2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021 • 2021 •

2nd IEEE International Congress of Biomedical Engineering and Bioengineering, CI-IB and Bi 2021 . Bogota . 13 October 2021through 15 October 2021 • Code 175151

Document type

Conference Paper

Source type

Conference Proceedings

ISBN

978-166540855-4

DOI

10.1109/CI-IBBI54220.2021.9626093

Publisher

Institute of Electrical and Electronics Englneers Inc.

Sponsors

Colombia Section of IEEE

Original language

English

View less ^

Virtual screening of new targets and inhibitors for Candida albicans infection control

```
Torres-Osorio, Lenina 🖾 : Munera-Gomez, Marlonb 🖾 :
Fennix-Agudelo, Mary<sup>c</sup> Agudelo, Chavarro-Mesa, Edisson<sup>a</sup>
    Save all to author list
```

^c Universidad Tecnologica de Bolivar, Faculty of Basic Sciences, Cartagena de Indias-Bolivar, Colombia

Full text options ✓ Export ✓

Abstract

Author keywords

Indexed keywords

SciVal Topics

Metrics

Abstract

Infection by Candida albicans fungus is considered of biomedical interest, producing significant mortality and comorbidity. The development of pathogen resistance during pharmacological treatments is increasing, thus, the pursuit for new inhibitors is necessary. Virtual screening is one of the bioinformatics tools used for the search of new drugs, and potential targets for disease management. The aim of the present study was to analyze a library of potential targets, and to identify suppressors for C. albicans using virtual screening . 50 protein targets with restraining potential were examined, choosing GPI-Anchored hemophore PGA10 protein (RBT5) as the target, since it is involved in C. albicans survival and nutrients acquisition. Meanwhile, through the implementation of AutoDock Vina and PyRx software, the molecular affinity of 25 molecules available in ZINC15 database was analyzed, obtaining favorable results for the following compounds: ZINC00000065058, ZINC000000065374 and ZINC00000072389, displaying affinity with the same region of the target protein. These results provide a potential target for the development of novel suppressors, as well as guidelines for three new drugs that could aid in C. albicans suppression. © 2021 IEEE.

Author keywords

Bioinformatics; Candidiasis; Drug treatment; Molecular docking

Indexed keywords

a Universidad Del Sinu, Dental School, Colombia

^b Corporacion Universitaria Rafael Nuñez, Department of Medicine, Cartagena de Indias-Bolivar, Colombia