
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Parallel Quantum Computation Approach for
Quantum Deep Learning and Classical-Quantum
Models
To cite this article: E.D. Payares and J.C. Martinez-Santos 2021 J. Phys.: Conf. Ser. 2090 012171

 

View the article online for updates and enhancements.

You may also like
Methods for classically simulating noisy
networked quantum architectures
Iskren Vankov, Daniel Mills, Petros
Wallden et al.

-

Computational feasibility of simulating
changes in blood flow through whole-
organ vascular networks from radiation
injury
William P Donahue, Wayne D Newhauser,
Xin Li et al.

-

Mapping of lattice surgery-based quantum
circuits on surface code architectures
L Lao, B van Wee, I Ashraf et al.

-

This content was downloaded from IP address 190.145.119.226 on 11/03/2022 at 19:53

https://doi.org/10.1088/1742-6596/2090/1/012171
/article/10.1088/2058-9565/ab54a4
/article/10.1088/2058-9565/ab54a4
/article/10.1088/2057-1976/abaf5c
/article/10.1088/2057-1976/abaf5c
/article/10.1088/2057-1976/abaf5c
/article/10.1088/2057-1976/abaf5c
/article/10.1088/2058-9565/aadd1a
/article/10.1088/2058-9565/aadd1a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvSSFxqzQZsjqa3Id1P2v6wf3hIAUiSgJAQlIF67l7oOPNxB8AzA_JiddOaVxVZBKo9SpsRDoBq5snQPRVakZCv_KanqpbTlG9jpZXtaVgyeQelIkkMff9PHP2EvfodLezrngtSqlpSxZ1AJn20Bq436BvUFkL-o-v2BwVxY0qN5zkfs8J1u4l1aI3XBdbdqKZKdJrtyvW4FCMerwDPBIrnNIP2giuxg5zODqslfoDFa-IZq4Ibeo8AI7qBNd_q1MhUEb8NkgYMhrs1fZEL85b58GgDcXJWYX8&sig=Cg0ArKJSzJL2m3pwnQ4Y&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/242/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DBanner%26utm_campaign%3D242Abstract%26utm_id%3D242Abstract


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012171

IOP Publishing
doi:10.1088/1742-6596/2090/1/012171

1

Parallel Quantum Computation Approach for

Quantum Deep Learning and Classical-Quantum

Models

E.D. Payares1, J.C. Martinez-Santos1

1Faculty of Engineering, Universidad Tecnológica de Boĺıvar, Cartagena de Indias, Colombia
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Abstract. The paradigm of Quantum computing and artificial intelligence has been growing
steadily in recent years and given the potential of this technology by recognizing the computer
as a physical system that can take advantage of quantum mechanics for solving problems
faster, more efficiently, and accurately. We suggest experimentation of this potential through
an architecture of different quantum models computed in parallel. In this work, we present
encouraging results of how it is possible to use Quantum Processing Units analogically to
Graphics Processing Units to accelerate algorithms and improve the performance of machine
learning models through three experiments. The first experiment was a reproduction of a
parity function, allowing us to see how the convergence of a given Quantum model is influenced
significantly by computing it in parallel. For the second and third experiments, we implemented
an image classification problem by training quantum neural networks and using pre-trained
models to compare their performances with the same experiments carried out with parallel
quantum computations. We obtained very similar results in the accuracies, which were close
to 100% and significantly improved the execution time, approximately 15 times faster in the
best-case scenario. We also propose an alternative as a proof of concept to address emotion
recognition problems using optimization algorithms and how execution times can be positively
affected by parallel quantum computation. To do this, we use tools such as the cross-platform
software library PennyLane and Amazon Web Services to access high-end simulators with
Amazon Braket and IBM quantum experience.

1. Introduction
Parallel computing nowadays is used to improve the performance of many systems, models,
and algorithms significantly, thanks to its capacity to complete large and complex tasks in a
reasonable time [1–4]. In recent years, there has been an increment of outstanding achievements
on how Quantum computing (QC) can solve very complex problems that are impossible for a
Classical Computer (CC) to solve in a suitable time [5]. In addition, there are ways to exploit
their capabilities to enhance classic applications and perform specific tasks so that it is impossible
for a CC to keep up with the pace, which is called quantum advantage and is one of the leading
research interests in the field today. Thus, there is plenty of hope in how QC can improve
existing technologies, one of the highlights of which is the case of machine learning [6].

Quantum machine learning is a field of study that investigates the interaction of concepts
from quantum computation and machine learning [7,8], with great achievements in the last few
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years finding a place in implementations such as classification [9–11] and applications in many
fields, from image and emotion recognition to cybersecurity systems [12–16].

The limits of what machines can learn have always been defined by the computer hardware
we run our algorithms on. For example, parallel Graphics processing unit (GPU) clusters enable
modern-day deep learning with neural networks.

Quantum machine learning extends the hardware pool for machine learning by an entirely
new type of computing device: The quantum computer. This comparison makes sense since
both are alternatives to speed up computation for expensive computational resource tasks.
However, the scalability of the problems that we can address is quite different. To the best
of our knowledge, this is the first time that a study has been carried out to unveil the potential
of parallel quantum computation for Noisy Intermediate-scale Quantum (NISQ) [17,18] hardware
in near-term applications such as quantum deep learning.

2. Methods
2.1. Framework and Materials
For the development of this work and presentation of results, we mainly use the PennyLane
framework, which is a cross-platform Python library for differentiable programming of quantum
computers, allowing us to build and optimize hybrid computations [19]. We can perform these
executions on real quantum hardware or a classical simulator. Both options are available today
on the platforms of IBM, Amazon, among others.

2.2. Parallel Quantum Computation Architecture
Quantum computation is known for its potential of improving performance in the execution
of tasks thanks to a physical phenomenon called quantum parallelism, which consists of the
capability of quantum systems to do many evaluations simultaneously thanks to the property
of superposition [20]. However, for this implementation, we extend this concept as parallel
quantum computation. The difference is that regardless of superposition. There is parallel
execution of evaluations of circuits taking place in two or more Quantum Processing Units
(QPUs) or in a simulator that has enabled distributed parallel executions of circuit batches,
such as the mainly used in this work, the SV1 by Amazon Braket. Theoretically, there is also an
analogy between parallel computing and parallel quantum computing proposed in [21], where is
defined the Quantum Parallel Complexity QNC in Equation (1), which is the quantum version
of parallel complexity NC and states that to design a shallow parallel circuit for a given quantum
operator, we want to be able to use additional quantum bits (qubits) or “ancillae” as workspace
in the computation, equivalent to other processors in a parallel quantum computer. Also, as is
presented in [22] it is possible to emulate parallel quantum computation to process signals in
parallel mainly through encoding them into a superposition state of two signals, ψ and ϕ (2).

QNC = ∪kQNCk where QNCk ‖ O(n log kn) (1)

〈ϕ|ψ〉 =
1

T

∫ T

0
ϕ(t)∗ψ(t) dt (2)

We used an architecture that systematically proved the advantage of parallel quantum
computation in different quantum processors in various models for different data types for our
implementation.

The circuit in Figure 1 shows a generic quantum classifier mainly used for the realization of
the experiments of this work. It consists of a minimum of two layers and single-qubit rotations,
and CNOT gates as entanglers (3) and a measurement layer (4) mutable depending on the
experiment in each one of them, based on the model presented in [23].
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Figure 1. General representation of the circuit ansatz used on each experiment. There are four
qubits and two layers for the minimum configuration, 24 qubits for the maximum, and at least
one measurement in the Z basis of the Bloch sphere in one qubit. Note that this is a general
representation, which means that it can vary depending on the experiment.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3)

M(|y〉) =


〈y|Z

⊗
I
⊗

I
⊗

I |y〉
〈y| I

⊗
Z
⊗

I
⊗

I |y〉
〈y| I

⊗
I
⊗
Z
⊗

I |y〉
〈y| I

⊗
I
⊗

I
⊗
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 (4)

As stated above, the parallel execution of the circuit shown in Figure 1 occurs in two ways.
First, a given circuit runs on many devices asynchronously, where each device could be a
simulator or an actual QPU. Thus allowing the collection of shots on the circuit to be more
efficient, or in batches in one device, where the same circuit is executed multiple times in
parallel. The SV1 simulator of Amazon Braket allows us to execute up to 20 circuits in parallel
or simultaneously. We can harness this capability during circuit training, which requires lots
of circuit variations to execute. As we know, calculating the gradient involves multiple device
executions. For each trainable parameter, we must run our circuit on the device typically more
than once. Practical applications involve many trainable parameters. The result of this is a vast
number of device executions for each optimization step.

This approach allows us to compare each execution with its respective result with three
experiments in which we see the ability of quantum parallel computation to improve quantum
deep learning algorithms. These experiments were carried out with the same parameters for
every device to prevent bias in the simulations. Furthermore, we used 1000 shots per cost
function evaluation on every experiment. In the following sections, the presentation of results
labeled as “unparalleled”, means sequential execution of the circuits for each training process.

It is important to emphasize that the devices used in the experiments were all simulators.
This means that we have not considered the influence of noise on the models because we wanted
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to keep the integrity of each experiment and each device as close as possible. So as not to fall into
the error of reaching conclusions based on a single experience, but in general. The parameters
for this case study are the same for each experiment, but be aware that noise is an external
factor that influences the behavior and performance of current quantum devices.

3. Experiments and Results
3.1. Experiment 1: Parity function
In this experiment, we demonstrate that our variational quantum classifier can reproduce the
parity function (5) more efficiently through parallel execution on two SV1 simulators by amazon
Braket in the training process.

f : x ∈ {0, 1}⊗n → y =

{
1 if uneven number of ones in x

0 otherwise
(5)

This optimization example demonstrates how to encode binary inputs into the initial state
of the variational circuit, which is simply a computational basis state. We can see in Figure
2 and Figure 3 that for the parallel execution, we begin to see an increase in the convergence
of the model from about the 6th iteration approximately. For the cost function in Figure 2
we evidenced a significant improvement for the parallel execution, reaching convergence in 10
iterations approximately with a considerable advantage over the 25 iterations of the unparalleled
implementation of the same model. For the accuracy in Figure 3, although the model behaves
similarly, we evidence a difference of 5 iterations between the parallel and unparalleled execution
by the time each of them reaches maximum convergence.

Figure 2. Cost function during the training process of experiment 1.

As we can see in Table 1, the parallel execution achieved convergence in 1.5 times fewer
iterations in terms of accuracy. This result is relevant because it gives us an eye-opener on how
parallel execution can improve the efficiency and performance of quantum models. Furthermore,
if we scale this experiment and apply it to a problem of higher complexity, that value could
become very significant.
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Figure 3. Accuracy during the training process of experiment 1.

Table 1. Experiment 1.

QPU Execution Convergence Iterations

ibmq simulator Unparalleled 14
SV1 Parallel 9

3.2. Experiment 2: Hymenoptera Dataset Classification
In this experiment, we used the scheme presented in [13], where we numerically trained and tested
the model, which is a quantum model inspired by the official PyTorch tutorial on classical transfer
learning using PennyLane with the PyTorch interface [19]. In this case, the parallel execution
occurs on two devices.

In Figure 4 we can see a preview of the data, which consist of high resolution images with
two classes, ants and bees. The data was encoded into quantum states via local embedding. It
means that all qubits are first initialized in a balanced superposition of up and down states.
Then, they are rotated according to the input parameters.

Figure 4. Random batch of four images sampled from the train dataset.

Figure 5 shows the evolution through the training process of the loss landscape for each
model. First, we trained the variational parameters of the model for 30 epochs over the training
dataset with a batch size of four and an initial learning rate of n = 0.0004, which was successively
reduced by a factor of 0.1 every ten epochs [13]. Then, after each epoch, the model was validated
concerning the test dataset, obtaining a maximum accuracy of 0.9477.



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012171

IOP Publishing
doi:10.1088/1742-6596/2090/1/012171

6

0
5

10
15

20
25

30 0
5

10
15

20
25

30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
5

10
15

20
25

30 0
5

10
15

20
25

30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

a) b)

Figure 5. a) Surface plot of loss landscape during training of the dressed quantum neural
network with unparalleled execution. b) Surface plot of loss landscape during training of the
dressed quantum neural network with parallel execution.

Table 2. Experiment 2.

QPU Execution Accuracy Loss Run time

SV1 Unparalleled 0.9477 0.367 131m 51s
SV1 Parallel 0.9412 0.6432 17m 47s

Also, we can see in Figure 5 that the loss landscape doesn’t vary too much from the
unparalleled execution to the parallel execution. The reason is that the model’s hyperparameters
were optimized successfully in both cases, with a bit of loss peak at the end of the training process
with parallel execution. However, in Table 2 we see that where the significant difference is in
the execution time, where we evidenced a remarkable speedup of 7.52 times faster run time.

3.3. Experiment 3: CIFAR Transfer Learning Classification
In this experiment, we make use of a pre-trained model and implementation presented in [13],
where we evaluate its performance with the same architecture as Section 3.2. Still, with a
different dataset, the standard CIFAR-10 restricted to two classes, cats and dogs as we can see
in Figure 6. The data was encoded into quantum states in the same way as the previous section
via local embedding. All qubits are first initialized in a balanced superposition of up and down
states. Then they are rotated according to the input parameters, determined by the matrix of
the image previously processed for use in the model.

As we can see in Table 3, the results are nearly the same as expected except for the execution
time, in which we evidenced a speedup of approximately 15.17 times faster execution. Also, in
Figure 7 we see the loss landscape of the model, which was the same for both implementations
since it is a pre-trained model. However, we expect that similarly to the experiment in Section
3.2 there will be variations in the loss of the model since the parallel computation allows better
performance as hyperparameter optimization is done more efficiently.
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Figure 6. Random batch of four blurry images sampled from the test dataset classified by the
classical-quantum model. Predictions are reported in square brackets above each image.
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Figure 7. Loss landscape of the model during the evaluation process.

Table 3. Experiment 3.

QPU Execution Accuracy Loss Run time

SV1 Unparalleled 0.8250 0.4059 19m 42s
SV1 Parallel 0.8250 0.4059 1m 28s
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4. Proof of Concept: Graph Optimization
In this proof of concept, we are going to evaluate the feasibility of using the implementation
presented in [14], with a parallel architecture to exploit to the full the capabilities of quantum
computing in graph optimization as a near-term application.

Figure 8. Landmarks recognition of human face as points. The image of the human face is
taken from: [24]

The implementation presented in [14] consists of a quantum classifier for facial expression
recognition using graphs. Each graph was encoded in a quantum state, making use of the
elements of the adjacency vector into the amplitudes of the quantum state, where |G〉 is the
quantum state constructed in Equation (6), and G is the graph.

|G〉 =
1

γ

d∑
k=1

gk |k〉 (6)

In Figure 8 we can see the example of a human face whose landmarks have been recognized
and drawn as points, which will act as nodes in the graph associated with each class. As
this is not an experimental reproduction, we scale the problem for this proof of concept. We
take 20 nodes that represent the qubits of our architecture described in Figure 1, and the
landmark points of the main feature, and make the graph. In this case, as we don’t classify
the expression of the face, our graph is arbitrary to fulfill the purpose of this proof of concept
whose basis is to demonstrate the efficiency of parallel evaluation of circuits and how we can
exploit this for quantum deep learning models. We address an optimization problem called
the maximum cut , which consists of finding a partition of nodes into two sets, such that the
number of edges in the graph with endpoints in different groups is maximized. That is achieved
using the Quantum Approximate Optimization Algorithm (QAOA), a widely-studied method
for solving combinatorial optimization problems on NISQ devices. QAOA begins by associating
the optimization problem with a cost Hamiltonian HC (7) and choosing a mixer Hamiltonian
HM . It proceeds by repetitively applying multiple layers of the unitaries exp (−iγiHC) and
exp (−iαiHM ) with controllable parameters γi and αi.

HC =
1

2

∑
(i,j)∈E(G)

(
ZiZj − I

)
(7)
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As we approach the problem, the algorithm just required us to pass a graph to it. This graph,
shown in Figure 9 represents the landmark points of the feature of a face, in which we perform
QAOA to solve the maximum cut, which is an NP-hard problem in terms of computational
complexity. This problem consists in finding the partition of the graph’s nodes into two groups
so that the number of edges crossed or “cut” by the partition is maximized. We choose this
problem because it is very computationally demanding.
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Figure 9. Arbitrary graph of 20 nodes representing the landmark points.

Table 4 shows the summary of results of this proof of concept, where we can see how
important it would be to fully address graph optimization problems in quantum machine learning
applications by running quantum circuits in parallel. We have evidenced a speedup of about
12.8 times faster execution for the QAOA in question.
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Figure 10. Highlighted edges and nodes results of maximum cut.

In Figure 10 we can see the nodes resulting from the QAOA optimization of maximum cut,
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where the purple violet represents the set S, and the blue ones mean the set T . Their shared
edges are highlighted in magenta.

Table 4. Summary of results of the proof of concept.

QPU Execution Problem Run time

braket.local Unparalleled Maximum cut 219.6m
SV1 Parallel Maximum cut 17.16m

5. Conclusions and Future Work
This work presented an implementation of parallel quantum computation for near-term
applications. We proved the efficiency of this methodology by conducting three experiments,
and we proposed a proof of concept. However, although the results are encouraging, quantum
parallelism is still very limited to the hardware available today to demonstrate the true potential
of quantum computers and how they process information. Still, as shown in this paper, there
are viable alternatives to improve the way quantum algorithms work in the rapidly advancing
NISQ era.

For future work, we aim to fully address the proof of concept introduced in this paper
by creating a model that would perform graph optimization for quantum machine learning
tasks through a parallel quantum architecture. We also aim to introduce noise models to the
simulations to see how the results are affected by this parameter in order to have a closer look
at the behavior of quantum models in real hardware.
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