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Abstract: The problem of the optimal siting and sizing of fixed-step capacitor banks is studied in
this research from the standpoint of convex optimization. This problem is formulated through a
mixed-integer nonlinear programming (MINLP) model, in which its binary/integer variables are
related to the nodes where the capacitors will be installed. Simultaneously, the continuous variables
are mainly associated with the power flow solution. The main contribution of this research is the
reformulation of the exact MINLP model through a mixed-integer second-order cone programming
model (MI-SOCP). This mixed-integer conic model maintains the nonlinearities of the original MINLP
model; however, it can be solved efficiently with the branch & bound method combined with the
interior point method adapted for conic programming models. The main advantage of the proposed
MI-SOCP model is the possibility of finding the global optimum based on the convex nature of the
power flow problem for each binary/integer variable combination in the branch & bound search tree.
The numerical results in the IEEE 33- and IEEE 69-bus systems demonstrate the effectiveness and
robustness of the proposed MI-SOCP model compared to different metaheuristic approaches. The MI-
SOCP model finds the final power losses of the IEEE 33- and IEEE 69-bus systems of 138.416 kW and
145.397 kW, which improves the best literature results reached with the flower pollination algorithm,
i.e., 139.075 kW, and 145.860 kW, respectively. The simulations are carried out in MATLAB software
using its convex optimizer tool known as CVX with the Gurobi solver.

Keywords: capacitor banks; distribution networks; second-order cone programming model; power
losses minimization

1. Introduction
1.1. General Context

Electrical distribution grids are responsible for delivering electricity to all end-users at
medium- and low-voltage levels in rural and urban areas [1]. These grids are typically built
with radial configuration, as this topology allows reducing investment costs in conductors
and grid infrastructure [2]. Additionally, they permit simplifying the protection coordina-
tion schemes [3]. Even if radial distribution configurations are economical for distribution
companies, these grids present significant energy losses due to the power flow, having only
one path between the substation and each final user [4]. In medium- and low voltage grids,
energy losses can range from 6% to 18% of the total energy input at the substation bus. In
contrast, in transmission systems, owing to their solid meshed configurations, these losses
are about 2% [5].

To deal with the problem of power losses in distribution networks, utilities can use
multiple alternatives, which include the topology variations and connection of shunt de-
vices [6–8]. In the case of topology variations, the most common approach is adding
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different distribution lines that reconfigure the grid to obtain a configuration that reduces
the power losses for a particular load condition [9]. In the case of the connection of shunt
devices, the most common sources are renewable energy sources [10], battery energy stor-
age systems [11], distribution static compensators [12], and fixed-step capacitor banks [13].
However, renewable energies and batteries are expensive elements through which invest-
ment costs cannot be recovered with power loss reduction, which implies that other grid
functions must be considered to justify their installation along with the distribution net-
work [11]. In the case of reactive power compensation with capacitor banks and distribution
static compensators, the first devices are cheaper compared to the latter [14]. Additionally,
their maintenance is minimum, and their useful life is greater than 25 years [15], and they
have high reliability [16], which makes capacitors the most reliable and efficient strategy to
reduce power losses with minimum investment costs [13].

1.2. Motivation

To reduce power losses in distribution networks, the installation of capacitor banks is
a well-known solution methodology widely used by utilities for decades [13]. However, in
this research, we are interested in addressing this problem with a powerful optimization
methodology that will provide distribution companies with a reliable method to define the
optimal location and size of the capacitor banks to be installed in their distribution grids.
The main advantage of this tool is that it is based on a strong optimization theory named
convex optimization that finds the global optimum at each execution, which is impossible
with the conventional and largely explored metaheuristic optimizers [17].

Combinatorial methods are the preferred approach to locating and sizing capacitors in
distribution networks, owing to the problem of the optimal location and sizing of capacitor
banks in distribution networks when the grid power flow equation that is considered
generates a mixed-integer nonlinear programming model (MINLP) [18]. The binary (also
integer) variables are associated with the places (i.e., nodes) and sizes of the capacitors to
be installed. In contrast, the continuous variables are related to active and reactive power
flows, current flows, and voltages.

1.3. Revision of the State-of-the-Art

To solve the MINLP model that represents the problem of the optimal placement and
sizing of capacitor banks in distribution networks, multiple solution methodologies have
been reported in the current literature. The authors of [13] have proposed the application
of the flower pollination algorithm to select and locate fixed-step capacitor banks in radial
distribution networks. The objective function corresponds to the minimization of the
annual grid operative costs (i.e., costs of the energy losses in one year of operation and
the investment costs in capacitors). Numerical results of the test feeders composed of 33,
34, 69, and 85 nodes demonstrate the effectiveness of the proposed optimization method
compared to the analytical sensitive methods, fuzzy logic algorithms, and classical genetic
algorithms, among others. Gil-González et al., in [14] proposed the application of the
discrete version of the vortex search algorithm to locate and select fixed-step capacitor banks
in radial distribution grids. Numerical results in the IEEE 33- and IEEE 69-bus systems
demonstrated the efficiency of the proposed solution method compared to the flower
pollination algorithm. The authors of [3] presented the solution of the exact MINLP model
of the studied problem in the general algebraic modeling system (i.e., GAMS) software.
Additionally, they demonstrated that these results could be improved by applying the
classical Chu & Beasley genetic algorithm. The IEEE 33- and IEEE 69-bus systems were
used as test feeders with the main contribution that the proposed genetic algorithm can deal
with radial and meshed distribution configurations without modifications in the solution
methodology. The author of [19] presented a heuristic methodology to locate and size
capacitor banks in distribution networks. The author’s main contribution is the inclusion of
the total harmonic distortion of the grid in the optimization model. Numerical results in the
IEEE 34-, IEEE 69-, and IEEE 85-node test feeders demonstrate that total grid costs can be
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reduced more through the proposed algorithm compared to the classical genetic algorithm.
Some additional algorithms used to solve the exact MINLP model are the modified genetic
algorithms [20], artificial bee colony optimizer [21], particle swarm optimization [22], tabu
search algorithm [23], gravitational search algorithm [24], and cuckoo search algorithm [25],
among others.

The main characteristic of the literature mentioned above is that all of them work
with a master-slave methodology. In the master stage, it solves the problem of the optimal
location and selection of the capacitor banks [3]. In contrast, the slave stage is entrusted
with the solution of the equivalent power flow problem [14]. Even if the master-slave
methodology base is easily implementable, the usage of metaheuristic approaches poses
serious disadvantages: (i) They require many parameters that must be tuned, which are
typically adjusted by using the knowledge of the problem under study, thus making
metaheuristics highly dependent on the programmer’s abilities. (ii) Multiple simulations
are required to analyze statistically and determine the average behavior of the method. This
implies the impossibility of ensuring the optimal solution can be found at each test [26].
(iii) The computational efforts are typically higher when binary and continuous variables
appear, which complicates the multiple simulations needed for statistical tests.

To deal with the disadvantages of metaheuristics, this research, we will contribute
with a new methodology to solve the exact MINLP model by ensuring the global optimum
finding properties via convex optimization, which is presented below.

1.4. Contribution and Scope

This research proposes a mixed-integer second-order cone programming (MI-SOCP)
model to transform the exact MINLP model that represents the problem of the optimal
siting and sizing capacitor banks in distribution networks into a mixed-integer convex
one. It is worth emphasizing that the nonlinear nature of the problem is maintained due to
the conic approximation of the power flow problem; however, the resulting mixed-integer
programming is tractable in practice by using a branch & bound (B&B) method [27]. This
method is commonly used in mixed-integer programming problems, in which a linear
programming problem is solved in each branch iteration. In this case, the method is
extended to MI-SOCP, in which a second-order cone optimization problem is solved in
each iteration [28].

The main advantage of the proposed MI-SOCP model is that for each node explored
in the B&B step, the optimal solution is guaranteed based on the convex properties of the
SOCP equivalent power flow model [29]. This entails that the optimal global solution of the
MI-SOCP model is guaranteed [17]. The classical IEEE 33- and IEEE 69-node test feeders are
utilized to demonstrate the effectiveness and robustness of the proposed MI-SCOP model
for locating and sizing capacitor banks in electrical distribution networks. The simulation
results reveal that our proposal offers the best possible solutions for these systems.

It is worth mentioning that in this research, radial distribution networks are only
considered in the current literature. The problem of the optimal siting and sizing of
capacitor banks is typically analyzed in this type of network. However, the proposed MI-
SOCP approximation can deal with meshed distribution networks because its formulation
is based on the admittance nodal matrix, which contains the information of the grid
nodal connections.

1.5. Document Organization

The remainder of this paper is organized as follows: Section 2 presents the exact
MINLP formulation of the problem of the optimal location and sizing of capacitor banks in
distribution networks. Section 3 presents the MI-SOCP reformulation of the problem via a
conic representation of the power balance equations. Section 4 briefly offers the solution
approach by describing the main aspects of the MI-SOCP via B&B methods. Section 5
indicates the main characteristics of the IEEE 33- and IEEE 69-node test feeders used during
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simulations. Section 6 presents the numerical validations as well as their analysis and
discussion. Section 7 offers the main concluding remarks derived from this research work.

2. Exact MINLP Formulation

The problem of the optimal location and sizing of capacitor banks in distribution net-
works is a complex non-linear non-convex optimization problem. This problem combines
integer and continuous variables, i.e., the MINLP model, intending to minimize the total
grid power losses, subject to the power flow equations and the capacities of the different
network elements. In this optimization problem, the binary variables are related to the
location of the capacitor banks and the continuous variables are associated with active and
reactive power injections and voltage profiles. The exact MINLP model is presented below,
where it is considered that the distribution has a radial topology with a unique slack node.

2.1. Objective Function

The objective function of the problem of the optimal location and sizing of capacitor
banks in distribution networks is defined in (1) (note that this equation is the complex
equivalent of the classical trigonometric function to calculate power losses in distribution
lines [30]).

min ploss = real

(
∑

i∈N
∑

j∈N
y∗ijviv∗j

)
, (1)

where ploss represents the objective function value regarding the value of power losses; vi
and vj are complex variables, i.e., phasors, related with voltages in nodes i and j, respec-
tively; yij is the admittance parameter that relates nodes i and j, respectively;N is a set that
contain all the nodes of the grid.

2.2. Set of Constraints

The set of restrictions listed below corresponds to the power balance equations, voltage
regulation bounds, and nominal capabilities in grid devices.(

si + scap
i − di

vi

)∗
= ∑

j∈N
yijvj, ∀i ∈ N , (2)

where si is the apparent power generation at node i, scap
i is the apparent power injection by

the capacitor bank connected at node i, and di is the apparent power demand at node i.
The voltage in the slack node (voltage-controlled source) is assigned to be v1 = 1∠0◦;

the rest of the voltages are limited as follows:

vnom − γ ≤ ‖vk‖ ≤ vnom + γ, ∀ k ∈ N , (3)

where γ is the maximum deviation defined by the grid code (typically γ = 0.05 pu to
γ = 0.10 pu). Note that Equation (3) represents the classical voltage regulation bound
constraint rewritten by using a l2-norm [31].

The power flow in each line is bounded as given in (4).∥∥sij
∥∥ ≤ smax

ij , ∀{i, j} ∈ E , (4)

where sij is the power flow through line ij, and smax
ij is the maximum apparent power flow

permitted at this line.
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The capacity of existing generators and new capacitor banks is defined as follows:

smin
i ≤ si ≤ smax

i , ∀i ∈ N , (5)

scap
i = ∑

k∈C
ziksnom

k , ∀i ∈ N , (6)

where zik is a binary variable that determines whether the capacitor bank type k with
capacity snom

k is located at node i (zik = 1) or not (zik = 0). Note that C is the set that
contains all the capacitor types available for location in the distribution network. The
number of capacitor banks available for location can be upper bounded as presented in (7).

∑
i∈N

∑
k∈C

zik ≤ ncap, (7)

where ncap is the number of capacitors available for location in the distribution network.
Figure 1 presents the characterization of the optimization model, which represents the

problem of the optimal selection and location of capacitor banks in distribution networks
for power loss minimization. Note that six of the seven equations are convex, and the only
one complication in the model is the power balance constraint defined in (2), which allows
the model (1)–(7) to be classified as an MINLP optimization problem.

Convex Equations
(1) and (3)–(7)

zki ∈ {0, 1}
Binary

Non-convex
Equation (2)

MINLP

Figure 1. Model characterization.

Note that the solution of the MINLP model presented in Figure 1 via MI-SOCP
optimization requires addressing the discrete part of the problem, i.e., the binary nature of
the capacitor banks’ location problem, via the B&B method. Simultaneously, it is ensured
that the continuous problem, i.e., the optimal dimensioning of the capacitor banks, has
a second-order cone programming (SOCP) structure. The complete MI-SOCP model is
presented in the next section.

3. MI-SOCP Relaxation

The optimization approach based on SOCP corresponds to a sub-area of the convex
optimization that works with optimization models composed of linear affine and conic
constraints [17]. The conic models can be solved efficiently with tailored algorithms taking
a few milliseconds. In general, a cone is a convex set as presented below [32]:

‖x‖ ≤ z (8)

where x ∈ Rn and z ∈ R. ‖x‖ is the l2−norm of the vector x. Figure 2 shows a second order
cone in R3, clearly a convex set. For further details about the optimization convex, see [33].
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Figure 2. Representation of the second order cone Ω = {‖x‖ ≤ z}. with x ∈ R2 and z ∈ R.

SOCP Approximation for the Power Flow Equations

The SOCP approach transforms the continuous part of the mathematical model (1)–(7)
into a convex formulation that ensures the global optimum for each possible combination
of binary variables provided by the B&B method. To transform the general MINLP model
into an MI-SOCP model, let us define a matrix of complex variables X =

[
xij
]
∈ Cn×n,

where xij takes the following form:

xij = v∗i vj, (9)

where xij can be split in its real and imaginary parts as xij = xreal
ij + jximag

ij .
Note that in the objective function, if we substitute xij, then this can be rewritten

as follows:

min ploss = real

(
∑

i∈N
∑

j∈N
y∗ijx

∗
ij

)
,

= real

(
∑

i∈N
∑

j∈N

(
yreal

ij − jyimag
ij

)(
xreal

ij − jximag
ij

))
,

=

(
∑

i∈N
∑

j∈N

(
yreal

ij xreal
ij − yimag

ij ximag
ij

))
, (10)

now, the objective function is convex, as it is a linear combination of the real and imaginary
parts of the new variable xij.

Now, if we replace the new variable xij in the non-convex constraint related with
the complex power balance equations, i.e., in Equation (2), then we reach a convex affine
relaxation of this as follows:

s∗i + scap∗
i − d∗i = ∑

j∈N
yijxij, ∀i ∈ N , (11)

Nevertheless, the non-convexity remains in Equation (9), which implies that this needs
to be relaxed as described below: ∣∣∣∣xij

∣∣∣∣2 = ||vi||2
∣∣∣∣vj
∣∣∣∣2, (12)

now, if we define a new real variable ωi as ||vi||2, then, expression (12) can be rewritten
as follows:
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∣∣∣∣xij
∣∣∣∣2 = ωiωj,∣∣∣∣xij
∣∣∣∣2 =

1
4
(
ωi + ωj

)2 − 1
4
(
ωi −ωj

)2,∣∣∣∣xij
∣∣∣∣2 + 1

4
(
ωi −ωj

)2
=

1
4
(
ωi + ωj

)2,∣∣∣∣∣∣∣∣ 2xij
ωi −ωj

∣∣∣∣∣∣∣∣ = ωi + ωj. (13)

Note that Equation (13) is still a non-convex equality constraint; however, as recom-
mended in [29], this can be relaxed as a second-order constraint by replacing the equality
symbol with an inequality one as presented below:∣∣∣∣∣∣∣∣ 2xij

ωi −ωj

∣∣∣∣∣∣∣∣ ≤ ωi + ωj. (14)

At this point, the problem of the optimal location and sizing of capacitor banks in
an electrical distribution system is convexly treatable via MI-SOCP, whose mathematical
characteristics are summarized in Figure 3.

Convex Equations
(3)–(7), (10)–(11) and (14)

zki ∈ {0, 1}
Binary

MI-SOCP

Figure 3. Equivalent MI-SOCP model for the problem of the optimal location and sizing of capacitor
banks in distribution networks.

Note that the SOCP approximation is presented as a function of xij and ωi instead
of the voltages vi. Notwithstanding, it is possible to recover the original voltages by the
following two-step procedure: First, the voltage magnitudes are computed as vi =

√
ωi.

This value exists, and it is real since ωi ≥ 0; Second, the angle of the voltages is calculated
from θij = ang(xij) in a forward iteration, starting from θ1 = 0. Therefore, a power flow
calculation is not required after the optimization problem is solved.

4. Solution Methodology

To address the optimal solution of the problem of the optimal location and sizing of
capacitor banks in power distribution networks, the classical B&B method is combined
with the SOCP relaxation of the power flow problem as depicted in Figure 3. Note that an
MI-SOCP problem has the following general structure:

‖Aix + bi‖ ≤ α>i x + β>i zi + γi, (15)

where decision variables contain continuous x and binary ones z; Ai are real matrices; bi, αi
and βi are real vectors; and γi are constants for each constraint i.

Observe that most of the integer programming models and the MI-SOCP model may
be solved using a modified version of the B&B method, as depicted in Figure 4. At each



Computation 2022, 10, 32 8 of 14

iteration, this computes an SOCP problem that uses an interior point method specially
designed for this type of problem [34]. The method benefits from the properties of the SOCP
problems related to convexity and the fast convergence of the interior point methods [17],
with a guarantee of finding the optimal global solution at each node.

N0

N1 N2

N3 N4

z1 =
1z 1

=
0

z2 =
1z 2

=
0

Relaxed SOCP problem

SOPC1 SOPC2

SOPC3 SOPC4

Figure 4. Schematic representation of the B&B method for addressing MI-SOCP problems.

Note that the literature reports different versions of the interior point method for
convex optimization problems. Generally, these methods can be classified into two groups:
primal and primal-dual methods. Primal methods are those based on the work reported
in [35], which can be easily extended to SOCP problems. Primal-dual requires more effort
in application. However, numerical validations have demonstrated the advantages of this
in terms of convergence [36].

5. Test System and Simulation Cases

To validate the proposed MI-SOCP approach, two classical radial distribution net-
works composed of 33- and 69-nodes operated at 12.66 kV are employed. The main
characteristics of these test feeders are summarized below.

5.1. IEEE 33-Node System

The system consists of 33 nodes, 32 branches, and a unique slack node located at node
1. The feeder configuration is depicted in Figure 5a, and all its parameters are reported in
Table 1. Its initial active power losses are equal to 210.9876 kW. This system’s total active
and reactive power demands are 3715 kW and 2300 kvar, respectively. The voltage and
power base values considered are 12.66 kV and 1 MW, respectively.

∼
slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26 27 28 29 30 31 32 33

(a)

∼ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

51

52

66

67

68

69

28 29 30 31 32 33 34 35

(b)

Figure 5. Electrical configuration of the test systems: (a) IEEE 33-node system and (b) IEEE 69-
node system.
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Table 1. Electrical parameters of the IEEE 33-node test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25
10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2860 1.7210 60 20 32 33 0.3410 0.5302 60 40

5.2. 69-Bus System

This test system is composed of 69 nodes, 68 branches, and a unique slack node located
at node 1. The configuration of this feeder is illustrated in Figure 5b, and all its parameters
are listed in Table 2. Its initial active power losses are equal to 225.0720 kW. This system’s
total active and reactive power demands are 3890.7 kW and 2693.6 kvar, respectively. The
voltage and power base values chosen are 12.66 kV and 1 MW, respectively.

Table 2. Electrical parameters of the IEEE 69-node test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0
4 5 0.0251 0.0294 0 0 38 39 0.0304 0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17
6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 1.2 1
7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0
8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0475 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0
10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0
13 14 1.0440 0.3450 8 5.5 47 48 0.0851 0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5
15 16 0.1966 0.0650 45.5 30 49 50 0.0822 0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1114 3.6 2.7
18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5
19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0
23 24 0.3460 0.1145 28 20 57 58 0.7837 0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888
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Table 2. Cont.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23
28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162
30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42
31 32 0.3510 0.1160 0 0 11 66 0.2012 0.0611 18 13
32 33 0.8390 0.2816 14 10 66 67 0.0047 0.0014 18 13
33 34 1.7080 0.5646 19.5 14 12 68 0.7394 0.2444 28 20
34 35 1.4740 0.4873 6 4 68 69 0.0047 0.0016 28 20

To validate the effectiveness and robustness of the proposed MI-SOCP model, we
consider the following scenario: capacitor banks’ location considering discrete sizes from
0 kvar to 2100 kvar in steps about 150 kvar, as recommended in [13].

6. Computational Validation

The MI-SOCP convex model was solved using CVX and Gurobi [37]. It was imple-
mented in the MATLAB software version 2019b on a desktop computer with an INTEL(R)
Core(TM) i7− 7700 2.8-GHz processor and 16.0 GB of RAM on a 64-bit version of Mi-
crosoft Windows 10 Home. The robustness and efficiency of the proposed methodology for
placement and sizing capacitor banks in distribution networks were compared with the
previously reported solutions in the scientific literature. It is worth mentioning that the
solution MI-SOCP model shown in the results is a solution recovery in original variables
using the exact power flow model presented in Section 2.

6.1. Power Loss Analyses of the Proposed MI-SOCP Model

Table 3 presents the results reached by the proposed MI-SOCP approach in the IEEE
33-node test feeder. Note that its result is compared with optimization procedures based
on metaheuristics reported in the literature: gravitational search algorithm (GSA) [24],
two-stage method (TSM) [38], fuzzy-real coded genetic algorithm (FRCGA) [39], and flower
pollination algorithm (FPA) [13].

Table 3. Optimal location of capacitor banks in the IEEE 33-node test feeder.

Method Nodes Size [kvar] Total Losses [kW]

Base case - - 210.987

GSA [24] {9, 29, 30} {450, 800, 900} 171.780
TSM [38] {7, 29, 30} {850, 25, 900} 144.040

FRCGA [39] {28, 6, 29} {25, 475, 300} 141.240
{8, 30, 9} {175, 400, 350}

FPA [13] {30, 13 24} {900, 450, 450} 139.075

MI-SOCP {12, 24, 30} {450, 450, 1050} 138.416

From Table 3, we can observe that (i) the proposed approach identifies nodes 12, 24,
and 30 as the optimal places to locate capacitor banks with 450 kvar, 450 kvar, and 1050 kvar,
respectively. One of these nodes differs from the solution reported by the FRCGA in which
node 12 is replaced by node 13, and (ii) regarding the objective function, it is possible to
observe that the proposed MI-SOCP model reduces grid power losses by about 34.40%,
followed by the FRCGA and the TSM with 34.08% and 33.06%. These results confirm that
our approach ensures the optimal global solution of the IEEE 33-node test feeder problem
by improving on the best results reported in the literature.

In the case of the IEEE 69-node test feeder, the results achieved by the proposed
MI-SOCP approach are reported in Table 4. Additionally, the teaching-learning-based
optimization (TLBO) [40] is also included for comparison.
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Table 4. Optimal location of capacitor banks in the IEEE 69-node test feeder.

Method Nodes Size [kvar] Losses [kW]

Base case - - 225.072

GSA [24] {11, 29, 60} {900, 1050, 450} 163.280
TSM [38] {19, 62, 63} {225, 900, 225} 148.910

TBLO [40] {12, 61, 64} {600 1050, 150} 146.350
FPA [13] {11, 61, 22} {450, 1350 150} 145.860

MI-SOCP {11, 18, 61} {300, 300, 1200} 145.397

Note that from Table 4, it is possible to observe that the proposed MI-SOCP approach
is the best optimal solution with a total power loss reduction of about 35.40%, followed by
the FPA and the TBLO approaches with 35.19% and 34.98%. Additionally, our MI-SOCP
approach identifies different nodes for optimal location of the capacitor banks, namely,
nodes 11, 18, and 61 with injections of 300 kvar, 300 kvar, and 1200 kvar, respectively.
Conversely, in the case of the FPA approach, the nodes identified are 12, 61, and 22 with
injections of 600 kvar, 1350 kvar, and 150 kvar, respectively. These results confirm that
the proposed MI-SOCP programming finds the global optimum, while the comparative
approaches are stuck in local solutions. Note that a local solution is a result that is optimum
in its closer area, and it is found typically by metaheuristics or commercial solvers when
the solution space is disjunct and nonlinear, i.e., an MINLP model as the case analyzed in
this research.

6.2. Economic Assessment of the Proposed MI-SOCP Model

To demonstrate the effectiveness of the proposed MI-SOCP model in solving the
problem of the optimal placement and sizing of capacitor banks in distribution networks,
in this section, we economically compare the proposed MI-SOCP model and two recent
literature reports presented by Riaño et al., in [3], in which the Chu & Beasley genetic
algorithm (CBGA) and the exact solution in the GAMS software were applied to the IEEE
33- and IEEE 69 bus systems. The considered costs for the capacitor banks are listed in
Table 5.

Table 5. Capacitor options and costs per capacity.

Option Qc (kvar) Cost ($/kvar-Year) Option Qc (kvar) Cost ($/kvar-Year)

1 150 0.500 8 1200 0.170
2 300 0.350 9 1350 0.207
3 450 0.253 10 1500 0.201
4 600 0.220 11 1650 0.193
5 750 0.276 12 1800 0.870
6 900 0.183 13 1950 0.211
7 1050 0.228 14 2100 0.176

Note that when the costs of the capacitors are considered, the objective function takes
the following form:

min Acost = Kp ploss + ∑
i∈N

∑
k∈C

KcQczik, (16)

where kp is a factor that quantifies the costs of the energy losses during a year of op-
eration considering the peak load scenario during 8760 h. The kp factor based on the
recommendations in [3] is taken as US$/kW-year 168.

The numerical results of the CBGA, the GAMS software, and the proposed MI-SOCP
model for the IEEE 33- and IEEE 69- bus systems are presented in Table 6,
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Table 6. Location, sizes, and annual operative costs for both test feeders when fixed-step capacitors
are included.

Method Size (Node) (Mvar) Losses (kW) C. Caps. US$ C. Total US$

IEEE 33-bus system

GAMS {0.30(14),0.45(24),1.05(30)} 139.292 458.25 23,859.313
CBGA {0.45(12),0.45(24),1.05(30)} 138.416 467.10 23,721.108

MI-SOCP {0.45(12),0.45(24),1.05(30)} 138.416 467.10 23,721.108

IEEE 69-bus system

GAMS {0.45(11),0.15(27),1.20(61)} 145.738 392.85 24,876.910
CBGA {0.45(12),0.15(22),1.20(61)} 145.521 392.85 24,840.347

MI-SOCP {0.45(12),0.15(21),1.20(61)} 145.520 392.85 24.840.189

The numerical results in Table 6 show the following:

X For both test feeders, the CBGA and the proposed MI-SOCP reach the same numerical
solution; however, the effectiveness of the CBGA was 5% in the IEEE 33-bus system
and 12% for the IEEE 69-bus system when 100 consecutive evaluations were executed.
These results imply that there exists less than 88% probability that in only one execu-
tion of the CBGA, it effectively reaches the optimal objective function value, while
the MI-SOCP, due to the convexity of the solution space, finds the global optimum
without recurring in any statistical evaluation.

X Numerical results with the GAMS solver confirm that the MINLP model that repre-
sents the studied problem is hard to solve owing to the non-convexity of the power
flow equations. Note that for both test feeders, the GAMS software is stuck in locally
optimal solutions.

X Regarding the total processing times, the MI-SOCP approach takes about 6.85 s to
solve the studied problem in the IEEE 33-bus system and 26.99 s in the case of the
IEEE 69-bus system, which can be considered fast processing times owing to the large
size of the solution space explored (e.g., one million possible solutions), confirming
the effectiveness of the proposed mixed-integer conic approximation to find the global
optimal solution of complex MINLP models for distribution grids, which is clearly
not ensurable with metaheuristic methods.

7. Conclusions and Future Work

This paper focused on the optimal siting and sizing of fixed-step capacitor banks in
electrical AC distribution using an MI-SOCP approach. The proposed approach mixed
the B&B method and second-order cone relaxation to find the optimal solution to the
problem treated in this work. The B&B method is responsible for the location problem
of the capacitor banks. At the same time, the SOCP relaxation focuses on the capacitor
banks’ sizing problem from the optimal power flow solution. The main advantages of the
MI-SOCP approach are guaranteeing the global optimum and not requiring parametric
adjustments, such as the metaheuristic optimization methods conventionally implemented
to solve this problem. Numerical validations demonstrate the superiority of the MI-SOCP
approach, in which the global optimal solution is always reached, for both energy losses
and economic evaluation. For the IEEE 33-node test feeder, the MI-SOCP approach noted a
total power loss minimization of about 34.40%, which is better than the solution reached
by the FRCGA, about 34.08%, while for the IEEE 69-node test feeder, a total power loss
minimization percentage of about 35.40% is noted. This is better than the solution report
by the TBLO approach, which is about 35.19%. In the case of the economic evaluation, the
MI-SOCP approach achieved the best solution for both test feeders.

Comparisons with the CBGA show that it has the ability to find the global optimum
for the IEEE 33- and IEEE 69-bus system, but the probability of finding this is about 5% for
the IEEE 33-bus system and 12% in the case of the IEEE 69-bus system, which implies at
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least 88% probability that the CBGA stays stuck in the local optimal solution, which does
not happen with the proposed MI-SOCP model due to the combination of the B&B and the
conic formulation.

In future research, we can suggest using the MI-SOCP model for the optimal location
and operation of battery energy storage systems in alternating current (AC) and direct
current (DC) grids under an economic dispatch environment and the reformulation of the
phase-balancing problem for electrical networks in AC and DC paradigms from the convex
point of view to minimize grid power losses with the guarantee of global convergence.
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