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Abstract: One route of exposure to SPAs is through bottled water since the polymers used to make
plastic bottles contain these SPAs, which migrate from the plastic to the water. Solid-phase extraction
(SPE), HPLC-MS, FTIR, and DSC are used to identify and quantify these SPAs in water. Interday
measurements of cyanox 1790 in water with HPLC showed RSD, error, and R2 lower than 3.78, 9.3,
and 0.99995, respectively. For intraday measurements of cyanox 1790 in water, the RSD, error, and
R2 were less than 4.1, 11.2, and 0.99995, respectively. Concentrations of Cyanox 1790 in water from
non-recycled bottles ranged from 0.01 ± 0.0004 to 4.15 ± 0. 14 ppm, while the levels of cyanox 1790
in water in recycled bottles ranged between 0.01 ± 0.0005 and 11.27 ± 0.12 ppm. In the tests carried
out, an increase in the migration of Cyanox 1790 from plastic bottles to water was identified, since
the ppm of Cyanox increased in the water as the days of storage increased at 40 ◦C.

Keywords: bottled water; synthetic phenolic antioxidant; Cyanox 1790; recycled packaging;
non-recycled packaging; additive migration

1. Introduction

The global synthetic phenolic antioxidant (SPA) market size for 2020 was USD 3.9 bil-
lion; by 2022, the global market only registered an increase of 3.98%, and by 2028, the
business growth is expected to exceed USD 6.5 billion [1]. SPAs are additives, and their
high demand is because they can be used in manufacturing food, beverages, polymers,
etc. SPAs [1] have the ability to protect polymers against oxidative degradation [2–6];
they inhibit free radicals and other oxidizing agents from preventing the degradation of
polymer chains [2–4,7]. When these SPAs are not added to polymers such as polypropylene
(PP), it can be observed that the polymers oxidize, become more fluid, and acquire yellow
coloration and unpleasant odors [8]. SPAs help prevent thermal and mechanical processes
from degrading polymers, which is why they became one of the fundamental additives
in PP. Even so, due to their molecular structure (see Figure 1), these SPAs are also part
of the families of emerging organic pollutants since their functional groups derived from
phenols negatively affect the environment. Chemical bonds do not join SPAs and polymers;
SPA–polymers are physically mixed in their multiple applications. This means that in
various applications of plastics, these SPAs can separate from the polymeric matrix and
migrate from the plastic to other materials such as water. Due to these migrations, SPAs
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have been detected in different media and environments, such as marine sediments, river
water, dust, and human secretions, including urine and serum, among others [3,9–35].
Due to the above, there is a global concern about the risks associated with these SPAs.
Therefore, international control bodies, such as the European Union (EU), have deter-
mined that the amounts allowed for the use of SPAs in food must range between 100 and
200 mg L−1 [36,37]. It is observed that SPAs such as butylhydroxytoluene (BHT), butylated
hydroxyanisole (BHA), and its by-products cause an estrogenic effect that could alter the
correct sexual functioning of mice and zebrafish. Additionally, they can cause carcino-
genesis and teratogenesis, thus generating DNA disruption. Concentrations higher than
9010 µg L−1 of BHA create diseases such as obesity and, in addition, cause a malfunction in
the testes of male mice correlated with the dose supplied [38–53]. The impact of the SPAs
is related to their chemical and structural nature. The structure of the SPA Cyanox 1790
is represented in Figure 1, where it can be observed that it has three fragments that are a
variant of 2,6-di-tert-butylphenol. Therefore, since this 2,6-di-tert-butylphenol is a very
toxic molecule, it is to be expected that Cyanox is equally or more toxic. In the literature,
there is no evidence of more in-depth studies on the risk of Cyanox, so the information
presented in this research will also serve as an input for other researchers to continue
exploring its health risks. Concern about SPAs has increased as they have been identified
in water samples [3,11,18–25], but their presence has not been linked to their migration
from plastics and has not been linked to the use of recycled bottles. It is well-known that
the current worldwide trend of bottled-water processing plants is to increase the recycling
and reuse of these containers [54,55]. In water samples, it has been possible to identify
other substances such as bisphenols, volatile compounds, microplastics, heavy metals,
organophosphates, arsenic, nitrates, and manganese that have generated alarms about
their risks [56–69]. The great concern arises given that the consumption of bottled water
worldwide in 2011 reached the figure of approximately 232 billion liters, with an estimated
growth of 7% per year. It is projected that by 2025 it will reach 513 billion liters [63,69]. It
was found that the world region that consumes the most bottled water is North America
with 30%, followed by Europe and Asia with 29% and 27%, respectively [70–73]. By 2020,
724 companies (INVIMA) dedicated to the sale and distribution of bottled water were
created in Colombia, some without all the legal documents to operate, of which 14 are
located in the city of Cartagena. It is estimated that this market has a growth rate of 12% per
year; for example, by 2020, it was known that 53,000 families consumed bottled water [60].
The previous demand makes the identification and quantification of SPAs in water samples
of vital importance. Thus, in these investigations, the selection of analytical techniques for
the identification and quantification of contaminants is essential, observing the use of in-
strumental techniques such as liquid-phase microextraction (LPME), solid-phase extraction
(SPE), and solid-phase microextraction (SPME). The relative standard deviation (RSD) and
LOD for the determination of SPAs with HPLC are less than 10% in matrices with a low
complexity of chemical content. Differential heat scanning (DSC) techniques have been
used to determine the melting temperature of SPAs and examine the synergistic effects of
antioxidants, including SPAs [3,42,74–79].
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In this research, an interday (different days) and intraday (same day) analytical mea-
surement study of cyanox 1790 measurements were carried out by five analysts in the
same laboratory to assess the reliability of the measurements. Water from three brands of
non-recycled water bottles and water from three brands of recycled water bottles were then
sampled. These commercial water bottles were stored in a local warehouse at 40 ◦C. The
water bottles were monitored for 90 days to assess the effect of Cyanox 1790 migration.
Cyanox monitoring is mainly performed with a previously calibrated HPLC-DAD/MS/MS.
FTIR and DSC techniques have been used to verify that the water samples analyzed using
HPLC did not have the presence of microplastics, which can form inside the bottles and
affect the HPLC operation.

2. Materials and Methods
2.1. Reagents

To carry out the different tests, acetonitrile (99.99% HPLC grade, Merck, Darmstadt,
Germany) and methyl alcohol (99.99% HPLC grade MeOH, Merck, Darmstadt, Germany)
were used, as well as 1,3,5-tris[(4-tert-butyl-3-hydroxy-2,6-dimethylphenyl)methyl]-1,3,5-
triazinane-2,4,6-trione (Cyanox 1790-Cytec, Asia, Singapore), ammonium chloride (Merck,
Darmstadt, Germany), and sodium hydroxide (Merck, Darmstadt, Germany). A Milli-
Q system (Milli-pore, Bed-ford, MA, USA) was used to purify the water. All solutions
prepared for HPLC were filtered through a 0.45 µm nylon filter.

2.2. Calibration Curve

To evaluate the performance of the equipment and to be able to determine low con-
centrations in the water samples, a multi-point calibration curve was developed using a
Cyanox 1790 stock solution of 100 mg L−1 as a reference. The 100 mg L−1 solution was
prepared by weighing 10 mg of Cyanox 1790, adding it to a 100 mL volumetric flask, and
bringing 100 mL of acetonitrile to the mark. The concentration ranges of Cyanox 1790
in ACN corresponded to 5.0, 2.5, 1.5, 0.5, 0.5, 0.25, 0.1, 0.05, 0.025, 0.001, and 0 mg L−1.
Each of these ten standards was prepared by multiple dilutions of the 100 mg L−1 stock
solution. In the investigation, five laboratory analysts considered competent for the tests
were selected, and the repeatability and reproducibility were evaluated. The repeatability
was calculated with five analysts’ measurements on the same day. The reproducibility was
performed on different days by the five analysts. The repeatability and reproducibility
studies were carried out as follows: (1) The standards were directly analyzed with HPLC
and we performed 100 measurements corresponding to 50 repeatability measurements and
50 reproducibility measurements. (2) On the standards treated with solid-phase extraction
(SPE), to study the variability provided by the SPE, we performed 100 measurements
corresponding to 50 repeatability measurements and 50 reproducibility measurements.
The test samples were only evaluated for reproducibility. To understand the efficiency
of the SPE, the recovery percentage of Cyanox 1790 was calculated. This recovery was
determined by taking as reference the theoretical concentration of the standards and the
concentration calculated after the analysis of each standard in the SPE. The product of the
division between the experimental concentration and the theoretical concentration was
multiplied by 100, and this gave us the recovery percentage.

2.3. Sampling

The sampling point was chosen to consider the distribution logistics of these beverages
in the city of interest. There is a central warehouse where the bottled hydrating drinks
are received and transported to supermarkets, stores, warehouses, dispensers, etc. For the
above in this investigation, a leading winery was selected as the sampling point. The main
cellar had an average temperature of 40 ◦C. In this warehouse, bales of water bottles are
placed on pallets on the ground. From there, six brands or six manufacturers of water were
identified. Each was identified as A, B, C, D, E, and F. The marks A, B, and C correspond
to water brands that use non-recycled plastic bottles. The D, E, and F brand waters use
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recycled plastic bottles. The analyses of the water of brands A, B, C, D, E, and F were
carried out by five analysts to determine the reproducibility of the measurement.

The sampling of drinks A, B, C, D, E, and F was carried out for 90 days on days 1, 5, 10,
15, 30, 45, 60, 72, and 90. For this activity, an analyst was assigned exclusively for sampling.
This analyst went to the central warehouse to select the water bottles on days 1, 5, 10, 15,
30, 45, 60, 72, and 90. Each day he measured the temperature of the bottles and selected the
brand A, B, C, D, E, and F bottles. The analyst stored the sampled water bottles in a HotLogic
SKU-9137000 mini portable oven, ensuring that the samples maintained their temperature
of 40 ◦C. The samples were transported by vehicle to the laboratory and delivered to
each analyst, who proceeded to conduct their respective analysis. Each laboratory analyst
removed the cap from the bottle and, with the help of a syringe, drew 50 mL of water
from each bottle. When evaluating the samples, we made a total of 270 measurements,
corresponding to analyzing 54 samples by five analysts. The experimental design is shown
in Table 1.

Table 1. Experimental design for collection of samples of interest.

Bottled Water Sample Collection Information

Beverage
Brand

Sampling Frequency
(days)

Container
Recycling

Analyst
1

Analyst
2

Analyst
3

Analyst
4

Analyst
5

A 1/5/10/15/
30/45/60/72/90 No x x x x x

B 1/5/10/15/
30/45/60/72/90 No x x x x x

C 1/5/10/15/
30/45/60/72/90 No x x x x x

D 1/5/10/15/
30/45/60/72/90 Yes x x x x x

E 1/5/10/15/
30/45/60/72/90 Yes x x x x x

F 1/5/10/15/
30/45/60/72/90 Yes x x x x x

2.3.1. Solid-Phase Extraction (SPE) for Bottled Water Samples
Conditioning of the Stationary Phase of the SPE

Conditioning of the stationary phase was performed according to the protocol estab-
lished by Phenomenex, provider of the referenced Strata-X33. This consisted of adding
5 mL of MeOH followed by 5 mL of HPLC grade water.

Pretreatment

The work sample was homogenized and tempered at 25 ◦C, and then filtered in a
PTFE Teflon filter of 0.22 µm to facilitate the subsequent sample preparation and reduce
microbial activity.

Preconcentration and Cleaning

At this stage, conditioning of Strata X-33 cartridges (6 mL, 500 mg) was performed
with 5 mL of MeOH followed by 5 mL of distilled water. Subsequently, 15 mL of the sample
was uploaded at a rate of 1 mL min−1. Bottles of each brand (A, B, C, D, E, and F) were
sampled every day of interest according to the experimental design of Table 1. Once the
entire sample was percolated, the cartridges were washed with 3 mL of MeOH:H2O 80:20.
Elution of the compounds retained in the solid phase was performed with 10 mL of ACN.
The eluate was evaporated until dry with a stream of nitrogen at 5 psi. The final extract was
reconstituted with ACN to a final volume of 1 mL, obtaining a preconcentration of 10:1.
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2.4. Liquid Chromatography with Diode Array Detector and Mass Spectrometry
(HPLC-DAD/MS/MS)

For this analysis, an Agilent 1100 HPCL and a Micromass Quattro II triple quadrupole
mass spectrometer were used. It is possible to acquire spectra using MS and MS/MS.
As part of the system, a degasser (G1322A), a quaternary pump (G1311A), an automatic
sampling system (G1313A), a column carrier (G1316A), a DAD detector (G1315B) with
chemical station, a Lichrosorb RP-18 column (4.6 × 200 mm × 5 microns), 5 and 10 syringes
and a precision balance were used. A separate double-pump system and self-sampler
were also used for automatic injection into the MS with a Cyanox 1790 solution at ACN
to establish chromatographic conditions. With the mixture of ACN and H2O solvents,
which were mixed in various proportions, the following separation was carried out: 84
and 16 percent (1 min, 15 mL/min); 92 and 8 percent (2 min, 2 mL/min); 96 and 4 percent
(3.5 min, 3.5 mL/min); and 100 and 0 percent (8 min, 3.5 mL/min). The temperature,
irrigation volume, and wavelength of the column were adjusted to 50 ◦C [9,26,80]. For the
identification of the additive, the mass data of MS fragment and MS/MS ions are used.

2.5. Fourier Transform Infrared Spectroscopy (FTIR)

This analysis used a Nicolet 6700 FTIR infrared spectrometer with values from 4000
to 600 cm−1 and a resolution of 2 cm−1 (reflection) [9,80]. With this equipment, plastic
residues in the filtered water were monitored to prevent these small plastic particles from
reaching the HPLC and generating obstructions in the equipment pump.

2.6. Differential Scanning Calorimeter (DSC)

A 6.1 mg sample was used to obtain the results under atmospheric nitrogen conditions.
Nitrogen provides us with a controlled, inert environment that allows us to examine how
decomposition affects the sample. This procedure was carried out in various circumstances,
such as isothermy at 60 ◦C for 5 min, an atmosphere of 50 mL/min of nitrogen, and a
temperature increase of 60 ◦C at 200 ◦C for 20 min. With this equipment, plastic residues in
the filtered water were monitored to prevent these small plastic particles from reaching the
HPLC and generating obstructions in the equipment pump.

2.7. Data Analysis

The Minitab program was used to perform the statistical studies (correlation analysis,
linearity, and ANOVA). Tukey’s test was employed for the analysis of variance of the data.
One-way ANOVA was utilized to compare differences between groups. The threshold for
statistical significance was set at p ≤ 0.05.

3. Analysis and Results
3.1. Validation of Standards

The statistical analysis of repeatability and reproducibility was analyzed with ANOVA,
and Tukey’s test was applied to determine if all the means had an acceptable statistical
behavior with a significance level of 95%. Tukey’s test evaluates whether or not the data
were grouped in the same group (A). Table 2 shows this ANOVA. Figure 2a,b show boxplots
for the repeatability and reproducibility distributions of the standard data and the position
of their means. To know the reliability of the analysis of the Cyanox 1790 standards
by HPLC, Figure 2a,b show that the average of the analysts does not have significant
differences at 95% confidence in repeatability and reproducibility for the performance
of Cyanox 1790 measurement on HPLC on the same day or different days. Figure 2b,c
show the performance of measurements by solid phase extraction (SPE). The performance
of these measures was equal to that of the standards. RSD was achieved well below
5% for repeatability and reproducibility; repeatability errors were less than 5%, while
reproducibility errors were less than 6.2%. These results were lower than those indicated
by the literature, where it is observed that RSD and errors of 20% and 15%, respectively,
were considered acceptable by the validation protocols [2,4,80].
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bottled water samples.

For the SPE reproducibility tests, the recovery percentages were evaluated for the
concentrations of 5, 2.5, 1.5, 0.5, 0.25, 0.1, 0.05, 0.025, and 0.001 mg L−1, finding recoveries
of 99, 98, 96, 95, 98, 97, 97, 95, and 98%, respectively. For the repeatability of SPE, the
recoveries of all concentrations were higher than 94%.

Figure 3 shows an R2 value of 0.99995 and a correlation coefficient (r) of 0.99998 for
repeatability and reproducibility for the standards and SPE between 5.0, 2.5, 1.5, 0.5, 0.25,
0.1, 0.05, 0.025, 0.001, and 0 ppm Cyanox 1790 in ACN. These results are more accurate
(0.04%) than similar studies for the determination of SPAs [22,80]. This coefficient shows a
directly proportional relationship between the theoretical and experimental values.
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Table 2. ANOVA analysis for standards and samples, using the Tukey method with 95% confidence.

Repeatability of standards with CH2Cl2 Reproducibility of standards with CH2Cl2

Factor N Average Grouping Factor N Average Grouping

Analyst 1–3 10 0.973 A Analyst 1 10 0.946 A
Analyst 1–4 10 0.965 A Analyst 3 10 0.939 A
Analyst 1–1 10 0.959 A Analyst 5 10 0.933 A
Analyst 1–5 10 0.954 A Analyst 4 10 0.928 A
Analyst 1–2 10 0.949 A Analyst 2 10 0.921 A

Repeatability of standards with CH2CN in SPE Reproducibility of standards with CH2CN in SPE

Factor N Average Grouping Factor N Average Grouping

Analyst 1–3 10 0.979 A Analyst 1 10 0.971 A
Analyst 1–4 10 0.976 A Analyst 5 10 0.967 A
Analyst 1–1 10 0.973 A Analyst 4 10 0.967 A
Analyst 1–2 10 0.968 A Analyst 2 10 0.959 A
Analyst 1–5 10 0.957 A Analyst 3 10 0.955 A

Reproducibility of samples with CH2CN on SPE

Factor N Average Grouping

Analyst 1 40 1718 A
Analyst 4 40 1710 A
Analyst 5 40 1699 A
Analyst 2 40 1696 A
Analyst 3 40 1695 A
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3.2. Analysis of Cyanox 1790 in Bottled Water Samples

Fifty-four samples were analyzed using the above methodology under the conditions
described in Section 2.1. Cyanox 1790 ranged between 0.01 and 11.27 ppm for the water
samples in recycled bottles (see Table 3). Water samples in non-recycled containers showed
Cyanox 1790 concentrations between 0.01 and 4.16 ppm with an average of 1.06 ppm. The
highest concentration of Cyanox 1790 was found in the water in recycled bottles of brand
F at 90 days. The identified concentration was 11.27 ppm. For the standard deviation,
values less than or equal to 0.2 were obtained, and for the relative standard deviation (RSD),
values less than or equal to 5.3% were obtained. The ANOVA analysis presented in Table 2
shows that there is no significant difference between the means of the concentrations for
the different analysts, which means that any analyst can perform the measurement and
obtain reliable results in the measurement of Cyanox 1790 concentrations in bottled water.

Table 3. Reproducibility data for Cyanox 1790 in water samples using HPLC-MS.

SPE with Acetonitrile (HPLC-MS Results)

Interday Test (Different Days) Samples

Sample Brand Storage
Time

Recycled
Material

Analyst
1

Analyst
2

Analyst
3

Analyst
4

Analyst
5 Average Deviation RSD

1 A 1
NO

0.010 0.010 0.010 0.010 0.011 0.01 0.0 4.4
2 B 1 0.230 0.250 0.250 0.260 0.250 0.25 0.0 4.4
3 C 1 0.310 0.300 0.320 0.310 0.300 0.31 0.0 2.7

4 D 1
YES

0.100 0.110 0.110 0.100 0.100 0.10 0.0 5.3
5 E 1 0.210 0.220 0.200 0.210 0.200 0.21 0.0 4.0
6 F 1 0.300 0.310 0.280 0.300 0.290 0.30 0.0 3.9

7 A 5
NO

0.020 0.019 0.021 0.020 0.019 0.02 0.0 4.2
8 B 5 0.030 0.031 0.032 0.030 0.029 0.03 0.0 3.8
9 C 5 0.042 0.040 0.039 0.041 0.042 0.04 0.0 3.2

10 D 5
YES

0.030 0.031 0.032 0.030 0.030 0.03 0.0 2.9
11 E 5 0.050 0.051 0.052 0.050 0.050 0.05 0.0 1.8
12 F 5 0.060 0.061 0.063 0.060 0.060 0.06 0.0 2.1

13 A 10
NO

0.030 0.031 0.032 0.030 0.030 0.03 0.0 2.9
14 B 10 0.040 0.042 0.040 0.042 0.041 0.04 0.0 2.4
15 C 10 0.060 0.062 0.061 0.062 0.063 0.06 0.0 1.9

16 D 10
YES

0.070 0.072 0.073 0.072 0.072 0.07 0.0 1.5
17 E 10 0.080 0.081 0.083 0.084 0.084 0.08 0.0 2.2
18 F 10 0.090 0.093 0.092 0.093 0.092 0.09 0.0 1.3

19 A 15
NO

0.050 0.053 0.052 0.051 0.052 0.05 0.0 2.2
20 B 15 0.050 0.056 0.057 0.056 0.055 0.05 0.0 5.1
21 C 15 0.060 0.062 0.063 0.062 0.061 0.06 0.0 1.9

22 D 15
YES

0.170 0.160 0.170 0.170 0.170 0.17 0.0 2.7
23 E 15 0.180 0.190 0.170 0.180 0.190 0.18 0.0 4.6
24 F 15 0.240 0.220 0.230 0.240 0.220 0.23 0.0 4.3

25 A 30
NO

0.110 0.120 0.120 0.110 0.120 0.12 0.0 4.7
26 B 30 0.140 0.130 0.140 0.130 0.140 0.14 0.0 4.0
27 C 30 0.180 0.190 0.180 0.170 0.170 0.18 0.0 4.7

28 D 30
YES

0.350 0.370 0.360 0.380 0.350 0.36 0.0 3.6
29 E 30 0.440 0.450 0.470 0.460 0.480 0.46 0.0 3.4
30 F 30 0.500 0.530 0.520 0.540 0.550 0.53 0.0 3.6
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Table 3. Cont.

SPE with Acetonitrile (HPLC-MS Results)

Interday Test (Different Days) Samples

Sample Brand Storage
Time

Recycled
Material

Analyst
1

Analyst
2

Analyst
3

Analyst
4

Analyst
5 Average Deviation RSD

31 A 45
NO

0.860 0.890 0.870 0.850 0.840 0.86 0.0 2.2
32 B 45 0.940 0.930 0.910 0.970 0.950 0.94 0.0 2.4
33 C 45 1.120 1.120 1.100 1.110 1.000 1.09 0.1 4.7

34 D 45
YES

2.620 2.500 2.390 2.450 2.430 2.48 0.1 3.6
35 E 45 2.710 2.730 2.860 2.940 2.760 2.80 0.1 3.5
36 F 45 3.240 3.090 3.160 3.240 3.100 3.17 0.1 2.3

37 A 60
NO

1.710 1.630 1.840 1.730 1.700 1.72 0.1 4.4
38 B 60 1.500 1.630 1.570 1.670 1.590 1.59 0.1 4.0
39 C 60 1.490 1.370 1.350 1.420 1.330 1.39 0.1 4.6

40 D 60
YES

4.490 4.520 4.430 4.090 4.330 4.37 0.2 4.0
41 E 60 5.330 5.190 5.240 5.310 5.270 5.27 0.1 1.1
42 F 60 5.160 5.090 5.200 4.990 5.190 5.13 0.1 1.7

43 A 72
NO

2.270 2.190 2.240 2.340 2.110 2.23 0.1 3.9
44 B 72 1.980 1.950 2.010 1.890 1.830 1.93 0.1 3.7
45 C 72 2.520 2.640 2.780 2.660 2.450 2.61 0.1 4.9

46 D 72
YES

7.850 7.640 7.550 7.460 7.910 7.68 0.2 2.5
47 E 72 8.120 8.060 8.450 8.330 8.610 8.31 0.2 2.7
48 F 72 6.990 7.120 7.260 7.330 7.190 7.18 0.1 1.8

49 A 90
NO

4.510 4.260 4.010 4.110 4.260 4.23 0.2 4.5
50 B 90 3.850 3.760 3.460 3.520 3.740 3.67 0.2 4.6
51 C 90 4.110 4.130 3.990 4.180 4.370 4.16 0.1 3.3

52 D 90
YES

9.110 9.250 9.130 9.470 9.150 9.22 0.1 1.6
53 E 90 10.120 10.190 10.450 10.420 10.720 10.38 0.2 2.3
54 F 90 11.280 11.190 11.310 11.120 11.430 11.27 0.1 1.1

Figure 4 shows the percentage composition profile of the Cyanox 1790 concentrations
found in the water samples using recycled and non-recycled plastic bottles. For the cases
of brands A, B, and C in non-recycled bottles, the total variation of the concentration
of Cyanox 1790 in the water was 3, 14, and 17%, respectively. Samples B and C had a
decreasing trend. For the water samples of the D, E, and F brands that were characterized by
having plastic bottles made with recycled plastic, we measured cyanox 1790 concentration
variations of 13, 8, and 17%, respectively. However, it should be noted that the D, E, and F
brands maintained the highest percentage concentration values obtained for Cyanox 1790.
It should also be noted that the average percentage of Cyanox 1790 in bottled water made
from recycled plastic was 60.93% higher than in bottled water made from non-recycled
plastic. This allows us to deduce that the reuse of the container directly influences the
concentration of Cyanox 1790 in the water. These concentration values obtained for this
polymeric additive were approximately 13 times higher than the concentration found for
other SPAs, such as BHT and BHT-Q, in bottled water [80], 4.5 times higher than a large
group of SPAs found in different water bodies using the same analysis method [9], and
112,700 times higher than normal arsenic concentrations in the drinking water [67].
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3.3. Complementary Analysis of Cyanox 1790 in Bottled Water Samples

The Cyanox 1790 standard and the Cyanox 1790 sample extracted from bottled water
had the same performance pattern in differential scanning calorimetry (DSC). The rising
peak of the calorimetric curve shows that both Cyanox 1790 samples release heat between
155 and 176 ◦C. This heat release is due to the melting of the sample, which releases energy
in the form of heat. The highest heat flux emitted for both Cyanox 1790 samples was
8.69 mW, as shown in Figure 5. This is one of the arguments supporting that Cyanox 1790
is the analyte isolated from the water bottles and that no other chemical species were found
that could have caused interference in the measurements.

Pure Standard FTIR Analysis and Recovered Dust

The resulting spectrum (Figure 6) shows two bands between 1300 and 1050 cm−1

that correspond to the symmetric and asymmetric stretches of the Cyanox ester group and
a peak around 1735 cm−1, indicating the ester group (O=C) present in the Cyanox 1790
structure. The phenol functional group is present in the Cyanox 1790 structure, as indicated
by the signal at 3670 cm−1. Between 2950 and 2970 cm−1, the typical band of the CH3
group is observed. These classifications are also revealed by the chemical composition of
Cyanox. Relatively strong absorption in the range of 1450–1500 cm−1 is characteristic of
the spectra of aromatic compounds [80]. For this study, it is more convenient to measure
the coupling. Figure 1 shows the molecular composition of Cyanox 1790. The overlap of
the two FTIR spectra shows a high similarity between the two chemicals.
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4. Conclusions

The interday and intraday behavior of the SPA cyanox 1790 is studied. It is found
that the interday measurements of cyanox in water using HPLC showed RSD, error, and
R2 less than 3.78, 9.3, and 0.99995, respectively. The intraday behavior of cyanox in water
shows that the RSD, error, and R2 were lower than 4.1, 11.2, and 0.99995, respectively. With
this methodology, the content of Cyanox 1790 in six commercial brands of bottled water in
Colombia was known. Concentrations of Cyanox 1790 in water from non-recycled bottles
ranged from 0.01 ± 0.0004 to 4.15 ± 0.14 ppm, while the levels of cyanox 1790 in water in
recycled bottles ranged between 0.01 ± 0.0005 and 11.27 ± 0.12 ppm. In the tests carried
out, an increase in the migration of Cyanox 1790 from plastic bottles to water was identified,
since the ppm of Cyanox increased in the water as the days of storage increased at 40 ◦C. It
was observed that the reuse of containers drastically increases the presence of Cyanox 1790
in the water contained in these containers.
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