
	Urban Test Feeder: 33-Node System
	Rural Test Feeder: 27-Node System

	Numerical Results and Discussion
	Optimization of the Algorithms' Parameters
	Urban Zone Simulations
	Rural Zone Simulations
	Complementary Analysis and Discussion

	Conclusions and Future Work
	References

