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Abstract: Land Use and Land Cover (LULC) classification using remote sensing data is a challenging
problem that has evolved with the update and launch of new satellites in orbit. As new satellites are
launched with higher spatial and spectral resolution and shorter revisit times, LULC classification
has evolved to take advantage of these improvements. However, these advancements also bring
new challenges, such as the need for more sophisticated algorithms to process the increased volume
and complexity of data. In recent years, deep learning techniques, such as convolutional neural
networks (CNNs), have shown promising results in this area. Training deep learning models with
complex architectures require cutting-edge hardware, which can be expensive and not accessible
to everyone. In this study, a simple CNN based on the LeNet architecture is proposed to perform
LULC classification over Sentinel-2 images. Simple CNNs such as LeNet require less computational
resources compared to more-complex architectures. A total of 11 LULC classes were used for training
and validating the model, which were then used for classifying the sub-basins. The analysis showed
that the proposed CNN achieved an Overall Accuracy of 96.51% with a kappa coefficient of 0.962 in
the validation data, outperforming traditional machine learning methods such as Random Forest,
Support Vector Machine and Artificial Neural Networks, as well as state-of-the-art complex deep
learning methods such as ResNet, DenseNet and EfficientNet. Moreover, despite being trained in
over seven million images, it took five h to train, demonstrating that our simple CNN architecture is
only effective but is also efficient.

Keywords: land cover classification; land use classification; deep learning; convolutional neural
network; remote sensing; sentinel-2

1. Introduction

Accurate and up-to-date information about Land Use and Land Cover (LULC) clas-
sification is essential for a wide range of applications, from understanding natural and
anthropogenic phenomena on the Earth’s surface and climate modeling [1] to territorial and
urban planning [2]. LULC classes are important for understanding the impacts of human
activities on the environment and for making informed decisions about how to manage
and protect natural resources. Land Use (LU) refers to the human activities that take place
on the Earth’s surface, such as agriculture, urbanization, and forestry [3]. However, Land
Cover (LC) describes the physical characteristics of the Earth’s surface, such as vegetation,
water bodies and bare soil. To obtain a LULC classification product using Remote Sensing
(RS), it is necessary to assign a class label to every pixel or object of an image [4]. RS
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techniques involve the use of satellite or airborne sensors to capture information about the
electromagnetic radiation emitted or reflected from the Earth’s surface [5]. This information
can be processed and analyzed to extract various types of geospatial data, including LULC
products. LULC products are continuously developing as RS and methods grow. However,
there still exists low consistency among LULC products due to heterogeneity conditions,
both in LULC and in the orography of the region [2]. This leads to a high intraclass and a
low interclass variance that makes the classification process a complex task in particular
regions, such as mountainous ones.

There are various methods to generate LULC maps, each with its advantages and
disadvantages. Manual techniques can be simple and straightforward approaches, but they
become impractical when dealing with large study areas and high number of classes [6]. In
such cases, using artificial intelligence algorithms is a more efficient alternative. Among
these algorithms, traditional Machine Learning (ML) and Deep Learning (DL) are tech-
niques that have gained popularity due to their accuracy, robustness, and ability to analyze
large datasets with complex features. By utilizing these methods, is possible to obtain a
high-quality LULC map with relatively less time and effort [7]. LULC classifications using
ML algorithms have been a popular research topic in recent years, with many articles explor-
ing this area [8–10]. The most commonly used algorithms are: Artificial Neural Networks
(ANN), Decision Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF), Support
Vector Machine (SVM), XGBoost and LightGBM [11–13]. These traditional ML algorithms
usually work very well when the study area is small and the classes to be mapped are
relatively few. In [10], the authors presented a hybrid approach for the LULC classification
of multitemporal, multiregion, and multisensor Landsat data using Classification And
Regression Trees (CART), DT and a SVM-based clustering in cascade in order to obtain a
total of eleven classes (including clouds and shadows). Swetanisha et al. [11] presented a
study on the use of ML models to classify LULC in seven classes. The study provides useful
insights into the application of multiple ML models, including RF, SVM and KNN for LULC
classification, and presents a comprehensive evaluation of different models. Saralioglu
et al. [14] compared the performance of various ML methods for the LULC classification
of forest and agriculture dominated landscapes using Landsat-8 and Landsat-9 satellite
images. All the above works proposed methods that rely on traditional ML supervised or
unsupervised techniques, which may not be sufficient to capture complex relationships
within the data. Additionally, the spatial resolution of Landsat imagery is not enough if
you want to perform a detailed LULC classification. Therefore, a better option in terms
of spatial resolution is to use Sentinel-2 (S2) images. In the research conducted by Park
et al. [13], they applied ML algorithms such as RF, XGBoost, and a LightGBM for LULC
classification, and presented the model tuning process for each algorithm using S2, Landsat
and a normalized Digital Elevation Model (DEM). Alshari et al. [12] proposed to increase
the accuracy of ML models for mapping seven different LULC classes by combining a
neural-based method with an object-based method, producing a model addressed by an
ANN (limited parameters) and a RF (hyperparameter) called ANN_RF. They used S2 and
Landsat 8 and showed that the proposed model had better results in the OA using S2 data.
Razafinimaro et al. [15] used supervised classification with six traditional ML models. Anal-
ysis factors were used to further investigate their importance for S2, Landsat 8 and other RS
information. The results showed that the KNN achieved the highest accuracy during the
analysis of medium and low spatial resolution images with the number of spectral bands
lower than or equal to four. The RF completely dominated the other analysis cases. The
three previous articles worked with S2 images, which allowed them to obtain more detailed
LULC products. Nevertheless, those studies only focused on a limited number of LULC
categories, and it is unclear how well the algorithms would perform when classifying
more complex or diverse LULC types. Additionally, the studies did not provide a detailed
analysis of the impact of image pre-processing techniques on classification accuracy. In
general, these six works [10–15] and other research in the literature [16] do not address the
issue of imbalanced data [17], which is a common problem in LULC classification tasks.
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Furthermore, when working with areas with large spatial extent and many classes, the
above algorithms did not work properly. In this cases, DL techniques, such as convolutional
neural networks (CNNs), have shown promising results in this field [4]. CNNs are a type of
artificial neural network that are particularly well-suited for image processing tasks, as they
are able to automatically learn relevant features from the input data [18]. Sánchez et al. [19]
compared different traditional ML and CNN algorithms to identify nineteen LU classes
using sequences of S2 images around a relatively small area. In this research they showed
that the best results were achieved by a deep neural network containing two-dimensional
convolutional layers (Conv2D) and principal component analysis (PCA). Kroupi et al. [20]
developed a pipeline for analyzing S2 images using a Deep Convolutional Neural Network
(DCNN) for an automatic unsupervised ten-class LULC classification. Taberner et al. [21]
evaluated the performance and explained the operation of a DL algorithm, based on a
bi-directional recurrent network of long-short-term memory (2-BiLSTM). In this research,
sixteen agricultural LULC classes were classified using S2 data. The article details the
methodology and experimental results, showing that the proposed approach outperformed
traditional ML approaches for this task. The last three discussed works do not provide de-
tailed information about the computational time required to train and test the model. This
is very important when deciding which model to use/replicate for similar tasks. Another
common limitation of the above works, as with others in the literature [7,22,23], is the high
computational resources needed, especially when dealing with large and complex datasets;
this is due to complex CNN architectures [7,22,23].

To deal with the different issues highlighted above, in this research we propose a
simple but robust CNN architecture capable of mapping eleven LULC classes in Andean
and mountainous areas with a high accuracy percentage. We use a simple architecture that
overcomes several challenges associated with more complex CNN architectures, such as
high computational costs [23] and longer wait times for results. By using this approach,
we aim to provide an efficient and accessible solution for LULC classification using DL
techniques [20]. In addition, we describe in detail the hyperparameters (HP) optimization
process. This is something that is omitted or described very briefly in LULC classification
studies, leading to a lack of information about the HP optimization process in the field
of RS [13].

This study aims at automatically accurately and efficiently mapping eleven specific
LULC classes that are prevalent in the study area using a simple yet robust CNN and S2
images. The selection of these classes were based on their importance in characterizing
the LULC patterns and environmental conditions in Andean sub-basins. The accurate
identification and mapping of these LULC classes are essential for understanding the
changes in the Earth’s surface over time and for assessing the environmental impacts of
human activities.

The remainder of this paper is structured as follows. The study area, the RS dataset,
and the proposed approach for LULC classification are described in Section 2. Section 3
illustrates the experimental results obtained on the study area. In Section 4, we discuss the
results of our study, as well as provide some comparative analyses with other ML and DL
algorithms. Finally, conclusions and future works are given in Section 5.

2. Materials and Methods
2.1. Study Area and RS Data

The study areas selected for this research are the Las Piedras and Palacé River sub-
basins, both located in the southwest part of Colombia. The study areas are presented in
Figure 1. The Las Piedras River sub-basin [24] (in red) covers an area of approximately
66 km2 and is part of the larger Cauca River basin [25]. This sub-basin is characterized by
a rugged topography, with steep slopes and narrow valleys. The main river, Las Piedras
River, originates in the high Andean mountains and flows towards the southwest before
merging with the Cauca River. The sub-basin is home to a rich array of flora and fauna,
including several endemic species, and provides important ecosystem services such as
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water supply for agricultural and domestic use [24]. The Palacé River sub-basin [26] (in
blue) covers an area of approximately 645 km2. It is located in the central and northeastern
part of the Cauca department and includes the municipalities of Totoró, Cajibío, Silvia
and Popayán, and is characterized by a mix of tropical and Andean ecosystems. The
sub-basin is home to a rich diversity of flora and fauna, including several endangered and
endemic species. The Palacé sub-basin is formed by six tributaries: Cofre river, Blanco
river, Molino river, Chamizal creek, Guangubio river, and Minchicao river. The upper
part of the sub-basin where Palacé river originates exhibits typical high-altitude páramo
conditions, which are part of the Guanacas-Puracé-Coconucos páramo complex located in
the Andean region spanning the Huila and Cauca departments. Agriculture is the main
source of income in the upper part of the Palacé sub-basin, with potato cultivation and
extensive livestock breeding serving as the major economic activities in the region [27].
These two sub-basins are important ecological and socio-economical resources that provide
critical ecosystem services and support a rich diversity of flora and fauna in Colombia.
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The proposed approach is developed for its application over images acquired by
the S2 series satellite [28] over these two Andean regions. The goal of this research is to
have a multiclass LULC classification over the Las Piedras and Palacé River sub-basins
according to the CORINE Land Cover (Coordination of Information on the Environment)
methodology [29], also known as CLC, adapted for Colombia. The study area is located
within the intertropical convergence zone, which is an area near the equator where trade
winds from the northern and southern hemispheres converge. This convergence often
results in the formation of cumulus clouds, which can lead to high levels of cloud cover
in the region [30]. Therefore, obtaining clear images of the area of interest is challenging
due to the frequent presence of clouds. To improve the chances of acquiring images with
lower levels of cloud cover over the study area, data from both Sentinel-2A and Sentinel-2B
satellites were used [28]. The S2 satellite series is well-suited for this type of research because
it provides high-spatial-resolution images (up to 10 m per pixel) with a wide coverage area,
allowing for more detailed observations in comparison with Landsat satellite series. Despite
using these resources, obtaining images with minimal cloud coverage was challenging.
The most recent images of the study area without significant cloud coverage were obtained
in 2020 and were used in this study. To generate images that cover the entire area of both
sub-basins without any cloud or shadow interference, it was essential to merge the two
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tiles listed in Table 1 with the help of suitable pre-processing techniques, as described later.
Due to the size of the two sub-basins, a single S2 tile is insufficient to cover the entire
extent, thus requiring more images to map the areas of interest. To obtain the images
required for the study, the platform provided by the European Space Agency (ESA) for
the dissemination of data from Sentinel missions was used [31]. Specifically, the Level-2A
product was downloaded, which includes reflectance data that have already been corrected
for atmospheric effects using the Sen2Cor method [32,33]. This tool is used to remove the
effects of atmospheric haze, clouds, and aerosols that can interfere with the accuracy of
RS data. Additionally, a DEM with a resolution of 12.5 m was acquired from the Japan
Aerospace Exploration Agency (JAXA) through the ALOS PALSAR satellite mission [34] to
provide topographic information about the study area. The DEM was acquired between
2010 and 2011 and resampled to 10 m for compatibility with the S2 data.

Table 1. S2 tiles merged to build the dataset for training the proposed model.

Image Year Metadata

1 2020 S2A_MSIL2A_20200211T153611_N0214_R068_T18NUH_20200211T194219
2 2020 S2B_MSIL2A_20200801T152639_N0214_R025_T18NUH_20200801T205640

2.2. Proposed Approach for LULC Classification in Andean Sub-Basins in Colombia

In this study, we propose an approach that combines RS and DL to perform LULC clas-
sification automatically. The proposed approach (see Figure 2) consists of several stages that
are carefully designed to achieve accurate and reliable results at a low computational time.
The first stage involves gathering S2 satellite images. The next step is data pre-processing,
where the collected images undergo various corrections and enhancements to improve
their quality and ensure consistency across the entire satellite data information. Later, some
radiometric indices are calculated to assist in distinguishing between different LULC types.
In the subsequent stage, a feature set is created by combining the pre-processed bands of
the original S2 images, the calculated indices, and DEM. This feature set provides a more
comprehensive representation of the LULC types and helps in identifying the boundaries
between different classes. Next, training samples are selected to construct the dataset that
will be used to train and validate the DL model. Finally, a map is generated for each of the
sub-basins analyzed in this research through the multiclass LULC classification. The com-
plete methodology is designed to exploit the spectral and spatial information available in
the S2 RS data and to leverage the capabilities of DL algorithms for an accurate and efficient
LULC classification, while guaranteeing a lower computational burden. In the following
sections, we will provide a detailed description of each stage of the proposed approach.
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2.2.1. Data Pre-Processing and Harmonization

Data pre-processing and harmonization are crucial steps in the LULC classification
process. After clipping the S2 images, an outlier removal is conducted to eliminate pixels
with values that are significantly different from the rest of the pixels in the image. These out-
liers can occur due to a variety of factors, such as sensor errors, atmospheric disturbances,
and other components. By removing these values, the accuracy of subsequent analyses
could be improved [35]. Next, a filtering of clouds and shadows is performed since they
can significantly impact the reflectance values of the land surface. To address this issue,
the ESA has developed an algorithm that filters clouds and shadows automatically using
the SCL map obtained with the Sen2Cor algorithm [32,33]. Whenever a S2 image has any
amount of clouds/shadows, the SCL map is used to detect and remove them. The filtered
portion is then replaced by a portion of another image, as close as possible in date to the
target image, but without clouds/shadows in that specific area. As a result, the images
used for LULC classification in both sub-basins are free of clouds/shadows, allowing us
to obtain a classification of every single pixel in the image. Even though this is not the
most accurate method, it produces reliable enough results for the analysis carried out in
this research. After completing the previous steps, a resampling of S2 bands that were
not originally at 10 m spatial resolution is performed. Specifically, the six bands originally
at 20 m were downscaled to 10 m using the multiresolution analysis fusion method with
the high-pass modulation presented in [36]. This is a pansharpening technique used in
order to gain the best at the highest spatial and spectral resolutions for all the bands. After
this, the harmonization process is executed by applying histogram matching. Note that
the images in Table 1 have not been acquired on the same date, thus requiring radiometric
homogenization to guarantee that the proposed approach works similarly in both study
areas. Employing this method guarantees that the pixel values in the images are uniformly
distributed, a critical component in the examination of RS data. Then, to create a complete
image of each sub-basin, the different tiles are joined. Images are rescaled in the range
[0, 1], instead of keeping them in the [0, 10,000] range, for DL models to work in the
required configurations.

2.2.2. Radiometric Indices

To differentiate between the eleven selected LULC classes, that is to say water bodies,
páramo, urban areas, planted forest, pastures, natural grassland, agricultural areas, dense
forest, mixed forest, mineral extraction areas, and shrubs, supplementary features were
required. In addition to the original ten bands extracted from the S2 images, the B1, B9,
and B10 bands were excluded from consideration, as they are specifically intended for
atmospheric correction purposes. To generate additional features, radiometric indices were
calculated. These indices are combinations of spectral bands that can highlight specific
features and patterns in the data. They help to identify areas with vegetation, water, urban
areas, and bare soil. When used in combination with DL models, radiometric indices can
enhance the accuracy and efficiency of the models by providing additional information
that may not be readily apparent in the raw satellite imagery [25]. The selection of a
specific radiometric index is related to its capability to highlight certain LULC classes,
allowing its separation from the other LULCs. In this research, the authors propose
the use of sixteen indices (see Table 2). Each index is sensitive to specific physical and
biochemical properties of vegetation and soils, providing unique and complementary
information about the eleven LULC types used in this research. For instance, the Adjusted
Transformed Soil Adjusted VI (ATSAVI) and Soil Adjusted Vegetation Index (SAVI) are
useful in distinguishing between natural grassland and agricultural areas [37,38], while
the Green Leaf Index (GLI) and Enhanced Vegetation Index (EVI) can detect differences in
forest density [39]. The Chlorophyll Index Red Edge (CIRedEdge) and Coloration Index
(CI) are particularly useful in identifying different vegetation types such as páramo, shrubs,
and forest [40,41]. The Normalized Difference Water Index (NDWI), the Simple Ratio—
Ferrous Minerals (FM), and the Simple Ratio—Iron Oxide (IO) are effective in detecting



Remote Sens. 2023, 15, 2521 7 of 20

water bodies, urban areas and mineral extraction areas [42,43]. Additionally, the DEM for
each sub-basin is also used to provide additional information. The DEM information can
help identify areas of different elevations and slopes, which can be useful in identifying
mountainous regions, valleys, and other terrain features [44]. In this study, the inclusion
of the sixteen radiometric indices was carefully chosen by selecting them based on their
ability to enhance specific features of interest in the classification process. While including
more indices could potentially increase the level of detail in the classification, it was found
that this came at a significant computational cost without any significant improvement
in performance. Conversely, using fewer indices decreased computational cost, but the
resulting classification was not as accurate. Therefore, sixteen selected indices were found
to be the optimal number for achieving the desired level of accuracy while also maintaining
computational efficiency.

Table 2. List of radiometric indices extracted from each sub-basin.

Index S2 Bands Reference

Adjusted Transformed Soil Adjusted VI (ATSAVI) 4, 8 [38]
Atmospheric Resistance Vegetation Index (ARVI) 2, 4, 8 [45]

Blue Normalized Difference Vegetation Index (BNDVI) 2, 8 [46]
Chlorophyll Index Red Edge (CIRedEdge) 5, 8 [40]

Coloration Index (CI) 2, 4 [41]
CRI550 2, 3 [47]

Enhanced Vegetation Index (EVI) 2, 4, 8 [39]
Green Difference Vegetation Index (GDVI) 3, 8 [48]

Green Leaf Index (GLI) 2, 3, 4 [49]
Infrared Percentage Vegetation Index (IPVI) 4, 8 [50]

Normalized Difference Vegetation Index (NDVI) 4, 8 [51]
Normalized Difference Water Index (NDWI) 3, 8 [42]

Simple Ratio—Ferrous Minerals (FM) 8, 11 [43]
Simple Ratio—Iron Oxide (IO) 2, 4 [43]

Simple Ratio (SR) 2, 4 [52]
Soil Adjusted Vegetation Index (SAVI) 4, 8 [53]

2.2.3. Model Setup and Classification Process

In order to perform a multiclass classification task under complex conditions such
as those studied in this research, classical ML algorithms are commonly used due to their
low computational cost compared, for example, to DL algorithms [3,4,19,20,23]. However,
in these types of scenarios, it has been demonstrated that classical algorithms such as RF
or SVM do not work properly for achieving an accurate LULC classification [10]. This is
because in LULC classifications with many classes and large spatial extents, large amounts
of data are necessary, and classical algorithms are insufficient to handle such large volumes
of data. An option to overcome this issue is to work with DL models such as CNNs.
According to the literature [4,20,21], CNNs have the ability to work with large volumes
of data and can adapt quite well to these conditions, thus achieving fairly precise LULC
mapping products, even when working with multiclass classifications and large spatial
extents. However, according to the state-of-the-art research [7,22,23], increasingly complex
CNN architectures are being developed to achieve these types of results. This leads to the
need for more computational resources to train such models, resulting in an increase in
the economic cost of acquiring the necessary hardware to manage these models, as very
complex architectures cannot be trained on any computer system, requiring state-of-the-art
GPUs to handle these complex architectures [7,54]. Therefore, in this research, we propose
a robust yet simple architecture that solves these issues. The proposed model is based
on the LeNet architecture [55], which is a very simple CNN with very few convolutional
layers, causing the computational cost associated with training this CNN to be very low.
Through several experimental tests, a balance was reached between the complexity of the
architecture and the robustness of the model, achieving results that even outperformed
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larger and more-complex architectures in similar tasks [3,7,22,23,54]. Before training the
model, the dataset must be prepared. For this purpose, point samples are selected by
photointerpretation of the twenty-seven-band feature set composed of the 10 pre-processed
bands of the original S2 image, the sixteen radiometric indices calculated as per Table 2,
and the DEM. The selected point samples are stored in a plain text file, which is then used,
along with the feature set, to automatically clip small 3 × 3 sample images at 10 m spatial
resolution for each of the eleven LULC classes of interest in this work. These labeled images
are saved in eleven different folders corresponding to the LULC classes and used to train,
validate, and test the DL model. The initial training samples present an imbalance, as
shown in Figure 3, due to the naturally unequal distribution of coverages in the Andean
sub-basins, which is due to the orographic and climatic conditions of the region. Therefore,
an artificial balancing of the original samples is necessary to avoid bias in the algorithm’s
learning process. Hence, the initial samples were augmented to a count of 26,000 for all
eleven LULC categories. The size of the final dataset is determined by several factors,
such as the number of bands present in the feature set and the number of classes used
for classification. The more bands and classes included, the larger the dataset will be.
Therefore, it is crucial to carefully consider these factors when building a dataset, as a
larger dataset may result in more accurate classification results but it may also require more
computing power and storage space [2]. It is important to note that the size of the dataset
is not the only factor that determines its quality. Other factors, such as the quality of the
original images and the accuracy of the labeling process, also play a significant role in
ensuring that the dataset is effective for DL purposes [4]. Considering the aforementioned
factors, the dataset used for this research was built with a total of:

Dataset = 26,000 × 27 × 11 = 7,722,000 images (1)
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Each of the images that make up the dataset has a size of 3 × 3 pixels. After the dataset
is prepared, it is split into two parts for DL purposes: 80% is dedicated to training, while
the remaining 20% is used for validation [56,57]. This partitioning is essential in preventing
overfitting and assessing the performance of the model accurately.

The construction of the proposed CNN is performed using Tensorflow API, Keras.
This high-level API allows researchers to quickly prototype and build CNNs with minimal
code. It provides a simple and intuitive syntax for defining models, as well as a wide range
of built-in layers, loss functions, and optimizers, making it suitable for a variety of tasks,
including image classification. In addition to its ease of use, Keras also provides a range
of tools for monitoring and visualizing model performance [58]. This includes built-in
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metrics for evaluating model accuracy and loss, as well as support for callbacks that allow
researchers to monitor training progress and adjust model parameters in real-time. The
schematic diagram shown in Figure 4, depicts the architecture built for this research. This
schematic was created using the free tool described in [59]. The architecture comprises a
total of seven layers, which include four convolutional layers and three fully connected
layers. The convolutional kernel size was set up to 3 × 3, matching the input file size.
This convolutional kernel size is able to capture distinctive features of the eleven LULC
classes. Although matching the kernel size to the input file size can potentially lead to
convolution issues, we mitigated this by applying padding techniques [60]. The CNN
layers are designed to extract and process the features from the input images, allowing for
the accurate classification of the data. To optimize the performance of the model, several
hyperparameters were carefully selected. The batch size was set to 16, which determines
the number of samples processed at each iteration. The number of epochs, which indicates
the number of times the model is trained on the entire dataset, was set to 150. Additionally,
the learning rate was set to 0.0005, which determines the step size at each iteration while
minimizing the loss function. It is important to note that the selection of hyperparameters
can significantly impact the performance of the model, and as such, they should be carefully
tuned to achieve optimal results. Furthermore, the architecture used in this research can
serve as a reference for future research in the field of DL and satellite image classification.
Further information regarding the configuration of the model can be found in Table 3.
The table presents a comprehensive and detailed overview of all the relevant parameters,
settings, and specifications that were utilized in the model’s development. This information
is critical for understanding the inner workings of the model and is essential for replicating
the results and conducting further analyses.
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Table 3. CNN parameters for the feature extraction network used in this study.

CNN Parameters
Input Shape = (3, 3, 27)

Convolutional Layer

Convolution 1 Convolution 2 Convolution 3 Convolution 4

Number of filters 100 150 300 530
Kernel size (3, 3) (3, 3) (3, 3) (3, 3)
Activation ReLU ReLU ReLU ReLU
Padding Same Same Same Same

Stride 1 1 1 1
Pooling Max Pooling Max Pooling Average Pooling Average Pooling
Dropout 0.25 0.25 None 0.25
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3. Results

To evaluate the performance of the proposed DL model for the eleven LULC classifi-
cations of Andean sub-basins in Colombia, 4 metrics were employed: Overall Accuracy
(OA), precision, recall, and kappa coefficient. To assess the performance of the architecture,
we trained our model 30 times using a large dataset. The model results obtained an OA of
96.06 in the validation data for all the test, and by the central limit theorem [61] the model
training process was validated. In the best case, our model achieved an Overall Accuracy
(OA) of 95.49% on the training data and an OA of 96.51% on the validation data, as shown
in Figure 5. Notably, our model was particularly successful in accurately classifying the
LULC categories for each sub-basin, as can be seen in Tables 4 and 5, especially for LULC
classes with more artificial samples, such as mineral extraction and agricultural areas. The
reason for this might be that the training samples gathered for these categories usually
exhibit a higher degree of spectral purity when contrasted with other LULC classes such
as urban areas or water bodies, which may have narrow characteristics such as roads and
rivers that can lead to spectral confusion. Furthermore, it was expected that the model
would perform well on LULC categories such as “dense forest” and “mixed forest” be-
cause they had the most original samples available. However, it turned out that these
two categories had the poorest recall scores, which indicates that the model encountered
challenges in distinguishing between the subtle differences in spectral signatures that exist
within these classes. The complexity and heterogeneity of forest ecosystems could be a
contributing factor as it results in variations in spectral signatures across different forest
types and canopy structures. Moreover, shadows and occlusions caused by overlapping
canopy layers and understory vegetation can add to the challenge of accurately classifying
forested areas. Despite the availability of a relatively large number of original samples,
these challenges may have contributed to the lower recall scores observed for the “dense
forest” and “mixed forest” LULC classes. Regardless of facing these challenges, the DL
model performed remarkably well, as evidenced by a kappa coefficient of 0.962, an overall
precision of 96.58% and an overall recall of 96.52% (Tables 4 and 5). The kappa coefficient
value is indicative of a high degree of concordance between the observed and expected
results in the classification task [10]. The overall precision value indicates that the model
makes few false-positive predictions. This means that the model correctly classifies samples
that belong to a specific class, and there are few samples that are classified as belonging to
a class, but in fact, they do not. The overall recall value suggests that the model performs
well at identifying all positive samples in the dataset, meaning it can identify most of the
samples that belong to a specific class.
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Table 4. Confusion matrix for the proposed approach applied over the 11 LULC.

Predicted Results

Water Páramo Urban
Areas

Planted
Forest Pasture

Natural
Grass-
land

Agricultural
Areas

Dense
Forest

Mixed
Forest

Mineral
Extrac-

tion
Shrub Truth

Overall Recall

True
data

Water 5162 0 19 9 14 0 0 0 79 0 30 5313 97.16%
Páramo 2 5094 0 0 13 0 1 9 0 0 5 5124 99.42%
Urban
Areas 74 3 4881 1 74 35 2 0 1 64 7 5142 94.92%

Planted
Forest 13 0 0 5116 0 3 0 0 20 0 0 5152 99.30%

Pasture 9 57 21 0 4968 28 62 0 6 51 39 5241 94.79%
Natural

Grassland 0 0 8 0 119 4940 0 2 8 10 39 5126 96.37%

Agricultural
areas 0 27 0 0 29 0 5177 0 0 0 2 5235 98.89%
Dense
Forest 0 22 1 0 0 12 0 5002 15 0 331 5383 92.92%
Mixed
Forest 50 0 2 11 1 44 0 8 4758 0 218 5092 93.44%

Mineral
Extraction 0 0 12 0 43 2 0 0 0 5192 0 5249 98.91%

Shrub 4 9 1 0 10 44 0 45 115 0 4915 5143 95.57%
Predicted

overall 5314 5212 4945 5137 5271 5108 5242 5066 5002 5317 5586 57,200 OR:
96.52%

Precision 97.14% 97.74% 98.71% 99.59% 94.25% 96.71% 98.76% 98.74% 95.12% 97.65% 87.99% OP:
96.58%

Table 5. Overall Accuracy and kappa coefficient of the proposed approach.

Kappa Coefficient OA

0.962 96.51%

To establish the perfect balance between model complexity and dataset characteristics,
such as the number of bands, the number and type of radiometric indices, the total number
of images, and their sizes (i.e., 3 × 3, 5 × 5, 7 × 7), various combinations were tested
using the Las Piedras sub-basin. This sub-basin is smaller than the other one, making it
easier to model. Once it was verified that the results worked with a small dataset from
this region, the dataset was expanded using combined data from both sub-basins. The
kernel size used to construct the dataset was one of the most influential variables, especially
in the qualitative result (or descriptive result) of the LULC classification. It determined
whether the images would be small, such as 3 × 3, or large, such as 11 × 11. When using a
relatively large kernel size, such as 11 × 11 or larger, the quantitative accuracy was slightly
higher than when using a small kernel size. However, the time required to process this
information increased significantly, and the qualitative results were not as good, resulting
in an inadequate classification, as shown in Figure 6b. In general, the classification failed to
reflect the thinner details that can be observed by photointerpretation in the S2 images in
that sub-basin (Figure 6a). LULCs such as narrow rivers and narrow roads are not identified
by the algorithm under this configuration, as these land covers are underrepresented when
a dataset with a large kernel size is constructed. Other classes such as shrubs, pastures and
natural grassland are also inaccurately represented by the algorithm, where their spatial
arrangement does not correspond to what was mapped by the algorithm under this setup.
To improve the classification result, other tests were conducted by increasing the kernel size
to form the dataset images. However, there was no improvement, so the kernel size was
reduced to 3 × 3, resulting in a significant qualitative improvement, as shown in Figure 6c.
Under this configuration, the model performance was outstanding, even mapping small
rivers and small roads accurately. This is a significant advancement in this type of work
since in other similar LULC classification research, this has not been possible [10,62].
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Figure 6. The Las Piedras sub-basin can be represented in different ways: natural color (a), 11 × 11
size images classification (b), and 3 × 3 size images classification (c).

Once the optimal dataset parameters were established, which in this case were a kernel
size of 3 × 3 for the images and 16 radiometric indices to form small twenty-seven-band
sample images, the necessary parameters were established to produce a model that was
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robust enough without having a complex architecture that increased the computational
cost associated with training such models. The number of layers in the model was an
essential parameter because it determined its ability to learn and generalize patterns in the
data. Since a small image size was used, it was not necessary to use many convolutional
layers, so four of these layers were sufficient for the network to learn deeply and abstract
representations of the dataset. Adding more layers only increased the complexity of the
architecture and the computational cost, but not its performance. On the contrary, if fewer
than four convolutional layers were used, the model would be too shallow and insufficient
to learn from the data. The number of filters per convolutional layer was also a parameter
manipulated to obtain an optimal CNN as it determined the number of features the network
could detect in the input data. Each filter in the CNN convolutional layer was used to
detect certain patterns and features in the data. In this research, having 100 filters in the
first layer, 150 in the second, 300 in the third, and 530 in the last layer was essential to
achieve a balance between the network representational capacity and generalization ability.

Figure 7 presents the true color image (Figure 7a) and the results (Figure 7b) for the
Palacé sub-basin, which were obtained using the best model implemented on a dataset that
was constructed from both sub-basins, as well as a dataset of images with 3 × 3 size. This
configuration was chosen based on the results of tests that were conducted, which indicated
that the best outcomes were achieved with this approach. The results of the qualitative
analysis in this sub-basin, which is approximately 10 times larger in spatial extent than the
Las Piedras sub-basin, show that, in fact, the previous parameters chosen for the model
were the correct ones.
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4. Discussion
4.1. CPU vs. GPU Performance Evaluation

To evaluate the performance of the proposed approach for LULC classification using
a simple but robust DL model, the assessment was performed over the whole dataset.
DL models are known for their ability to perform complex tasks, such as image classi-
fication, however, training these models requires a significant amount of data, and to
achieve successful results, it often requires the use of complex CNN architectures, such
as those in [3,7,22,23,54]. For example, if a semantic segmentation approach is used, a
popular option is the U-Net architecture [63], which is a widely used approach that has
an encoder–decoder structure with skip connections. These skip connections facilitate the
localization of features, thereby improving the accuracy of the model. Another option could
be the DeepLab architecture [64], which utilizes atrous convolution to capture multiscale
contextual information and dilate the receptive field of the network. Additionally, the
recent success of transformer-based models in natural language processing and computer
vision has led to the development of several transformer-based architectures for semantic
segmentation, such as the Hybrid Transformer and the CNN for Pixel-Level Multispectral
Image Land Cover Classification (HyFormer) [54]. Any of these models show promising
results and are expected to play a significant role in the near future of the RS semantic
segmentation field. However, these options may imply that powerful GPUs are needed
to make the training time feasible. In this research project, we conducted a comparison
between training a constructed model using a cutting-edge GPU (NVIDIA RTX 3090) and
a standard CPU (Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz). The results, displayed
in Table 6, show that for the dataset built for this research, and with the simple CNN
LeNet-based architecture implemented, it is not necessary to have the latest computational
resources to train the architecture. While using a powerful GPU can significantly reduce
the training time, the difference in results was not significant enough to justify the cost of a
top-of-the-line GPU for this project.

Table 6. GPU vs. CPU training processing time required for the proposed approach.

Dataset CPU GPU

7,722,000 images ~13 h ~5 h
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4.2. Comparison with Other Machine Learning Methods

Table 7 is presented in order to make a comparison between our proposed approach
and some traditional ML models for the LULC classification over Andean regions [10]. As
demonstrated by the results in Table 7, our model outperforms traditional ML algorithms,
since this type of model usually works very well when the study area is small and the
classes to be mapped are relatively few (less than ten), but not in other situations. The
results indicate that traditional ML techniques may not be sufficiently robust for generating
an accurate LULC map in Andean regions. Therefore, in such scenarios, employing DL
techniques is preferred.

Table 7. Comparison results between the approach and traditional ML models in the same study area
(in bold are the best results).

Model OA Kappa LULCs

SVM 81.45% 0.79 11
RF 85.44% 0.84 11

ANN 82.84% 0.80 11
Our approach 96.51% 0.962 11

4.3. Comparison with other Deep Learning Methods

The quantitative experimental results obtained with our proposed approach have
also been compared with those obtained from other state-of-the-art complex DL archi-
tectures [65–71], and the comparisons are presented in Table 8. These experiments have
been conducted using the same dataset and computational resources to ensure a fair com-
parison. Our proposed approach is evaluated against a range of well-established DL
architectures, such as: AlexNet [65], ZFNet [66], InceptionV1 [67], VGG16 [68], VGG19 [68],
ResNet18 [69], ResNet50 [69], DenseNet121 [70] and EfficientNetB7 [71]. AlexNet, for in-
stance, is a widely popular DL network that employs an eight-layer CNN to analyze visual
imagery. ZFNet, or Zeiler and Fergus Net, is another CNN that has a similar architecture
to AlexNet but with some modifications made by modifying hyperparameters and filter
sizes to enhance its performance. InceptionV1, also known as GoogleNet, was developed
by Google researchers introducing the concept of “inception modules”, which enables the
network to simultaneously compute multiple filter sizes and pooling operations at different
layers. VGG16 and VGG19, developed by the Visual Geometry Group at the University
of Oxford, are deep convolutional neural networks with small filter sizes that consist of
16 and 19 layers, respectively. ResNet18 and ResNet50 are part of the ResNet family of
convolutional neural networks; they introduced the concept of “residual learning”, which
helps the network to tackle the vanishing gradient problem, which is a common issue
in deep neural networks. DenseNet121 introduced the concept of “dense connectivity”,
which enables each layer to receive feature maps from all previous layers in a feed-forward
fashion. Finally, EfficienNetB7 is part of the EfficientNet family of neural networks. It
uses a compound scaling method to optimize both accuracy and efficiency by balancing
network depth, width, and resolution. As shown in Table 8, the results obtained from our
proposed approach demonstrate superior performance in terms of both validation metrics
and computational time, compared to the other architectures mentioned above, achieving
high accuracy with the lowest computational resources. This demonstrates the efficiency
and effectiveness of the proposed method for LULC classification over Andean regions.

To enhance the comprehensiveness of this research, we have extended the comparison
to other studies that implemented more-complex architectures, but on different study areas,
datasets, and experimental conditions. In Table 9, a comparison is presented between the
results obtained from our research and those obtained from other DL approaches that
perform similar tasks but rely on complex architectures. Despite the use of a simpler archi-
tecture, the proposed approach still has better results than other approaches under varying
experimental conditions. The training time and other evaluation metrics are not included in
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this report (Table 9), since not all of the reviewed articles provide a comprehensive analysis
of these parameters.

Table 8. Comparison results between the proposed approach and other DL approaches using the
same test dataset (in bold are the best results.

Training Time (GPU) OA OP OR Kappa Model

10.75 h 96.01% 96.08% 96.03% 0.956 AlexNet
13.2 h 91.47% 93.69% 91.42% 0.906 ZFNet
12.6 h 81.11% 81.59% 81.04% 0.792 GoogleNet
14.1 h 9.30% 12.40% 10.54% 0.140 VGGNet16
14.5 h 8.90% 11.56% 9.21% 0.120 VGGNet19
11 h 96.34% 96.35% 96.37% 0.960 ResNet18

11.75 h 92.54% 93.14% 92.50% 0.918 ResNet50
13.4 h 96.18% 96.35% 96.18% 0.958 DenseNet121
14 h 94.93% 95.25% 94.92% 0.944 EfficientNetB7
5 h 96.51% 96.58% 96.52% 0.962 Our approach

Table 9. Comparison results between the proposed approach and others DL approaches with different
datasets, computational resources and experimental conditions (in bold is the best result).

Reference Paper OA LULCs RS Data Study Area CNN-Based Model

[3] 81.5% 8 Aerial image Hameln (Germany) SegNet

[7] 88% 7 S2 Gambella National Park
(Ethiopia) LinkNet-34

[22] 82.52% 5 S2 Northwest France FCN

[23] 64.7 11 S2
Northern part of the

Iberian Peninsula
plateau (Spain)

UNet

[54] 94.9% 8 S2

Eastern part of
Changxing County and

the central part of
Nanxun District,

Zhejiang Province

Transformer

Proposed approach 96.51% 11 S2 Las Piedras and Palacé
sub-basins (Colombia) LeNet

Despite the use of a simpler architecture, all the experiments and results presented in
this study demonstrated that a simple CNN can achieve high accuracy in LULC classifica-
tion maps when a dataset with the necessary characteristics is built. This is an important
finding, as it suggests that it is not always necessary to build complex CNN architectures
to achieve good results in LULC classification. One of the key advantages of using a simple
CNN architecture is that it does not require expensive computational resources to train.
This makes it an accessible and efficient solution for researchers and practitioners who
do not have access to cutting-edge hardware. It is also worth noting the large number of
classes (eleven) that were mapped in this study, as it represents a significant improvement
over other research that typically maps fewer classes. This demonstrates the potential of
DL techniques to accurately classify a wide range of LULC categories. Furthermore, the
study demonstrated that the algorithm works quite well in large spatial extents, which is
not usually the case for other works in the literature. Typically, other studies only analyze
small spatial extents, and when they study large areas, their models do not usually adapt
well to the high intraclass and low interclass variance [4,8,10,16,20,23]. However, in this
study, the approach taken proved to be highly adaptable to all the study areas. The success
of this approach can be said to depend largely on the pre-processing performed, which was
conducted to eliminate, e.g., clouds, and shadows. These two classes can be particularly
problematic in LULC classification, as they can be misclassified with other classes such as
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water bodies and urban areas due to their similarity in their spectral response, leading to a
lower overall performance of the model.

5. Conclusions

A simple yet robust DL-based LULC classification method that works for Sentinel-2
data over Andean sub-basins has been presented. The results highlight that while DL
models do require large amounts of data to be trained in an appropriate way, there is
no need for too deep or complex CNN architectures. This implies that it is possible to
achieve successful results without the need for the latest and most expensive computational
resources. This finding has implications for both researchers and practitioners who may be
limited by budget constraints, as it suggests that successful DL projects are achievable with
moderate computational resources. As a future research direction, it is crucial to consider
the limited availability of cloud-free images over Andean regions, which emphasizes the
need to identify alternative data sources or analysis methods to supplement the existing
imagery. This may involve leveraging historical data or incorporating other RS techniques,
such synthetic aperture radar, to enhance the accuracy and comprehensiveness of the
study. Overall, the use of simple CNN architectures for LULC classification represents
an accessible and efficient solution for researchers and practitioners. The success of this
approach depends largely on the quality of the data used, the pre-processing performed,
and the careful selection and tuning of the CNN hyperparameters. As a future research
direction, we would like to explore alternative methods and algorithms to improve the
accuracy of cloud- and cloud-shadow detection due to the fact that the SCL map used in
our study is not perfect and may miss some clouds and their shadows.
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