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Abstract: This paper contributes with a new two-stage optimization methodology to solve the
problem of the optimal placement and sizing of solar photovoltaic (PV) generation units in medium-
voltage distribution networks. The optimization problem is formulated with a mixed-integer nonlin-
ear programming (MINLP) model, where it combines binary variables regarding the nodes where
the PV generators will be located and continuous variables associated with the power flow solution.
To solve the MINLP model a decoupled methodology is used where the binary problem is firstly
solved with mixed-integer quadratic approximation; and once the nodes where the PV sources will
be located are known, the dimensioning problem of the PV generators is secondly solved through an
interior point method applied to the classical multi-period power flow formulation. Numerical results
in the IEEE 33-bus and IEEE 85-bus systems demonstrate that the proposed approach improves the
current literature results reached with combinatorial methods such as the Chu and Beasley genetic
algorithm, the vortex search algorithm, the Newton-metaheuristic algorithm as well as the exact
solution of the MINLP model with the GAMS software and the BONMIN solver. All the numerical
simulations are implemented in the MATLAB programming environment and the convex equivalent
models are solved with the CVX tool.

Keywords: solar photovoltaic generation; mixed-integer quadratic convex approximation; annual
grid operating costs minimization; conic approximation

1. Introduction

Nowadays, the harmful effects of global warming make necessary important changes
in the energetic consumption worldwide [1,2]. In the case of electrical energy, the sys-
tems with fossil fuels are in the third place with total greenhouse gas emissions to the
atmosphere [3], behind transportation systems and the cow and pork beef production [4],
respectively. Electrical distribution networks contribute indirectly to global warming, since
these systems buy energy in the frontiers of the power system (i.e., substations) to provide
these to all end-users. However, if the power system is predominantly thermal, greenhouse
gas emissions are caused due to the usage of this electrical energy in medium and low
voltage levels.

In distribution levels, to reduce the usage of thermal energy from power systems,
renewable energies appear as a promissory alternative since these can supply part of this
energy consumption with minimum environmental impact [5]. In the case of renewable
energy resources, the most common technologies are solar photovoltaic (PV) and wind
power sources [6]. Since solar radiation has small variations throughout the year and these
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are cheaper in comparison with small wind turbines [7], countries located in the equatorial
region prefers the usage of PV sources in medium-voltage grids.

Owing to the fact that optimal integration of the renewable energy resources can help
with the greenhouse gas emissions’ minimization, distribution companies are massively
integrating these sources in their grids [8]. However, these are integrated using mainly
economical objective function indicators instead of environmental ones [9]; nonetheless,
these objectives are closely connected due to the minimization of the energy purchasing
costs in the substation bus is equivalent to minimize the tons of greenhouse gas emissions
produced by thermal sources, since these are directly replaced by renewable generation [10].

The location of PV generation units in distribution networks, considering the econom-
ical and technical aspects, has recently gained significant attention in scientific literature.
Some of the most relevant works are presented below. The authors of [11] applied the
classical Chu and Beasley genetic algorithm to locate and size PV generation units in
radial distribution networks. The objective function value was the minimization of the
annual grid operative costs of the network, which includes the energy purchasing costs in
the substation terminals added with the investment and operating costs of the PV units.
Numerical results in the IEEE 33- and IEEE 69-bus system demonstrated that the CBGA
improves the results of the exact MINLP model when solved with the GAMS software
and the BONMIN solver. The authors of [12] proposed the application of the improved
version of the jaya optimization algorithm to locate PV sources in distribution networks
considering the simultaneous minimization of the grid power losses and voltage profile
improvement. Numerical results in the IEEE 33-bus system demonstrated the effectiveness
of the proposed optimization algorithm. However, the main flaw of this research is that the
authors did not include an economic analysis regarding the PV generators, which makes it
difficult to determine the feasibility of the solution in terms of the investment recovering
during the planning period. In [10], the application of the Newton-metaheuristic algorithm
(NMA) it is proposed to locate and size PV generators in radial distribution grids. The
objective function corresponds to the minimization of the annual grid operation costs,
which includes the energy purchasing costs in the substation terminals summed with the
investment and operating costs of the PV sources. Numerical results in the IEEE 34- and
IEEE 85-bus systems demonstrated the efficiency of the NMA when compared with the
CBGA and the exact solution in the GAMS software. Cortes-Caícedo et al. [13] presented
the application of the discrete version of the vortex search algorithm to locate and size PV
sources in radial distribution networks with 33 and 69 nodes. The main contribution of
the authors correspond to the generalization of the proposed methodology for distribution
networks with alternating- and direct-current technologies. Numerical results showed
superior performance compared to the CBGA and the GAMS software. The authors of [9]
studied the problem of the optimal placement and sizing of renewable energy resources and
batteries in medium- and low-voltage distribution networks. To deal with the problem of lo-
cation, the authors used the classical simulated annealing algorithm. To determine the size
of these distributed energy resources, the authors proposed an equivalent mixed-integer
linear programming model. Numerical results showed the effectiveness of the proposed
approaches in a test feeder composed of 11, 135, and 230 nodes, respectively. However,
the main flaw of this work corresponded to the lack of comparison with metaheuristic or
exact methodologies.

The main contribution of this research corresponds to the proposition of a two-stage
methodology to locate and size PV generation units in distribution networks, where the
problem of location is decoupled from the problem of sizing. To determine the best places
for locating PV sources in the first stage, a mixed-integer quadratic convex model that can
be solved by combining the interior point method with the Branch and Bound approach
by ensuring the global optimum finding is proposed. In the second stage, the application
of the classical logarithmic barrier interior point method is proposed to determine the
optimal sizes of the PV sources. Numerical results in two test feeders known as the IEEE 33-
and IEEE 85-bus networks demonstrate the effectiveness and robustness of the proposed
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optimization method when compared with literature reports such as the genetic algorithm,
the Newton-metaheuristic algorithm, the vortex search algorithm, and the exact solution of
the MINLP model in the GAMS software.

The remainder of this research has the following organization: Section 2 describes the
exact MINLP formulation of the problem of the optimal location and sizing of PV genera-
tion units in radial distribution grids. Section 3 reveals the proposed two-stage solution
methodology based on decoupling the problem of location from the problem of the sizing.
Section 4 shows the main characteristics of the IEEE 33-bus system and the parametrization
of the objective function. Section 5 presents the main numerical achievements with the pro-
posed two-stage optimization methodology as well as its complete comparison with recent
literature reports in the IEEE 33- and IEEE 85-bus systems. Section 6 lists the concluding
remarks derived from this research as well as some possible future researches.

2. Optimization Problem

To determine the optimal location and sizing of PV generation units in distribution
networks, a mixed-integer nonlinear programming (MINLP) model is formulated [14]. In
this optimization model, binary (also integer) variables define the nodes where the PV
sources will be sited, while the continuous variables are related with power flow variables,
i.e., voltages, currents, active and reactive power flows in lines, and power injections in
all the nodes, respectively [15]. The MINLP model that represents the studied problem is
presented below.

2.1. Objective Function

The main goal with the optimal placement and sizing of PV generation units in
distribution networks corresponds to the total grid operative costs minimization [16,17].
These costs are calculated with the sum of the annual energy purchasing costs in the
substation bus and the investment and operating costs in renewable generation [11]. The
objective function and its components are defined in Equations (1)–(3).

Acost = A1 + A2, (1)

A1 = CkWhT
(

ta

1− (1 + ta)−Nt

)(
∑

h∈H
∑

i∈N
pcg

0i,h∆h

)(
∑
t∈T

(
1 + te

1 + ta

)t
)

, (2)

A2 = Cpv

(
ta

1− (1 + ta)−Nt

)(
∑

i∈N
ppv

i

)
+ CO&MT

(
∑

h∈H
∑

i∈N
Gpv

h ppv
i,h∆h

)
, (3)

where Acost represents the total annual operative costs of the network, A1 calculates the
energy purchasing costs in the substation bus, and A2 sums the PV installation costs per
kilowatt peak and its corresponding costs as a function of the total expected clean energy
generation during the planning period. CkWh represents the average value of the energy
purchasing costs in terminals of the substation; T is defined as the number of days of an
ordinary year; ta is defined as the internal return rate of the distribution company, which is
expected to recover the investment during the project duration; Nt defines the duration of
the project in years; pcg

0i,h is associated with the active power flow from the substation bus,
i.e., node 0, to each node i directly connected with this node during each period of time h;
∆h = 1 h defines the period of time where all the variables in the MINLP hold constant. te
describes the expected cost increment of the energy costs during the project duration; Cpv
defines the average installation of a kilowatt-peak of power generation with PV sources.
ppv

i defines the size of the PV generation source connected at node i. CO&M represents
the total maintenance and operating cost of generating a kilowatt power with PV sources;
Gpv

h defines the expected generation curve from PV sources in the area of influence of the
distribution grid. Finally, the sets that define the number of periods in the daily operation,
the number of nodes that composes the distribution grid, and the number of years of the
planning period are defined asH, N , and T , respectively.
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Remark 1. The objective function defined in Equation (1) exhibits a linear form, which implies that
this function is convex (also concave) as function of the variables pcg

0i,h and ppv
i [18].

2.2. Set of Constraints

The problem of the optimal siting and sizing of PV generation units is constrained
by active and reactive power balance equilibrium at each node, voltage regulation limits
allowed per node, voltage drops per line, and devices capabilities, among others [19]. These
constraints are presented below.

pij,h − Riji2ij,h − ∑
k:(jk)∈L

pjk,h = Pd
j,h − Gpv

h ppv
j , {∀j ∈ N , j 6= slack, ∀h ∈ H}, (4)

qij,h − Xiji2ij,h − ∑
k:(jk)∈L

qjk,h = Qd
j,h, {∀j ∈ N , j 6= slack, ∀h ∈ H}, (5)

v2
j,h = v2

i,h − 2
(

Rij pij,h + Xijqij,h

)
+
(

R2
ij + X2

ij

)
i2ij,h {∀ij ∈ E , ∀h ∈ H}, (6)

p2
ij,h + q2

ij,h = v2
i,hi2ij,h, {∀ij ∈ L, ∀h ∈ H} (7)

zjPmin
pv ≤ ppv

j ≤ zjPmax
pv {∀j ∈ N}, (8)

vmin
j ≤ vj,h ≤ vmax

j {∀j ∈ N , ∀h ∈ H}, (9)

−imax
ij ≤ iij,h ≤ imax

ij {∀ij ∈ L, ∀h ∈ H}, (10)

∑
i∈N

zj ≤ Nmax
pv , (11)

zj ∈ {0, 1}, {∀i ∈ N}, (12)

where the active power flows between nodes i and j (and j and k) during the period of
time h are defined by the variables pij,h (pjk,h) and qij,h (pjk,h), respectively. The active and
reactive power demands at node j are represented by Pd

j,h and Qd
j,h at each period of time

h; Xij and Rij are the reactance and resistance parameters associated with the line ij. Pmin
pv

and pmax
pv represent the minimum and maximum dimensions allowed for a PV generator

that will be installed in the distribution grid. zj is the binary variable that decides if a PV
generation unit is connected (zj = 1) or not (zj = 0) in the node j; vmin

j and vmax
j are the

minimum and maximum voltage regulation bounds permitted by regulatory entities in all
the nodes of the network; imax

ij is the maximum current (i.e., thermal bound) associated with
the conductor that connects nodes i and j; Nmax

pv is the maximum number of PV generation
units available for installation along the distribution grid.

Remark 2. The main complication with the set of constraints (4) to (12) is that there are four
nonlinear non-convex constraints, i.e., power balance equilibrium constraints (4) and (5), the voltage
drop at each line (6), and the power definition in Equation (7). These constraints make it necessary
to propose efficient strategies to solve this type of MINLP model efficiently [20].

2.3. Model Characterization

The optimization model, defined from Equations (1) to (12), corresponds to the MINLP
representation of the problem of the optimal siting and sizing of PV generation units in
radial distribution networks, and it has the following interpretation. Equation (1) defines
the objective function of the optimization problem, which is composed of the annual energy
purchasing costs in the substation bus, i.e., Equation (2), and the investment and operating
costs in PV generation units in Equation (3). The active and reactive power equilibrium
constraints are defined in Equations (4) and (5). Note that these equations ensure the
energy balance at each node at each period of time. Equation (6) defines the voltage drop
at each distribution line as a function of the voltage magnitudes in its terminals and the
active and reactive power flows on it. Equality constraint (7) shows the application of
the power definition at each sending terminal of each distribution line for each period
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of time. Box-type restriction in (8) defines the maximum power generation output in the
PV generation that would be installed at node j in the case of the binary variable zj being
activated. Box-type constraints (10) and (11) define the grid voltage regulation bounds and
the maximum thermal bounds that can be supported by the distribution lines (i.e., current
transportation capabilities of the conductors in the corridor ij.), respectively. Inequality
constraint (11) limits the maximum number of PV generation sources that can be integrated
in the whole distribution network, and Constraint (12) presents the discrete nature of the
decision variable zj.

The complexity of the optimization model (1) to (12), mainly caused by the combina-
tion of nonlinear non-convex constraints in the continuous domain with binary variables
produces a complex MINLP model that is hard to solve with exact optimization methods,
mainly addressed in the current literature with combinatorial methods [12]. In this research,
we propose a novel two-stage optimization approach that decouples the problem of PV
location from the problem of the PV sizing.

3. Solution Methodology

In this section, we present a novel two-stage optimization strategy to locate and size
PV generation units in radial distribution networks with the aim of minimizing the total
annual operational costs of the distribution system [21,22]. The first stage of the proposed
methodology consists of the formulation of a mixed-integer quadratic model that allows
defining the nodes where the PV generation units will be located. In the second stage,
the resulting multi-period optimal power flow model with an logarithmic barrier interior
point method is evaluated. Numerical results in the IEEE 33- and IEEE 85-bus systems will
demonstrate the effectiveness and robustness of the proposed optimization model to deal
with better objective function values when compared with the current literature results.
The main aspects of the proposed two-stage optimization approach are discussed below.

3.1. First Stage: Selection of the Nodes for Locating PV Sources

In this section, we present an approximate quadratic convex model to select the nodes
where the PV generators will be located. With this mixed-integer convex (MIC) model, the
exact MINLP formulation is reduced to a MIC model in the first stage and an NLP model in
the second stage. The MIC model is obtained after applying the following considerations
based on the recommendations provided by Taylor et al. in [23]:

X The voltage magnitudes using per-unit representation are near the unity value, i.e.,
vj = 1, ∀j ∈ N .

X The magnitude of the active and reactive power losses in the branches are negligible
with respect to the magnitude of the power flows on these.

With the aforementioned assumptions, the set of constraints (4) to (12) can be simplified
as follows:

pij,h − ∑
k:(jk)∈L

pjk,h = Pd
j,h − Gpv

h ppv
j , {∀j ∈ N , j 6= slack, ∀h ∈ H}, (13)

qij,h − ∑
k:(jk)∈L

qjk,h = Qd
j,h, {∀j ∈ N , j 6= slack, ∀h ∈ H}, (14)

zjPmin
pv ≤ ppv

j ≤ zjPmax
pv {∀j ∈ N}, (15)

∑
i∈N

zj ≤ Nmax
st , (16)

zj ∈ {0, 1}, {∀i ∈ N}, (17)

Note that the main characteristic of the set of constraints (13) to (17) is that these are a
set of mixed-integer linear constraints that can be solved with a modification of the Branch
and Bound method [24]. Owing to the objective function and its components defined from
Equations (1) to (3), this remains without any approximation. However, in order to include
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the effect of resistance parameter (i.e., power losses in distribution lines) from Equation (6),
an approximation of the energy losses costs is obtained, which is added to the objective
function as follows:

Aapprox = Acost + αCkWhT ∑
ij∈L

∑
h∈H

Rij

(
p2

ij,h + q2
ij,h

)
∆h. (18)

where α is defined an activation parameter that defines if the approximate costs of the
energy losses is used (α = 1) or not (α = 0) to define the nodes where the PV sources will
be installed.

Remark 3. Observe that the approximated objective function in Equation (18) is a quadratic convex
function, which when added to the relaxed set of constraints (13)–(17) produces a mixed-integer
quadratic convex model that can be solved by ensuring the global optimum reaching with the correct
combination of the Branch and Bound method with interior point methods [20].

It is worth emphasizing that the optimization model (13)–(18) defines the optimal set
of nodes where the PV sources will be connected, and also it provides approximate sizes
for these sources; however, these sizes are not the correct values for the PV generators’
capacities, since these were obtained with the approximate grid model that does not
consider the voltage and current variables. In this sense, from the solution of the MIC
model (13)–(18), we only take the location of the PV sources to fix these in the second
stage (presented below), which is entrusted with defining the correct (i.e., optimal) PV
generation sizes.

3.2. Second Stage: Selection of the Size PV Sources

With the solution of the equivalent MIC model defined from (13) to (18), the value of
the binary variables zj for all the nodes of the network are fixed. This solution implies that
the MINLP model (1)–(12) is transformed into a NLP model, which can be solvable with a
interior point method with logarithmic barrier [25]. In this research, to solve the resulting
NLP model, the General Algebraic Modeling System (GAMS) software [26] is used. The
general solution methodology to locate and size PV generation units in distribution grids is
summarized in the flow diagram depicted in Figure 1.

It is worth mentioning that the search process presented in Figure 1 ends when all the
possible values for the α-parameter have been tested. In addition, observe that the proposed
optimization methodology depicted in Figure 1 is independent of the optimization tool,
and it can be implemented in multiple software that deals with mixed-integer convex
formulations, with the main advantage that its solution will always be the same due to
the convexity of the solution space in the case that the binary variable input in the second
optimization model is the same.



Electronics 2022, 11, 961 7 of 18

Start: Two-stage
proposed approachAC network info. Load profile

Set the value of
the α-parameter

Solve the MIC
model (13)–(17)

Find the values of the
binary variables zj.

Fix the binary
variables zj in the

model (1)–(12)

Resolve the
model (1)–(12)

Find the sizes of the
PV sources, i.e., ppv

j

Calculate the value
of the objective

function, i.e., Acost

Evaluation
ends?

End: Analy-
sis of results

Solution report

Modify the value
of the α-parameter

no

yes

Figure 1. General implementation of the two-stage methodology.

4. Test Feeders

In this section, we present the test feeders employed in the numerical validation of the
proposed optimization methodology. The first test feeder corresponds to the IEEE 33-bus
system, and the second test feeder is the IEEE 85-bus system. The complete information for
each one of these distribution grids is presented below.

4.1. IEEE 33-Bus System

The electrical connection among nodes in this test feeder is depicted in Figure 2.
All the electrical parameters of the IEEE 33-bus system are listed in Table 1. In addition,

it is important to mention that for both test feeders, the substation bus is operated with a
medium-voltage magnitude of 12.66 kV.

4.2. IEEE 85-Bus System

The IEEE 85-node test feeder is a medium-voltage distribution network with 85 nodes
and 84 lines (radial distribution system), which is operated with 11 kV in the substation
bus. The total active and reactive power demand under the peak load consumption for this
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system is 2570.28 + j2622.20 kVA. The electrical configuration is depicted in Figure 3, and
its parametric information for this test feeder is listed in Table 2.

AC

Slack

1 2

3 4 5

6
7 8 9 10 11 12 13 14 15 16 17 18

23
24
25

19
20
21
22

26 27 28 29 30 31 32 33

Figure 2. Electrical network under analysis.

5.2. IEEE-85 bus system

Single line diagram of the system is shown in Fig. 9 and the
system data are listed in Table A2, in appendix. The base val-

ues are considered as 100 MVA and 11 kV. The total real and

reactive power loss for the base case is computed using
MATLAB and losses are found to be 316.12 kW and
198.6 kVAr respectively, Operating cost is 1,93,845 $/kWh
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Figure 9 IEEE-85 bus radial distribution test system.
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Optimal siting of capacitors in radial distribution network 505

Figure 3. Single-line diagram for the IEEE 85-node test feeder.

Table 1. Electrical data of the IEEE 33-node system.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40
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4.3. Demand and PV Generation Curves, and Objective Function Parametrization

One of the key aspects in the optimal design of solar PV generation systems corre-
sponds to the effectiveness and robustness of the solar and demand curves prediction, since
these are exogenous inputs of the optimization model, which implies that the quality of
the solution is highly dependent on the precision of these data [27,28]. In this research,
we use the information of the solar and demand curves typical from the Medellín city in
Colombia, which was originally used by Grisales et al. in [29] to operate battery energy
storage systems in direct current distribution networks. The demand and solar generation
curves are presented in Figure 4.

Table 2. Electrical data of the IEEE 85-node system.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.108 0.075 0 0 34 44 1.002 0.416 35.28 35.99
2 3 0.163 0.112 0 0 44 45 0.911 0.378 35.28 35.99
3 4 0.217 0.149 56 57.13 45 46 0.911 0.378 35.28 35.99
4 5 0.108 0.074 0 0 46 47 0.546 0.226 14 14.28
5 6 0.435 0.298 35.28 35.99 35 48 0.637 0.264 0 0
6 7 0.272 0.186 0 0 48 49 0.182 0.075 0 0
7 8 1.197 0.820 35.28 35.99 49 50 0.364 0.151 36.28 37.01
8 9 0.108 0.074 0 0 50 51 0.455 0.189 56 57.13
9 10 0.598 0.410 0 0 48 52 1.366 0.567 0 0

10 11 0.544 0.373 56 57.13 52 53 0.455 0.189 35.28 35.99
11 12 0.544 0.373 0 0 53 54 0.546 0.226 56 57.13
12 13 0.598 0.410 0 0 52 55 0.546 0.226 56 57.13
13 14 0.272 0.186 35.28 35.99 49 56 0.546 0.226 14 14.28
14 15 0.326 0.223 35.28 35.99 9 57 0.273 0.113 56 57.13
2 16 0.728 0.302 35.28 35.99 57 58 0.819 0.340 0 0
3 17 0.455 0.189 112 114.26 58 59 0.182 0.075 56 57.13
5 18 0.820 0.340 56 57.13 58 60 0.546 0.226 56 57.13

18 19 0.637 0.264 56 57.13 60 61 0.728 0.302 56 57.13
19 20 0.455 0.189 35.28 35.99 61 62 1.002 0.415 56 57.13
20 21 0.819 0.340 35.28 35.99 60 63 0.182 0.075 14 14.28
21 22 1.548 0.642 35.28 35.99 63 64 0.728 0.302 0 0
19 23 0.182 0.075 56 57.13 64 65 0.182 0.075 0 0
7 24 0.910 0.378 35.28 35.99 65 66 0.182 0.075 56 57.13
8 25 0.455 0.189 35.28 35.99 64 67 0.455 0.189 0 0

25 26 0.364 0.151 56 57.13 67 68 0.910 0.378 0 0
26 27 0.546 0.226 0 0 68 69 1.092 0.453 56 57.13
27 28 0.273 0.113 56 57.13 69 70 0.455 0.189 0 0
28 29 0.546 0.226 0 0 70 71 0.546 0.226 35.28 35.99
29 30 0.546 0.226 35.28 35.99 67 72 0.182 0.075 56 57.13
30 31 0.273 0.113 35.28 35.99 68 73 1.184 0.491 0 0
31 32 0.182 0.075 0 0 73 74 0.273 0.113 56 57.13
32 33 0.182 0.075 14 14.28 73 75 1.002 0.416 35.28 35.99
33 34 0.819 0.340 0 0 70 76 0.546 0.226 56 57.13
34 35 0.637 0.264 0 0 65 77 0.091 0.037 14 14.28
35 36 0.182 0.075 35.28 35.99 10 78 0.637 0.264 56 57.13
26 37 0.364 0.151 56 57.13 67 79 0.546 0.226 35.28 35.99
27 38 1.002 0.416 56 57.13 12 80 0.728 0.302 56 57.13
29 39 0.546 0.226 56 57.13 80 81 0.364 0.151 0 0
32 40 0.455 0.189 35.28 35.99 81 82 0.091 0.037 56 57.13
40 41 1.002 0.416 0 0 81 83 1.092 0.453 35.28 35.99
41 42 0.273 0.113 35.28 35.99 83 84 1.002 0.416 14 14.28
41 43 0.455 0.189 35.28 35.99 13 85 0.819 0.340 35.28 35.99

In addition, to calculate the objective function value, the parameters reported in Table 3
are used. Some of these values are taken from [30].
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Figure 4. Electrical generation and demand curves for Medellín city in Colombia.

Table 3. Data for objective function calculation.

Param. Value Unit Param. Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % te 2 %
Nt 20 years ∆h 1 h

CPV 1036.49 USD/kWp CO&M 0.0019 USD/kWh
ppv,max

i 2400 kW ppv,min
i 0 kW

Nmax
pv 3 — ∆V ±10 %

5. Computational Validation

To validate the effectiveness of the proposed two-stage methodology to locate and size
PV sources in distribution networks, we combine the convex tool for MATLAB software
known as the CVX tool where the MIC model is solved, and the GAMS software where the
equivalent NLP model is resolved. In addition, the exact MINLP model is also solved with
the GAMS and the BONMIN solver, and with the discrete-continuous Chu and Beasely ge-
netic algorithm (DCCBGA) proposed in [11], the discrete-continuous Newton-metaheuristic
algorithm proposed in [10], and the discrete-continuous vortex-search algorithm proposed
in [13]. Note that for the MATLAB implementations, its 2021b on a PC with an AMD
Ryzen 7 3700 2.3-GHz processor and 16.0 GB RAM was used, running on a 64-bit version
of Microsoft Windows 10 Single language.

For both test feeders, the benchmark case corresponds to the simulation scenario with
the initial conditions of the distribution grid without including PV generation sources
during the planning period. This simulation scenario provides the grid reference operative
costs, which are the object of minimization with the optimal integration of the PV sources.

5.1. Results in the IEEE 33-Bus Grid

After applying the solution methodology described in Figure 1, the results in Table 4
are obtained. Note that for this test feeder, the best solution regarding the final objective
function is reached when the α-parameter is assigned to 0.

Table 4. Numerical results in the IEEE 33-bus system for the proposed and comparative methods

Method Location (Node) Size (MW) Acost (USD/year)

Benchmark case — — 3,700,455.38

BONMIN
[
17, 18, 33

] [
1.3539, 0.2105, 2.1452

]
2,701,824.14

DCCBGA
[
11, 15, 30

] [
0.7605, 0.9690, 1.9060

]
2,699,932.28

DCNMA
[
8, 16, 30

] [
2.0961, 1.2688, 0.2770

]
2,700,227.33

DCVSA
[
11, 14, 31

] [
0.7606, 1.0852, 1.8030

]
2,699,761.71

MIC-NLP
[
11, 16, 32

] [
1.0646, 0.8899, 1.6989

]
2,699,753.97
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Numerical results in Table 4 show that:

X The proposed two-stage optimization approach finds a better solution of the IEEE
33-bus system in comparison with the literature reports. The solution of the MIC-NLP
model selects nodes 11, 16, and 32 to locate PV generation units with sizes of 1064.6 kW,
889.9 kW, and 1698.9 kW, respectively. With this solution, it improved the result of the
DCVSA by about USD/year 7.74.

X With regards to the objective function value, the proposed MIC-NLP approach al-
lows reducing the annual grid operative costs by about USD1000701.41 per year of
operation, i.e., a reduction of 27.04% with respect to the benchmark case.

X The solution of the BONMIN solver in the GAMS software is the worst solution re-
ported in Table 4. This situation occurs due to the complexity of the exact MINLP
model to be solved, which makes the exact solvers stuck in locally optimal solutions.
Note that the difference between the proposed MIC-NLP model is about 2070.17 dol-
lars per year of operation, which clearly justifies the proposed two-stage approach to
deal with the location and size of the PV generation units in distribution grids.

X The DCCBGA and the DCNMA present solutions between the BONMIN solver and the
DCVSA. These solutions differ from the proposed MIC-NLP model about USD/year
178.31 and USD/year 473.36, respectively. These differences confirm the effectiveness
of the MIC-NLP model to determine the best nodes to place the PV sources and also
their optimal sizes.

It is important to emphasize that even if the metaheuristic optimizers provide near-
optimal solutions to locate and size PV generation units in the IEEE 33-node system, these
must be evaluated multiple times to make a statistical analysis, which will show their
average performance. However, it is not possible to ensure that in each evaluation, there is
no guarantee to obtain the optimal solution. In the case of the proposed MIC-NLP approach,
the main advantage is that the MIC always provides the set of nodes reported in Table 4
due to its mixed-integer quadratic structure [24], and the logarithmic barrier also ensures
the same solution for the equivalent NLP mode. This situation implies that the proposed
MIC-NLP model does not require statistical analysis and its effectiveness is 100% in solving
the studied problem in the IEEE 33-bus system.

5.1.1. Behavior of Substation Power and Grid Voltage Profiles

To verify that the voltage profiles of the final solution with the PV sources are between
their upper and lower bounds, Figure 5 presents the maximum and minimum voltage
profiles for the IEEE 33-bus system during the daily operation.
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Figure 5. Minimum and maximum voltage magnitudes when the MIC-NLP solution is implemented
in the IEEE 33-node test feeder.

The demeanor of the maximum and minimum voltage profiles in the IEEE 33-bus grid
show that:
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X During the period of time 14 when the PV generation is maximum, it presents the
maximum voltage magnitude of the voltage with a value of 1.0334 pu. Note that this
voltage magnitude exceeds the value of the substation bus; however, it is between the
±10% imposed by the regulatory policies.

X The minimum voltage profile occurs during periods of time where the demand is max-
imum, i.e., 20 and 21, and the renewable generation is zero. Note that the minimum
voltage is 0.9038 pu and as is expected, it meets with the benchmark voltage curve.

In addition, to verify that that the power output in the substation bus is always positive
of null, in Figure 6 the power generation output for the proposed MIC-NLP solution and
its comparison with the benchmark case are illustrated.
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Figure 6. Slack power generation when compared to the benchmark case and the solution proposed
by the proposed MIC-NLP for the IEEE 33-bus system.

Results in Figure 6 confirm that when the PV sources increase their active power
injection at nodes 11, 16, and 32, the amount of active power injection in the slack source
decreases until reaching a zero value when the PV generation is maximum in the period
of time 14. However, in the periods of time when the PV generation is null, i.e., during
periods 1 to 7 and 20 to 24, the slack power generation and the benchmark case have the
same numerical behavior, which is an expected situation due to the inactivity of the PV
sources in those periods.

5.1.2. Uncertainties Effect in the Expected Annual Grid Operating Costs

In this section, we evaluate the effect of the possible renewable energy variations
during the duration of the project. We consider that the expected generation can vary from
10% to 100% of the nominal curve in Figure 4. The effect of the solar energy variation
is determined from the economical point of view regarding the annual grid operating
cost. Note that in Equation (1), the only costs that remain constant are the investment
in renewable energy sizes, since these are selected as the solution provided by the MIC-
NLP model, while the energy purchasing costs and the maintenance costs of the PV are
variables as a function of the net power injection in the PV sources. Figure 7 illustrates the
expected reduction of the total annual grid operating costs as a function of the percentage
of PV generation.

Results in Figure 7 demonstrate that (i) the variation of the PV output generation
drastically affects the expected annual profit, since for penetrations lower than 28.97% the
expected profit after the implementation of the PV resources with the sizes in Table 4, is
null or negative; note that when the PV generation is 30% of the expected generation, the
net profit is only about 0.4153%, i.e., USD15,367.48 per year of operation; (ii) when the
PV generation is from 50% to 80%, the expected profit varies from 8.3330% to 19.7295%,
i.e., in this range, the minimum gain is about USD/year 308,357.54 plus a variable gain of
USD/year 421,725.25; and (iii) the expected increment in the annual grid operative costs
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when the PV generation increases 10% is about 3.8707%, which implies an additional gain
of 143,234.71 dollars per year of operation.
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Figure 7. Effect of the PV generation uncertainties in the annual expected profit.

5.2. Results in the IEEE 85-Bus Grid

Once the proposed methodology described in Figure 1 is applied, the results listed
in Table 5 are found. It is worth emphasizing that the best solution regarding the final
objective function value is reached when the α-parameter is set as 1. In addition, for this test
feeder, the BONMIN solver does not converge to any feasible solution, and the comparative
methods are chosen as the DCNMA and the DCCBGA, based on the results reported in [10].

Table 5. Numerical results in the IEEE 85-bus system for the proposed and comparative methods.

Method Location (Node) Size (MW) Acost (USD/year)

Benchmark case — — 2,686,114.05

DCCBGA
[
47, 48, 68

] [
0.2603, 1.1657, 1.1680

]
1,944,779.15

DCNMA
[
37, 67, 71

] [
1.6313, 0.4633, 0.5038

]
1,944,731.13

MIC-NLP
[
8, 48, 67

] [
0.0000, 1.3450, 1.2452

]
1,944,761.38

Numerical reports in Table 5 allow observe that:

X The proposed two-stage optimization approach only selects two nodes to locate
dispersed generators, which are nodes 48 and 67, with a total peak power installed
capacity of 2590.20 kWp since node 8 is assigned with 0 installed capacity. When
compared with the DCNMA that select nodes 37, 67, and 71 with an installed power
capability of 2598.40 kWp, it is observed that the solution of our approach reduces the
need of PV capacity by about 8.20 kWp with a small increment regarding the final
objective function of USD/year 30.25.

X The reduction with respect to the benchmark reached by the proposed approach is
about 27.60%, its difference with respect to the DCNMA being less than 1.12× 10−3%,
which confirms that both solutions are numerically equivalent, with the main ad-
vantage that the proposed two-stage approach just requires two interventions in the
distribution network (i.e., installation of two PV systems) when compared with the
three interventions required by the DCNMA.

The main advantage of the proposed two-stage solution methodology, when compared
with the DCNMA is that in the former case, the solution of the MIC model always will
report the same set of nodes to locate the PV sources due to the convexity of the solution
space, while the latter requires statistical analysis to obtain the best optimal solution and it
does not guarantee that the solution obtained in each evaluation will be the same due to
the complete optimization model (1)–(11) being non-linear and non-convex.
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5.2.1. Behavior of Substation Power and Grid Voltage Profiles

To verify that the voltage profiles of the final solution with the PV sources are between
their upper and lower bounds, Figure 8 presents the maximum and minimum voltage
profiles for the IEEE 85-bus system during the daily operation.
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Figure 8. Minimum and maximum voltage magnitudes when the MIC-NLP solution is implemented
in the IEEE 85-node test feeder.

The behavior of the upper and lower magnitudes of the voltage profiles in the IEEE
85-bus grid show that:

X During the period of time 14 when the PV generation is maximum, the maximum
voltage magnitude of the voltage with a value of 1.0048pu is presented ; nevertheless,
this value is practically equal to the value of the substation bus.

X The minimum voltage profile occurs during periods of time where the demand is max-
imum, i.e., 20 and 21, and the renewable generation is zero. Note that the minimum
voltage is 0.8713 pu and as is expected, it follows with the benchmark voltage curve.

It is worth mentioning that lower voltage magnitude in the IEEE 85-bus system implies
a voltage regulation of 12.87%, which is out of the typical regulation bounds imposed by
regulatory policies, i.e.,±10%. However, it is the normal operative condition of the network
when not shunt devices are connected, making it impossible to resolve only with PV sources,
as the case studied in this research.

In addition, to verify that that the power output in the substation bus is always positive
of null, Figure 9 illustrates the power generation output for the proposed MIC-NLP solution
and its comparison with the benchmark case.
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Figure 9. Slack power generation when comparing the benchmark case and the solution proposed by
the proposed MIC-NLP for the IEEE 85-bus grid.
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The numerical performance in the IEEE 85-bus system for the slack source confirms
that the power injection in the substation is always positive or null, being in the hour of
the maximum PV generation, i.e., hour 14, zero. In addition, during periods 1 to 7 and
20 to 24, the slack power generation and the benchmark case have the same numerical
behavior, which is an expected situation due to the zero generation in the PV sources for
those periods.

5.2.2. Uncertainties Effect in the Expected Annual Grid Operating Costs

Here, we evaluate the renewable energy variations in the expected annual grid opera-
tional costs. It is considered that the PV sources can vary their energy availability from 10%
to 100% of the nominal curve depicted in Figure 4. Note that in this scenario, the investment
costs in PV sources are constant, while the energy purchasing costs in the substation bus
and the PV maintenance costs are variable as a function of the PV generation availability.
Figure 10 presents the expected reductions in the annual grid operative costs as a function
of the percentage of the PV generation.
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Figure 10. Effect of the PV generation uncertainties in the annual expected profit for the IEEE
85-bus system.

Results in Figure 10 demonstrate as equal as the IEEE 33-bus system that:

i. The variation in the PV generation availability directly affects the expected annual
profit, for the IEEE 85-bus grid positive benefits are obtained for PV generation
availability upper than 27.95%.

ii. For renewable energy penetrations between 50% to 80% the expected profits are
between 8.8161% and 20.2679%. These values implies a minimum annual gain of
US%/year 236,810.84 with a variable gain of USD/year 307,608.97.

iii. The expected increment in the annual grid operative costs when the PV generation
increases 10% is about 3.8953%, which implies an additional gain of 104,633.39 dollars
per year of operation.

5.3. Additional Results

Numerical solutions reported in the previous sections show that the best result with the
proposed MIC-NLP model for the IEEE 33-bus system is reached when the α-parameters is
set as 0; however, in the IEEE 85-bus system, the best solution is found when this parameter
is assigned as 1. For this reason, the solutions of both test feeders when the α-parameter
changes its value are also reported .

X For the IEEE 33-bus system when the α-parameter is set as 1, the nodes where the
PV must be located are 13, 24, and 30, with installed capacities of 1646.64 kWp,
459.07 kWp,and 1949.09 kWp, respectively. With these sizes, the final objective function
value is USD/year 2,700,286.59, i.e., 532.62 dollars per year, which is more expensive
that the optimal solution reported in Table 4, which confirms that in practical terms,
the proposed MIC-NLP model provides two effective solutions for the utility company
that can be analyzed before the final physical implementation.
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X For the IEEE 85-bus system when the α-parameter is set as 0, the nodes where
the PV must be located are 45, 53, and 74, with installed capacities of 772.86 kWp,
783.96 kWp,and 1057.91 kWp, respectively. With these sizes, the final objective func-
tion value is USD/year 1,945,100.44, i.e., 369.31 dollars per year more expensive that
the optimal solution reported in Table 5 with the NMA. As the previous test feeder,
it is possible to affirm that the proposed MIC-NLP is an excellent alternative with
multiple options to locate and size PV sources in distribution systems, which can be
used by the utility to make different studies before the final implementation of the
selected solution.

Regarding processing times for the IEEE 33-bus system, the proposed methodology
takes about 13.5 s solving the location problem and 1.5 s solving the sizing problem. In the
case of the IEEE 85-bus grid, the average time is 15 s for the location problem and 2.2 s for
the sizing problem. These processing times confirm the effectiveness of the proposed MIC-
NLP model to solve the exact MINLP formulation by decoupling this into two subproblems.
It is worth mentioning that the main advantage of the proposed two-stage optimization
model lies in the possibility of finding the same numerical solution at each running of the
complete model, which is not possible with the conventional metaheuristic methods used
to solve MINLP models due to the strong nonlinearities and non-convexities of the power
flow equations and their combination with integer decision variables.

With respect to the comparative methods for the IEEE 33-bus system, the processing
times were as follows: 5.50 s for the DCCBGA, 20.22 s for the DCNMA, and 28.44 s for the
DCVSA. In the case of the IEEE 85-bus grid, these times were: 157.24 s for the DCNMA, and
38.08 for the DCCBGA. These results confirm that the proposed MIC-NLP model to solve
the studied problem is, on average, the most stable method regarding processing times
since it takes 15 s for the IEEE 33-bus grid and 17.20 s for the IEEE 85-bus grid, while the
metaheuristic comparison methods increase their processing times drastically as a function
of the number of nodes in the grid.

6. Conclusions and Future Works

The problem of the optimal siting and dimensioning PV generation sources in radial
distribution networks was addressed in this research by the application of a two-stage
optimization methodology. In the first stage, a simplified mixed-integer quadratic model
was proposed to define the nodes where the PV generations must be installed. With this
information, in the second stage, the nodes in the exact MINLP model (1)–(12) are fixed,
which turned this into a NLP model associated with the dimension problem (optimal power
flow problem). The NLP model is resolved with the application of logarithmic barrier
interior point method available in the GAMS software. Numerical results in the IEEE 33-
and IEEE 85-bus systems demonstrated that:

X The expected annual operative costs reduction for the IEEE 33-bus system (i.e., net
profit) is about 27.04% with the proposed MINLP model, i.e., USD1,000,701.41 per
year of operation, which improved the best current solution reported in the current
literature through the application of the DCVSA about USD/year 7.74. In the case of
the IEEE 85-bus system, this reduction was about 27.60% with respect to the benchmark
case, which was 30.25 dollars per year more expensive than the solution reported by
the NMA.

X The main advantage of the proposed MIC-NLP model is that the problem of the
nodal selection with the MIC model has a unique solution due to the convexity of
the solution space; this implies that the solution regarding the location of the PV
generation is unique for each α value. In addition, when the PV locations are provided
to the interior point method in GAMS, the final solution regarding the sizes does
not change, which implies that statistical validations are not required to verify the
efficiency of our proposal, which is not the case of the metaheuristic optimizers due to
their random nature.
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X The evaluation of the renewable energy variation from 10% to 100% showed that if the
percentage of renewable generation is lower than 28.97% for the IEEE 33-bus system,
and 27.95% for the IEEE 85-bus system, the expected annual profit will be negative or
zero. In addition, when the PV generation is higher than 50% of the initial projected
output, the expected annual profit will be higher than USD/year 308,357.54 for the
IEEE 33-bus grid and higher than USD/year 236,810.84 for the IEEE 85-bus grid.

For future works, it will be possible to develop the following researches: (i) the
formulation on equivalent mixed-integer second-order cone programming model to locate
and size PV generators in distribution grids considering the possibility of generating
PV power from zero to the nominal expected generation curve; and (ii) integrating the
simultaneous allocation and sizing of reactive power compensators in the proposed MINLP
model, considering their investment and operating costs; and (iii) including the stochastic
nature of the PV generation and demand curves as well as the variability of the energy
pricing along the planning period in the MINLP formulation.
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