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Abstract: This paper deals with the problem regarding the optimal operation of photovoltaic (PV)
generation sources in AC distribution networks with a single-phase structure, taking into consid-
eration different objective functions. The problem is formulated as a multi-period optimal power
flow applied to AC distribution grids, which generates a nonlinear programming (NLP) model
with a non-convex structure. Three different objective functions are considered in the optimization
model, each optimized using a single-objective function approach. These objective functions are
(i) an operating costs function composed of the energy purchasing costs at the substation bus, added
with the PV maintenance costs; (ii) the costs of energy losses; and (iii) the total CO2 emissions at
the substation bus. All these functions are minimized while considering a frame of operation of
24 h, i.e., in a day-ahead operation environment. To solve the NLP model representing the studied
problem, the General Algebraic Modeling System (GAMS) and its SNOPT solver are used. Two
different test feeders are used for all the numerical validations, one of them adapted to the urban
operation characteristics in the Metropolitan Area of Medellín, which is composed of 33 nodes, and
the other one adapted to isolated rural operating conditions, which has 27 nodes and is located in the
department of Chocó, Colombia (municipality of Capurganá). Numerical comparisons with multiple
combinatorial optimization methods (particle swarm optimization, the continuous genetic algorithm,
the Vortex Search algorithm, and the Ant Lion Optimizer) demonstrate the effectiveness of the GAMS
software to reach the optimal day-ahead dispatch of all the PV sources in both distribution grids.

Keywords: day-ahead operation of PV sources; energy purchasing costs; operation and maintenance
costs of PV sources; energy losses costs; nonlinear programming formulation; GAMS software

MSC: 90C25; 90C26; 90C34

1. Introduction

The massive integration of renewable energy in electrical networks is mandatory for
all electricity industry participants nowadays since it is deemed imperative in reducing the
harmful effects of global warming [1]. These renewable energy resources, which operate at
all voltage levels, will reduce the energy purchasing costs and the multiple pollutants in the
atmosphere, mainly produced by coal-, diesel-, or gas-based generation systems [2–4]. The
most advanced, mature, and accepted technologies regarding renewable power sources are
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wind and solar generation, as many years of research have allowed for the development
of robust generation systems that can be integrated into large-, medium-, and low-scale
applications without affecting their efficiency [5–7], i.e., they can be connected at any
voltage level (transmission, sub-transmission, and distribution levels) [8–11].

In the case of countries located between the tropics of Cancer and Capricorn, as
is the case of Colombia, the most suitable generation technology based on renewables
is photovoltaic (PV) generation [12]. This is due to the 11- to 13-h solar incidence in
Colombia during the year, which is due to its proximity to the equatorial line [13]. This
research focuses on a sub-problem related to PV generation sources in medium-voltage
applications [14]. This problem corresponds to the day-ahead operation of these devices,
taking into consideration aspects such as the geographical location of the PV sources (rural
or urban distribution grids) and the different objective function indicators as a function of
the grid operator requirements [15].

In the current literature, the problem regarding the optimal operation of renewable
generation sources in distribution networks has been addressed by employing multiple
approaches, some of which are discussed below. The authors of [16] presented an opti-
mization model to locate and size PV generators and battery energy storage systems in
medium-low voltage microgrids. The location of the PV sources and batteries was carried
out using a simulated annealing algorithm. Once these devices are located, their daily
operation was determined by using a conic formulation in order to minimize the energy
purchasing and operating and maintenance costs of batteries. Numerical results demon-
strated the efficiency of the proposed model in comparison to nonlinear programming
(NLP) solvers in test feeders with 11, 135, and 230 nodes. In the work by [17], a mixed-
integer conic model for locating and sizing PV sources in electrical AC distribution grids
was presented while considering two main stages. The first stage defined the nodes where
the PV sources were to be located and their expected sizes, considering the operation of the
PV sources by tracking the maximum power point. In the second stage, the optimal sizes
of the PV sources were refined, considering that the PV sources do not necessarily operate
by tracking the maximum power point. The effectiveness of the proposed methodology
was tested in the IEEE 33- and 69-bus grids and compared with multiple metaheuristics-
based algorithms, which confirmed the effectiveness of the proposed conic formulation
to locate and size PV sources in AC distribution grids. The authors of [18] presented a
master-slave optimization methodology based on the vortex optimization algorithm and
the successive approximations power flow method in order to locate and size PV generators
in distribution networks with AC or DC configurations while employing maximum power
point tracking. Numerical results in the IEEE 33- and IEEE 69-bus grids demonstrated
the effectiveness of the proposed approach in comparison with the discrete-continuous
version of the Chu & Beasley genetic algorithm (CBGA) proposed by [13]. The study by [19]
proposed an efficient operation dispatch model for multiple distributed energy resources
including PV solar panels, micro-turbines, wind turbines, fuel cells, battery energy storage
systems, and controllable loads using a virtual power plant formulation. The main idea
was to minimize the expected generation costs of the power system under analysis while
considering uncertainties in the primary energy resources. The NLP model was solved
with a new combinatorial optimizer named beetle antenna search, with better numerical
performance when compared to particle swarm optimizers and genetic algorithms.

Considering the revision of the state of the art presented, this research article con-
tributes with the following: (i) a general NLP formulation of the day-ahead operation prob-
lem for PV generation sources in AC single-phase distribution networks while considering
different objective functions; (ii) a comparative analysis between different combinatorial
optimization methods (i.e., as particle swarm optimization, the continuous genetic algo-
rithm, the Vortex Search algorithm, and the Ant Lion Optimizer) and the exact solution of
the NLP model using the GAMS software; and (iii) the best possible solution reported in
the literature for the studied problem since the interior point with logarithmic barrier used
in the NLP solution through GAMS ensures the optimum global finding.
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It is worth mentioning that within the scope of this research,

i. the demand and PV generation curves in the regions of interest (the city of Medellín
and the municipality of Capurganá) are considered as inputs for the NLP model, i.e.,
these predictions are assumed as constant values for the optimization model, which
implies that no uncertainties regarding generation and demand curves are considered
in this research;

ii. the internal optimization properties of the SNOPT solver in GAMS, which are based
on interior-point methods, are not discussed in this research since the interior-point
method is a well-known and strongly supported optimization method to deal with
NLP problems; and

iii. generation and demands curves for rural and urban areas were obtained from public
data [20–22], but the information of the test feeders (the IEEE 33- and 27-node systems)
was taken from literature reports due to the restrictions imposed by distribution
companies in Colombia on the use of real distribution grids.

The remainder of this research article is structured as follows: Section 2 presents the
general mathematical formulation of the studied problem, i.e., the three different objective
functions considered, as well as the set of constraints that make up its NLP formulation;
Section 3 describes the general implementation of the NLP model in the GAMS software;
Section 4 describes the main characteristics of the urban distribution grid (IEEE 33-bus
grid) and the data obtained for the metropolitan area of Medelleín, as well as the rural
distribution grid composed of 27 nodes and inspired by the rural area of Capurganá, Chocó,
Colombia; Section 5 presents the main numerical results reached by the GAMS software
and the SNOPT solver, as well as a complete comparison with different combinatorial
optimization algorithms; and Section 6 presents the main concluding remarks derived from
this work, as well as some possible future works.

2. General NLP Formulation

The problem regarding the optimal operation of PV generators in AC distribution
networks can be represented as a day-ahead operation problem with different objective
function indicators. The selection of each objective function depends on the optimization
requirements of the distribution system operator. This study considers an NLP model with
three possible objective functions to be minimized to represent the studied problem. The
first objective function corresponds to the minimization of the total energy purchasing costs
at the terminals of the substation, which is added to the operation and maintenance costs of
the PV generation sources. The second objective function is defined as the minimization of
the expected costs for the energy losses caused by all the resistive effects in all the branches
of the distribution grid. Finally, the third objective function is related to minimizing
the expected CO2 emissions at the terminals of the substation bus. Note that all the
aforementioned objective functions will be minimized based on a day-ahead operation
approach, i.e., operation during a horizon of 24 h. Observe that Figure 1 illustrates the
main aspects of the solution approach proposed in this research.

Figure 1 shows that (i) the NLP model regarding the optimal dispatch of PV sources
in distribution networks requires knowing the nodes where the PV sources are located,
the solar radiance and temperature (the area of influence of the distribution grid), and
the expected behavior of the energy users (demand consumption profiles); and (ii) the
NLP model was implemented in the GAMS software, which allows determining the best
generation profiles for each distributed generator as a function of the objective function
under analysis, i.e., economic, technical, or environmental performance indicators.
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Figure 1. Main aspects of the proposed solution methodology.

Exact NLP model

The complete mathematical formulation of the studied problem is formulated in
Equations (1)–(15).

Objective functions:
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Set of constraints:

ps
i,h + ppv

i,h − Pd
i,h = ∑

l∈L
Ai,l

(
Vre

i,h Ire
l,h + Vim

i,h Iim
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{
∀i ∈ N ,
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}
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Ire
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l,h
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,

{
∀l ∈ L,
∀h ∈ H
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, (12)
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i ≤ Vi,h ≤ Vmax

i ,
{
∀i ∈ N ,
∀h ∈ H

}
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0 ≤ Il,h ≤ Imax
l ,

{
∀l ∈ L,
∀h ∈ H

}
, (14)

ppv
i,h ≤ Ppv

i Cpv
h ,

{
∀i ∈ N ,
∀h ∈ H

}
. (15)

The complete interpretation of the optimization model shown in (1)–(15) is as follows:
Equation (1) corresponds to the first objective function regarding the minimization of the
expected distribution grid operating costs, which includes the energy purchasing costs
at the substation terminals, added with the operating costs of PV sources. Equation (2),
the second objective function, is more related to a technical performance indicator used
in optimizing distribution networks. It corresponds to the minimization of the expected
daily energy losses associated with all the losses in the resistive parameters of the distri-
bution lines for a daily operation environment. Equation (3) refers to the environmental
performance indicator, an objective function that aims to minimize the greenhouse gas
emissions (i.e., CO2) to the atmosphere caused by conventional or diesel generation sources.
Equality constraints (4) and (5) are known as the power balance constraints. These are en-
trusted with ensuring the power equilibrium at each node and for each period, i.e., they are
the combination of Kirchhoff’s first and second laws with Tellegen’s second theorem [23].
Box-type inequality constraints (5) and (6) refer to the admissible lower and upper active
and reactive power generation bounds of the conventional generation source connected
to node i in the period h, respectively. Inequality constraint (8) defines the admissible
generation region allowed for any PV source integrated to the distribution grid. Equal-
ity constraints (9) and (10) allow calculating the real and imaginary parts of the currents
through the distribution line l as a function of the voltage variables and impedance pa-
rameters of the line, respectively. Equations (11) and (12) define the magnitudes of the
voltage and current variables, respectively, as a function of their rectangular components.
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Inequality constraints (13) and (14) are related to the voltage regulation limits imposed by
regulatory policies and the maximum thermal limits associated with all the distribution
lines, respectively. Finally, inequality constraint (15) shows that the PV generation units
cannot necessarily work with maximum power point tracking as it will depend on the grid
energy requirements.

Remark 1. The following are the most important characteristics of the optimization model defined
from (1) to (15):

• It is a nonlinear, non-convex optimization model due to the presence of products between
the voltage and current variables in the power balance constraints, as well as square roots
regarding voltage and current magnitudes.

• It is possible to find the optimal solution for each one of the single-objective function models
by using the interior point method with logarithmic barriers, given that it is a continuous
nonlinear programming model with quadratic constraints [24].

• The main effect in considering the grid nature (AC technology) in the optimization model is the
presence of multiple nonlinear constraints regarding power equilibrium at each node and the
presence of root square equalities regarding voltage variables, which become the optimization
model highly complex in comparison to DC grids where the complexity of the optimization
problem is reduced about 50% since no reactive power constraints and variables appear [25].

This research focuses on (i) the solution of the exact NLP model in the GAMS through
the SNOPT solver and (ii) the comparison of this solution with multiple combinatorial
optimization algorithms such as the Vortex Search algorithm, CBGA, the particle swarm
optimization method, and the Ant Lion Optimizer. In addition, two radial distribution
networks with different operating conditions are considered, one with urban characteristics
and the other in a rural area. The next section presents the main characteristics of the
implementation of the exact NLP model (1)–(15) in the GAMS software.

3. Solution Methodology

This section presents two main aspects regarding the proposed solution methodology.
The first corresponds to the general implementation of the exact NLP model in the GAMS
software. The second corresponds to the general approach for calculating the PV generation
inputs in a distribution network depending on the distribution grid’s area of operation.

Remark 2. The proposed optimization model (1)–(15) is solved in the research with the help of
the GAMS software by considering a single-objective minimization procedure, i.e., each one of the
objective functions in Equations (1) to (3) are minimized separately, and the other two ones are
evaluated to know their final values. Note that more research regarding multi-objective optimization
is required, and it can be an opportunity for research in future works.

3.1. General Implementation of an NLP Model in the GAMS Software

To deal with the NLP model, shown in (1)–(15), this research selected the GAMS
software to solve this optimization problem since, as demonstrated in multiple research
articles, it can find the global optimum with its SNOPT solver if the optimization problem
does not include discrete variables [26]. Multiple authors have successfully used the GAMS
software to deal with complex NLP problems in engineering and science. The authors
of [27] presented the solution to the problem regarding the optimal design of an osmotic
generation plant in the Bahmanshir River of Iran, demonstrating excellent numerical
results and low computational effort. The work by [28] addressed multiple optimization
problems in power systems, which include the optimal dispatch with thermal plants and
the optimal operation of batteries and energy storage systems in a market environment.
Authors such as [29,30] have used the GAMS software to deal with the problem regarding
the optimal placement and sizing of dispersed generation units in distribution networks,
aiming to minimize the total grid power losses, with excellent numerical results when
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compared to those obtained via combinatorial optimization methods. The work by [31]
presented a multi-objective optimization approach for the stack of a thermoacoustic engine
using the GAMS as an optimization tool. In [32], an optimization model for a pump
and valve schedule in complex water distribution networks was presented using GAMS
Modeling Language. Finally, the authors of [33] used the GAMS software and the SNOPT
solver to present the solution of an NLP problem regarding parametric estimation in
single-phase transformers while considering voltage and current measures.

The literature above confirms that the GAMS optimization package efficiently deals
with complex optimization problems, especially if they are defined in the continuous
domain. This tool can find the optimal global solution by combining interior point methods
with logarithmic barriers and gradient-based optimizers. Figure 2 presents the general
structure in implementing an NLP model in the GAMS software.

Start: GAMS-based
solution methodology

Load and gen-
eration inputs AC network data

Define sets, pa-
rameters, scalars

and tables.

Define variables
and equations

Write the NLP
model (1)–(15)

Select the SNOPT
solver and

make k = 1

Solve the optimiza-
tion model for fk

Obtain PV gen-
eration profiles

Evaluation
ends?

End: Result analysis

Solution report

Increase the k value,
i.e., k = k + 1

no

yes

Figure 2. General steps for implementing an NLP model in the GAMS software.

Remark 3. Note that the value of fk is defined as the objective function of interest, i.e., f1 = Ecost,
f2 = Eloss, and f3 = ECO2 . This implies that the flow diagram in Figure 2 is a general solution
methodology that allows solving the NLP model (1)–(15) for different objective functions.

3.2. Adjusting the Solar Generation Curves

The main characteristic of PV-technology-based solar generation is its dependence on
weather conditions, i.e., the solar radiation and temperature exposition of the panels [34].
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In addition, due to the sudden variations in solar incidence for a particular area, e.g., due
to cloud movements, generation based on PV systems is considered a non-dispatchable
source [35]. This implies that for the daily economic dispatch analysis, it is mandatory to
correctly predict the PV generation availability [26]. There are multiple literature reports
that nonlinearly relate solar radiation and temperature to predict the total power output
of a PV system [36]. This study adopts the formulation reported by [37] in obtaining the
expected power production of a PV system.

ppv
i,h = Ppv

i fpv

(
GT

h

GT,STC
i

)[
1 + αp

(
Tc

i,h − Tc,STC
i

)]
, (16)

Note that in (16), it is observed that the total power output of a PV generation system
is indeed a nonlinear function of the current system temperature, solar radiation, and some
factors associated with the expected efficiency of the complete generation system.

To determine the surface temperature of the panels that compose the PV system,
Equation (17) is used.

Tc
i,h = Ta

h + GT
h

(
Tc,NOCT

i − Ta,NOCT
i

GT,NOCT
i

)(
1−

ηc
i

α

)
(17)

To find the expected behavior of solar generation in the urban and rural areas under
analysis, this research considers the parametric information presented in Table 1. Note that
this information was adapted from [37,38], assuming that the panel was constructed with
silicon polycrystalline technology.

Table 1. Parametric information regarding PV generation sources.

Parameter Value Unit Parameter Value Unit

Ppv
i 1 W fpv 0.95 -

GT,STC
i 1000 W/m2 αp −0.0045 1/◦C

Tc,STC
i 25 ◦C Tc,NOCT

i 46 ◦C
GT,NOCT

i 800 W/m2 Ta,NOCT
i 20 ◦C

ηc
i 0.141 - τα 0.9 -

It is worth mentioning that if one considers the total power output of the PV system
under nominal operating conditions as 1W, then the expected generation will be defined in
the interval [0, 1], i.e., and it can be considered as percentage generation curve. Note that this
curve represents the Cpv

h parameter and is an input in the proposed NLP model (1)–(15).

4. Generation and Demand Parametrization of the Urban and Rural Zones

To evaluate the effectiveness of the proposed GAMS-based optimization approach
at operating dispersed generation based on PV generation for AC distribution networks,
this study considers two types of operation areas: i.e., an urban area and a rural area.
The first area of operation corresponds to the metropolitan area of Medellín, the second
largest city of Colombia in terms of population. The second region corresponds to a rural
area located on the Pacific coast of Colombia, i.e., the Municipality of Capurganá in the
department of Chocó.

4.1. Urban and Rural Generation Curves

To characterize the power generation of the metropolitan area of Medellín, solar ra-
diation and ambient temperature data provided by the National Aeronautics and Space
Administration’s (NASA) database were considered [20]. Note that this information was
defined in 2019, i.e., 1 January to 31 December, taking a 1-h resolution into account. This
average information is presented in Table 2. In addition, if Equations (16) and (17) are con-
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sidered for the information reported in Table 1, then the average power output generation
for Medellín is as presented in Table 2 and Figure 3.

Remark 4. The information available in the NASA database is also considered to obtain the
generation curve for the municipality of Capurganá, and the same procedure is followed. The
complete generation profile for this area is also reported in Table 2 and Figure 3.

Table 2. Solar radiation data (W/m2), ambient temperature (◦C), and behavior (p.u.) for an average
day in the regions under study.

Region Medellín Capurganá

Hour GT Ta Cpv GT Ta Cpv

1 0 16.14132 0 0 24.44252 0
2 0 15.90636 0 0 24.32474 0
3 0 15.68132 0 0 24.22545 0
4 0 15.46022 0 0 24.14674 0
5 0 15.27545 0 0 24.08422 0
6 0 15.10329 0 0 24.03482 0
7 46.02425 15.15718 0.04541 29.14570 24.10367 0.02770
8 190.83559 16.15636 0.18424 142.11066 24.78126 0.13277
9 362.83753 17.43868 0.34100 291.61926 25.68211 0.26622

10 526.64647 18.87312 0.48161 431.95384 26.63671 0.38547
11 640.99058 20.27438 0.57375 540.61581 27.47515 0.47362
12 709.05312 21.36342 0.62572 605.16362 28.10252 0.52397
13 701.86370 21.98721 0.61809 606.93027 28.46775 0.52442
14 626.82690 22.12107 0.55716 583.07479 28.56923 0.50519
15 499.86074 21.83071 0.45236 490.55904 28.42334 0.43065
16 346.26581 21.20351 0.32052 359.22033 28.03460 0.32148
17 186.66671 20.38668 0.17693 204.48775 27.44945 0.18722
18 52.33403 19.35951 0.05066 64.51775 26.69008 0.06034
19 0.50986 18.32258 0.00050 3.17460 25.89016 0.00300
20 0 17.72414 0 0 25.39227 0
21 0 17.29586 0 0 25.09285 0
22 0 16.96148 0 0 24.87663 0
23 0 16.67395 0 0 24.70841 0
24 0 16.40545 0 0 24.56926 0

1 3 5 7 9 11 13 15 17 19 21 23
0

10
20
30
40
50
60

Time (h)

So
la

r
ge

ne
ra

ti
on

cu
rv

e
[%

]

Medellín Capurganá

Figure 3. Expected generation profiles for Medellín and Capurganá, Colombia.

4.2. Urban and Rural Demand Curves

To determine the expected energy consumption profiles in the areas of interest, this
study considers the consumption information provided by the distribution companies that
operate in these areas:

i. Medellín: The historical reports made by the network operator Empresas Públicas
de Medellín (EPM) [22] were considered. Consumption data for 2019 were taken,
i.e., from 1 January to 31 December, with a 1-h sampling. As for the power generation
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curves, the data collected were averaged per hour, as shown in Table 3. With the data
consigned in this table, the average behavior of power consumption for a typical day
in Medellín was obtained, as shown in Figure 4 and Table 3.

ii. Capurganá: Power consumption data were taken from the reports of historical
events by the IPSE [21], which is in charge of monitoring and supervising the non-
interconnected electrical areas of Colombia in order to promote, develop, and imple-
ment energy-related solutions in these areas. As in the previous case, the collected
data were averaged per hour as shown in Table 3. Similarly, it is possible to ob-
tain the average consumption behavior for a typical day in Capurganá, as shown in
Figure 4 and Table 3.

Table 3. Power consumption data (kW) and behavior (p.u.) for an average day in the regions
under study.

Region Medellín Capurganá

Hour Pd Pd,pu Pd Pd,pu

1 1,012,876.20 0.65509 428.04117 0.84573
2 974,315.40 0.63015 409.76717 0.80962
3 951,768.01 0.61557 317.81654 0.62795
4 952,169.92 0.61583 256.70648 0.50720
5 996,601.97 0.64457 51.70864 0.10217
6 1,080,667.80 0.69894 11.05835 0.02185
7 1,135,234.91 0.73423 32.49553 0.06421
8 1,226,850.93 0.79348 62.77491 0.12403
9 1,303,895.33 0.84331 119.17381 0.23547
10 1,354,781.01 0.87622 281.26057 0.55572
11 1,417,860.03 0.91702 333.09429 0.65813
12 1,462,589.11 0.94595 358.36076 0.70805
13 1,459,381.62 0.94388 368.01140 0.72712
14 1,439,889.28 0.93127 369.70917 0.73048
15 1,430,823.70 0.92541 379.97901 0.75077
16 1,426,481.64 0.92260 388.65478 0.76791
17 1,404,019.24 0.90807 386.78365 0.76421
18 1,373,896.43 0.88859 395.19266 0.78083
19 1,463,002.74 0.94622 430.88177 0.85134
20 1,478,398.44 0.95618 464.61670 0.91800
21 1,415,579.31 0.91555 476.40313 0.94128
22 1,310,824.08 0.84779 473.67462 0.93589
23 1,187,930.28 0.76831 467.29281 0.92328
24 1,086,900.38 0.70297 452.18590 0.89344
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Figure 4. Expected energy consumption profiles for Medellín and Capurganá, Colombia.

4.3. Parametrization of the Optimization Model

To calculate the objective function values defined in Equations (1)–(3), the information
reported in Table 4 is employed. Note that this table presents the costs of generating energy
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in urban and rural areas. In the same way, the costs associated with the maintenance of PV
generation systems are shown.

Table 4. Parameters to evaluate the objective function in the proposed NLP formulation.

Parameter Value Unit Parameter Value Unit

CUrban
kWh 0.1302 USD/kWh CEUrban

s 0.1644 kg/kWh
CRural

kWh 0.2913 USD/kWh CERural
s 0.2671 kg/kWh

Cpv
O&M 0.0019 USD/kWh - - -

It is worth noting the following:

i. The energy generation costs in the urban and rural areas were taken from the reports
made by the network operators to the Unified Information System (SUI by its Spanish
acronym) in 2019 [39,40].

ii. The operation and maintenance costs of the PV generators were taken from [41].
iii. The emissions factor for the urban area is the one established by XM for the intercon-

nected electrical system, to which Empresas Públicas de Medellín (EPM) belongs [42].
Similarly, the emissions factor for the rural area is the one associated with diesel fuel
and was taken from the database of the Emission Factors of Colombian Fuels (FECOC,
by its Spanish acronym) [43].

Remark 5. The voltage regulation bounds for electrical systems with a voltage level greater than
1kV and less than 62kV, i.e., medium-voltage networks, are defined as +5 and−10% of the nominal
voltage. These bounds are established by the 1340 Colombian Technical Standard (NTC, by its
Spanish acronym) [44].

5. Test Systems

To evaluate the proposed NLP formulation to operate PV generation systems in urban
and rural environments while considering different objective functions, two test feeders
were considered. The first one is the IEEE 33-bus grid, which was employed to emulate the
distribution operating conditions of the city of Medellín. The second one is a 27-bus grid
originally designed for rural simulation environments, which is adapted in this research to
analyze the municipality of Capurganá. To define the nodes where the PV generators are
located, we consider that these were previously selected in distribution system planning
studies carried out by the distribution company. In this research, the information regarding
PV sources’ location and sizes has been obtained from [18].

5.1. Urban Simulation Test System

For this simulation case, the IEEE 33-bus test feeder is considered. This distribution
system is composed of 33 nodes and 32 distribution lines, and it is operated at the substation
terminals with a nominal voltage of 12.66 kV. The electrical topology of the IEEE 33-bus
grid is presented in Figure 5 [45]. Note that to evaluate the effect of the PV generation in
this system, three PV sources with nominal rates of 2400 kW were added to nodes 12, 15,
and 31, respectively.

Slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 5. Proposed configuration of the IEEE 33-bus grid for simulating the operation scenario in the
city of Medellín.
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In addition, the parametric information regarding peak loads and branch parameters
are listed in Table 5. It is worth mentioning that to evaluate the current constraints in the
optimization model (1)–(15), the power flow solution under peak load conditions is used,
which provides the maximum currents through each distribution line. With these currents, the
conductors that can be assigned to these lines, according to the Colombian regulation NTC
2050, are found, assuming that they will operate under a nominal temperature of 60 ◦C.

Table 5. Information regarding the peak load conditions, impedance parameters, and current bounds
of the IEEE 33-bus grid.

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
l (A)

1 1 2 0.0922 0.0477 100 60 385
2 2 3 0.4930 0.2511 90 40 355
3 3 4 0.3660 0.1864 120 80 240
4 4 5 0.3811 0.1941 60 30 240
5 5 6 0.8190 0.7070 60 20 240
6 6 7 0.1872 0.6188 200 100 110
7 7 8 1.7114 1.2351 200 100 85
8 8 9 1.0300 0.7400 60 20 70
9 9 10 1.0400 0.7400 60 20 70

10 10 11 0.1966 0.0650 45 30 55
11 11 12 0.3744 0.1238 60 35 55
12 12 13 1.4680 1.1550 60 35 55
13 13 14 0.5416 0.7129 120 80 40
14 14 15 0.5910 0.5260 60 10 25
15 15 16 0.7463 0.5450 60 20 20
16 16 17 1.2890 1.7210 60 20 20
17 17 18 0.7320 0.5740 90 40 20
18 2 19 0.1640 0.1565 90 40 40
19 19 20 1.5042 1.3554 90 40 25
20 20 21 0.4095 0.4784 90 40 20
21 21 22 0.7089 0.9373 90 40 20
22 3 23 0.4512 0.3083 90 50 85
23 23 24 0.8980 0.7091 420 200 85
24 24 25 0.8960 0.7011 420 200 40
25 6 26 0.2030 0.1034 60 25 125
26 26 27 0.2842 0.1447 60 25 110
27 27 28 1.0590 0.9337 60 20 110
28 28 29 0.8042 0.7006 120 70 110
29 29 30 0.5075 0.2585 200 600 95
30 30 31 0.9744 0.9630 150 70 55
31 31 32 0.3105 0.3619 210 100 30
32 32 33 0.3410 0.5302 60 40 20

5.2. Rural Simulation Test System

The 27-bus grid is a radial distribution network composed of 27 nodes and 26 distri-
bution lines, which operate with a nominal voltage of 23 kV at the substation terminals.
This test feeder was proposed initially by the authors of [46] to evaluate the problem re-
garding the optimal selection of conductors. The electrical configuration of this test feeder
is reported in Figure 6. Note that this system has three PV generators, all with a nominal
power of 2400 kW, located at nodes 5, 9, and 19.

Due to the fact that the 27-bus grid was initially proposed to determine the optimal
conductor sizes, the thermal bounds for each distribution line are also taken from [46]. The
complete parametric information of this test feeder is reported in Table 6.
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Figure 6. Proposed configuration of the 27-bus grid to simulate the operation scenario in the munici-
pality of Capurganá.

Table 6. Information regarding peak load conditions, impedance parameters, and current bounds for
the 27-bus grid.

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Imax
l (A)

1 1 2 0.0140 0.6051 0 0 240
2 2 3 0.7463 1.0783 0 0 165
3 3 4 0.4052 0.5855 297.50 184.37 95
4 4 5 1.1524 1.6650 0 0 85
5 5 6 0.5261 0.7601 255.00 158.03 70
6 6 7 0.7127 1.0296 0 0 55
7 7 8 1.6628 2.4024 212.50 131.70 55
8 8 9 5.3434 3.1320 0 0 20
9 9 10 2.1522 1.2615 266.05 164.88 20
10 2 11 0.4052 0.5855 85.00 52.68 70
11 11 12 1.1524 1.6650 340 210.71 70
12 12 13 0.5261 0.7601 297.50 184.37 55
13 13 14 1.2358 1.1332 191.25 118.53 30
14 14 15 2.8835 2.6440 106.25 65.85 20
15 15 16 5.3434 3.1320 255.00 158.03 20
16 3 17 1.2942 1.1867 255.00 158.03 70
17 17 18 0.7027 0.6443 127.50 79.02 55
18 18 19 3.3234 1.9480 297.50 184.37 40
19 19 20 1.5172 0.8893 340 210.71 25
20 20 21 0.7127 1.0296 85.00 52.68 20
21 4 22 8.2528 2.9911 106.25 65.85 20
22 5 23 9.1961 3.3330 55.25 34.24 20
23 6 24 0.7463 1.0783 69.70 43.20 20
24 8 25 2.0112 0.7289 255.00 158.03 20
25 8 26 3.3234 1.9480 63.75 39.51 20
26 26 27 0.5261 0.7601 170 105.36 20

6. Numerical Results and Discussions

The general NLP model that represents the problem regarding the optimal operation of
PV generation in AC distribution networks has been implemented and solved in the GAMS
optimization package with the SNOPT solver on a Dell Precision 3450 workstation with an
Intel(R) Core(TM) i9-11900 CPU@2.50 Ghz processor, 64.0 GB RAM and a Windows 10 Pro
64-bit operating system. To demonstrate the efficiency of the GAMS software in operating
PV generators in AC distribution networks, its results were compared with those of different
combinatorial optimization techniques such as particle swarm optimization (PSO) [47], the
CBGA [48], the Vortex Search algorithm (VSA) [49], and the Ant Lion Optimizer (ALO) [50].
These methodologies were selected due to their excellent performance in solving the
optimal power flow problem in electrical distribution systems [18,51–53]. In addition, to
ensure a fair comparison between the SNOPT solver and the combinatorial algorithms,
each of them was tuned in order to guarantee the best performance when solving the
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studied problem. Regarding the selection of parameters, the CBGA was used with an initial
population of 40 individuals and a maximum number of iterations of 400.

6.1. Urban Test System Simulations

Table 7 shows the numerical results of all the combinatorial optimization algorithms
and the SNOPT solver applied to the IEEE 33-bus grid. The information in this table is
presented from left to right, as follows: the methodology used, the value obtained for the
evaluated function, and the average computation time.

Table 7. Numerical results in the 33-bus system for the urban zone.

Method f1(USD) f2(kWh) f3(kg
CO2)

Proc. Time
f1(s)

Proc. Time
f2(s)

Proc. Time
f3(s)

Bench.
Case 9931.66 3379.07 12,541.22 - - -

CBGA 7409.25 2346.00 9309.57 2.6258 2.6054 2.6236
PSO 7317.89 2332.05 9198.27 31.4035 31.9980 30.0664
VSA 7276.05 2331.61 9152.05 42.4710 37.9801 43.9550
ALO 7220.09 2331.51 9068.94 141.9966 140.1495 140.5316

SNOPT 7219.93 2331.48 9068.75 0.3450 0.3180 0.2830

The numerical results for the urban test system show that the SNOPT solver finds the
best solution with respect to all the other methods. The following facts can be observed:
(i) The final total operating costs of the network are 7219.93 USD, that is, an improvement of
2711.73 USD regarding the base case, 189.31 USD regarding the CBGA, 97.96 USD regarding
PSO, 56.11 USD regarding the VSA, and 0.15 USD regarding the ALO; (ii) the final energy
losses of the network are 2331.48 kWh, showing an improvement of 1047.59 kWh with
respect to the base case, 14.52 kWh with respect to the CBGA, 0.57 kWh with respect to
PSO, 0.13 kWh with respect to the VSA, and 0.03 kWh with respect to the ALO; and (iii) as
for CO2 emissions, the SNOPT solver achieves a response of 9068.75 kg of CO2, evidencing
an improvement of 3472.47 kg of CO2 with respect to the base case, 240.82 kg of CO2 with
respect to the CBGA, 129.51 kg of CO2 compared to PSO, 83.30 kg of CO2 compared to
VSA, and 0.18 kg of CO2 with respect to the ALO.

Similarly, it is evident that the SNOPT solver is the fastest methodology in the three
simulation scenarios for the urban test system. The SNOPT solver takes approximately
0.3450 s to calculate f1, 0.3180 s to calculate f2, and 0.2830 s to calculate f3. This shows that
in order to solve a multidimensional (i.e., 39-dimensional) NLP model with continuous
variables (solution space with infinite combinations), the SNOPT solver takes less than
0.50 s to converge to the optimal solution.

Regarding the daily expected improvements in the proposed objective functions,
Figure 7 presents the percentage of reductions reached by each method with respect to the
base case.

Figure 7 shows that all optimization techniques allow for a reduction of more than 25%
compared to the base case for the three simulation scenarios. The SNOPT solver allows
the highest objective function reduction for the three simulation scenarios, i.e., 27.30, 31,
and 27.68%. On the other hand, all the combinatorial optimization methods exhibit very
good performance. However, due to their random nature, these algorithms are trapped in
locally optimal solutions, and statistical analysis is required to ensure that they reach good
solutions on average.
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Figure 7. Reduction percentage regarding the objective functions in the IEEE 33-bus system.

Remark 6. The above demonstrates the effectiveness and robustness of the SNOPT solver when
solving the problem regarding the operation of PV generators in AC distribution networks, which
allows optimizing the system from an economic, technical, or environmental point of view. The exact
solution obtains the best performance when it comes to the best response and processing times (less
than 0.50 s). This turns the proposed approach into the best option to address this problem with
regard to the urban test system, obtaining a global optimal solution for each simulation scenario,
which respects the technical operating conditions of the network.

6.2. Rural Test System Simulations

Table 8 shows the numerical performance of all the combinatorial optimization algo-
rithms and the SNOPT solver for the 27-bus grid in rural applications. Note that this table
has the same information shown in Table 7.

Table 8. Numerical results in the 27-bus system for the rural zone.

Method f1(USD) f2(kWh) f3(kg
CO2)

Proc. Time
f1(s)

Proc. Time
f2(s)

Proc. Time
f3(s)

Bench.
Case 18,543.84 691.15 17,005.21 - - -

CBGA 12,282.02 559.51 11,192.67 1.8066 1.8311 1.8213
PSO 12,104.61 558.28 11,064.72 21.8934 27.804 21.0702
VSA 12,052.94 558.22 11,023.51 30.7303 30.2881 30.4519
ALO 12,022.40 558.20 10,985.75 125.9021 126.5206 131.3081

SNOPT 12,022.34 558.20 10,985.71 0.2990 0.2850 0.2410

The numerical results for the IEEE 27-bus grid show that the SNOPT solver finds
the best solution with respect to all methods used: (i) for f1, the SNOPT solver exhibits a
response of 12,022.34 USD, i.e., an improvement of 6521.50 USD regarding the base case,
259.68 USD regarding the CBGA, 82.27 USD regarding PSO, 30.60 USD regarding the VSA,
and 0.06 USD regarding the ALO; (ii) in the case of the f2 function, the SNOPT solver
reaches a response of 558.20 kWh, showing an improvement of 132.95 kWh with respect
to the base case, 1.31 kWh with respect to the CBGA, 0.08 kWh with respect to PSO, 0.02
kWh with respect to the VSA, and 0.00 kWh with respect to the ALO; and (iii) in the case of
f3, the SNOPT shows a response of 10,985.71 kg of CO2, evidencing an improvement of
6019.50 kg of CO2 with respect to the base case, 206.96 kg of CO2 with respect to the CBGA,
79.01 kg of CO2 with respect to PSO, 37.80 kg of CO2 with respect to VSA, and 0.04 kg of
CO2 with respect to the ALO.

It is worth mentioning that the SNOPT solver is the fastest methodology to solve
the problem of optimal PV operation in the rural test system with regard to the proposed
objective functions. The SNOPT solver takes approximately 0.2990 s to calculate f1, 0.2850 s
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to calculate f2, and 0.2410 s to calculate f3, thus showing that the GAMS approach takes less
than 0.3 s to reach the optimal global solution of a complex problem from a dimensional and
solution space perspective. In addition, Figure 8 depicts the expected reduction percentage
reached by each method when compared to the base case.
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Figure 8. Reduction percentage regarding the objective functions in the IEEE 27-bus system.

In the rural case, all optimization techniques allow for a reduction of more than 18.5%
compared to the base case for the three simulation scenarios. The SNOPT solver achieves
the highest objective function reduction for the three simulation scenarios, i.e., 35.17, 19.27,
and 35.40%. All the combinatorial optimization methods are adequate in solving the
problem under study. However, they yield locally optimal solutions due to the randomness
of the exploration and exploitation of the solution space.

Remark 7. The results obtained for the rural test system indicate that the SNOPT solver has the
best performance, namely, better response and processing times (less than 0.3 s). This makes this
solution methodology the best option to address the problem of operating PV generators in the IEEE
27-bus grid as it obtains an optimal global solution for each simulation scenario, which respects the
technical-operating conditions of the network.

7. Conclusions and Future Work

The problem regarding the optimal daily operation dispatch of PV generation units
in electrical distribution networks was addressed in this research by implementing its
NLP model in the GAMS software with the SNOPT solver. Numerical results in two test
feeders composed of 27 and 33 nodes demonstrated the effectiveness and robustness of
the GAMS software in dealing with the global optimal solution while considering three
different objective functions, i.e., the daily operating costs of energy purchasing at the
substation bus, added with the maintenance and operation costs of the PV sources; the
total daily energy losses caused by the resistive effects in all the distribution lines; and the
total CO2 emissions (kg) at the substation bus.

A complete characterization of two different operation areas in Colombia was pro-
posed in order to evaluate the proposed solution approach in urban and rural areas. The
IEEE 33-bus grid was adapted to the operating conditions of the metropolitan area of
Medellín, Antioquia, Colombia, and the 27-bus grid was set with the operating conditions
of the municipality of Capurganá, Chocó. Information regarding solar radiation and tem-
perature in 2019 was obtained from the NASA database in order to determine the potential
for solar power generation in both areas. In addition, an accurate PV model was adjusted
to consider the external effects on the effective power generation output. To characterize
the demand behavior, the information provided by the utility company of Medellín (i.e.,
EPM) and the IPSE for the non-interconnected area were used to define the daily expected
consumption profile of the urban and rural areas of analysis, respectively.
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Numerical results showed the following: (i) For the urban simulation scenario, the
SNOPT solver finds reductions of about 27.3039, 31.0022, and 27.6884% with respect to the
f1, f2, and f3 benchmark cases, respectively. In the case of the rural system, these reductions
were 35.1680, 19.2358, and 35.3980%, respectively. In comparison with the combinatorial
optimization methods used for validating the proposed approach, only the ALO approach
reached a similar numerical performance while the other optimizers were stuck in locally
optimal solutions due to the complexity of the NLP model and the infinite size of the
solution space. (ii) Regarding the processing times, the SNOPT solver takes about 0.50 s
to solve each one of the objective functions in both distribution grids, while the second
best approach (i.e., the ALO approach) takes more than 120 s to reach its solutions. This
confirms that the proposed approach finds the global optimal solution 240 times faster
than the ALO approach with no need for statistical analysis, which was required by all the
metaheuristic-based approaches in order to find the average performance and quality.

In future works, it will be possible to develop the following derived works: (i) ex-
tending the proposed NLP model to include battery energy storage systems and dynamic
reactive power compensators; (ii) proposing a convex reformulation of the NLP model via
conic or semidefinite programming in order to ensure that the global optimum is found;
(iii) extending the proposed formulations to DC distribution networks with monopolar and
bipolar structures; and (iv) the development of a comparative analysis of the proposed NLP
model with other alternatives for modeling the PV sources and the power balance equations
in distribution networks including uncertainties in demand and generation curves.
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Abbreviations
The following abbreviations are used in this manuscript:

Ecost
Objective function associated with the total operating costs of the distribution grid
(USD/day).

f1
Component of the objective function related to the purchase of energy at the terminals
of the substation node (USD/day).

f2
Component of the objective function associated with the operation and maintenance
costs of the PV generators (USD/day).

CkWh Average cost of purchasing power at the substation node (USD/Wh).

ps
i,h

Active power generated by a conventional source connected to a node i during a period
h (W).

∆h Time in which the electrical variables are assumed to be constant (h).
CO&M Maintenance and operation costs of a PV generator (USD/Wh).
ppv

i,h Active power generated by a PV source connected to a node i during a period h (W).
N Set that contains all the nodes of the network.
H Set that contains all periods in a daily operation scenario.
Eloss Energy losses costs for a day of operation (USD/day).
Rl Resistance associated with the distribution line l (Ω).
Xl Reactance associated with the distribution line l (Ω).
Il Magnitude of the current that flows through the distribution line l (A).
L Set that contains all the distribution lines of the distribution network.



Mathematics 2023, 11, 484 18 of 20

ECO2 Total greenhouse gas emissions per day of operation (kgCO2/day).
CEs Factor of CO2 emissions associated with conventional generation sources (kgCO2/W).
Pd

i,h Active power demanded at a node i for a period of time h (W).
Qd

i,h Reactive power demanded at a node i for a period of time h (var).

qs
i,h

Reactive power generated by a conventional source connected to a node i during a
period of time h (var).

Vre
i,h Real part of the voltage profile at a node i during a period of time h (V).

Vim
i,h Imaginary part of the voltage profile at a node i during a period of time h (V).

Ire
i,h Real part of the current flowing through the line l during a period of time h (A).

Iim
i,h Imaginary part of the current flowing through the line l during a period of time h (A).

Ai,l Node-to-branch incidence matrix.

Ps,min
i

Minimum active power bound associated with each conventional generator connected
to node i (W).

Ps,max
i

Maximum active power bound associated with each conventional generator connected
to node i (W).

Qs,min
i

Minimum reactive power bound associated with each conventional generator
connected to node i (var).

Qs,max
i

Maximum reactive power bound associated with each conventional generator
connected to node i (var).

Ppv,min
i

Minimum active power bound associated with each PV generator connected to node
i (W).

Ppv,max
i

Maximum active power bound associated with each PV generator connected to node
i (W).

Vmin
i Minimum voltage regulation bound associated with the voltage profile at node i (V).

Vmax
i Maximum voltage regulation bound associated with the voltage profile at node i (V).

Ppv
i Nominal power of the PV generator located at a node i (W).

Cpv
h

Expected PV generation behavior for the area where the distribution grid is located
(p.u.).

fpv
Reduction factor of the PV system’s power output. It models the external effects that
affect generation in PV systems (%).

GT
h Solar radiation that falls on a PV generator during a period of time h (W/m2).

GT,STC
i

Solar radiation of the PV generator located at node i under standard test conditions
(W/m2).

αp Coefficient regarding the power and temperature output (1/◦C).

Tc
i,h

Real surface temperature of the PV generator located at node i during a period of time
h (◦C).

Tc,STC
i

Expected surface temperature of the PV generators located at node i under standard
test conditions (◦C).

Ta
h Ambient temperature to which the PV generator is exposed during a period h (◦C).

Tc,NOCT
i

Nominal surface temperature of the PV generator located at node i (when it is exposed
to a radiation GT,NOCT

i and a temperature Ta,NOCT
i ) (◦C).

ηc
i Electrical efficiency of the PV generator located at a node i (%).

τ Solar transmittance parameter of the PV generator.
α Solar absorption coefficient of the PV generator.
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