Mostrar el registro sencillo del ítem

dc.creatorMarrugo A.G.
dc.creatorMillán M.S.
dc.creatorŠorel M.
dc.creatorŠroubek F.
dc.date.accessioned2020-03-26T16:32:52Z
dc.date.available2020-03-26T16:32:52Z
dc.date.issued2014
dc.identifier.citationJournal of Biomedical Optics; Vol. 19, Núm. 1
dc.identifier.issn10833668
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9066
dc.description.abstractRetinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration method was tested on artificially and naturally degraded retinal images. The results show an important enhancement, significant enough to leverage the images' clinical use. © 2014 Society of Photo-Optical Instrumentation Engineers.eng
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte Ministerio de Ciencia e Innovación, MICINN: TEC2010-09834-E, TEC2010-20307, DPI2009-08879 Grantová Agentura České Republiky: 13-29225S
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84897748145&doi=10.1117%2f1.JBO.19.1.016023&partnerID=40&md5=1f497b46e4a49bb686336ad515805e62
dc.titleRestoration of retinal images with space-variant blur
dcterms.bibliographicCitationBartling, H., Wanger, P., Martin, L., Automated quality evaluation of digital fundus photographs (2009) Acta Ophthalmol, 87 (6), pp. 643-647
dcterms.bibliographicCitationGodara, P., Adaptive optics retinal imaging: Emerging clinical applications (2010) Optom. Vision Sci, 87 (12), pp. 930-941
dcterms.bibliographicCitationArines, J., Acosta, E., Low-cost adaptive astigmatism compensator for improvement of eye fundus camera (2011) Opt. Lett, 36 (21), pp. 4164-4166
dcterms.bibliographicCitationMarrugo, A.G., Retinal image restoration by means of blind deconvolution (2011) J. Biomed. Opt, 16 (11), p. 116016
dcterms.bibliographicCitationLevin, A., Understanding blind deconvolution algorithms (2011) IEEE Trans. Pattern Anal. Mach. Intell, 33 (12), pp. 2354-2367
dcterms.bibliographicCitationBedggood, P., Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging (2008) J. Biomed. Opt, 13 (2), p. 024008
dcterms.bibliographicCitationTutt, R., Optical and visual impact of tear break-up in human eyes (2000) Invest. Ophthalmol. Visual Sci, 41 (13), pp. 4117-4123
dcterms.bibliographicCitationXu, J., Dynamic changes in ocular zernike aberrations and tear menisci measured with a wavefront sensor and an anterior segment oct (2011) Invest. Ophthalmol. Vis. Sci, 52 (8), pp. 6050-6056
dcterms.bibliographicCitationCostello, T., Mikhael, W., Efficient restoration of space-variant blurs from physical optics by sectioning with modified wiener filtering (2003) Digital Signal Process, 13 (1), pp. 1-22
dcterms.bibliographicCitationBardsley, J., Jefferies, S., Nagy, J., Plemmons, R., A computational method for the restoration of images with an unknown, spatially-varying blur (2006) Optics Express, 14 (5), pp. 1767-1782. , http://www.opticsexpress.org/ViewMedia.cfm?id=88317&seq=0, DOI 10.1364/OE.14.001767
dcterms.bibliographicCitationHarmeling, S., Hirsch, M., Scholkopf, B., Space-variant singleimage blind deconvolution for removing camera shake (2010) Adv. Neural Inf. Process. Syst, 23, pp. 829-837
dcterms.bibliographicCitationWhyte, O., Non-uniform deblurring for shaken images (2012) Int. J. Comput. Vis, 98 (2), pp. 168-186
dcterms.bibliographicCitationGupta, A., Single image deblurring using motion density functions (2010) European Conf. on Computer Vision (ECCV 2010), pp. 171-184. , K. Daniilidis, P. Maragos, and N. Paragios, Eds., Springer-Verlag, Crete, Greece
dcterms.bibliographicCitationTallón, M., Space-variant blur deconvolution and denoising in the dual exposure problem (2012) Inf. Fusion, 14 (4), pp. 396-409
dcterms.bibliographicCitationSalem, N.M., Nandi, A.K., Novel and adaptive contribution of the red channel in pre-processing of colour fundus images (2007) Journal of the Franklin Institute, 344 (3-4), pp. 243-256. , DOI 10.1016/j.jfranklin.2006.09.001, PII S0016003206001281
dcterms.bibliographicCitationMarrugo, A.G., Millán, M.S., Retinal image analysis: Preprocessing and feature extraction (2011) J. Phys.: Conf. Ser, 274 (1), p. 012039
dcterms.bibliographicCitationGolub, G., Van Loan, C., (1996) Matrix Computations, 3. , Johns Hopkins University Press, Baltimore, Maryland
dcterms.bibliographicCitationNavarro, R., Moreno, E., Dorronsoro, C., Monochromatic aberrations and point-spread functions of the human eye across the visual field (1998) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 15 (9), pp. 2522-2529
dcterms.bibliographicCitationSroubek, F., Flusser, J., Multichannel blind deconvolution of spatially misaligned images (2005) IEEE Transactions on Image Processing, 14 (7), pp. 874-883. , DOI 10.1109/TIP.2005.849322
dcterms.bibliographicCitationNavarro, R., The optical design of the human eye: A critical review (2009) J. Optom, 2 (1), pp. 3-18
dcterms.bibliographicCitationHu, Z., Yang, M.-H., Good regions to deblur (2012) European Conf. on Computer Vision (ECCV 2012), pp. 59-72. , Springer-Verlag
dcterms.bibliographicCitationNagy, J.G., O'Leary, D.P., Restoring images degraded by spatially variant blur (1998) SIAM Journal of Scientific Computing, 19 (4), pp. 1063-1082. , PII S106482759528507X
dcterms.bibliographicCitationSorel, M., Sroubek, F., Flusser, J., Towards super-resolution in the presence of spatially varying blur (2010) Super-Resolution Imaging, pp. 187-218. , P. Milanfar, Ed., CRC Press, Boca Raton, Florida
dcterms.bibliographicCitationCampisi, P., Egiazarian, K., (2007) Blind Image Deconvolution: Theory and Applications, , CRC Press, Boca Raton, Florida
dcterms.bibliographicCitationChambolle, A., Lions, P.L., Image recovery via total variation minimization and related problems (1997) Numer. Math, 76 (2), pp. 167-188
dcterms.bibliographicCitationHoover, A., Goldbaum, M., Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels (2003) IEEE Trans. Med. Imaging, 22 (8), pp. 951-958
dcterms.bibliographicCitationGao, L., Smith, R.T., Tkaczyk, T.S., Snapshot hyperspectral retinal camera with the image mapping spectrometer (ims) (2012) Biomed. Opt. Express, 3 (1), pp. 48-54
dcterms.bibliographicCitationHammer, M., Schweitzer, D., Quantitative reflection spectroscopy at the human ocular fundus (2002) Physics in Medicine and Biology, 47 (2), pp. 179-191. , DOI 10.1088/0031-9155/47/2/301, PII S0031915502274904
dcterms.bibliographicCitationVucea, V., Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina (2011) Appl. Opt, 50 (26), pp. 5185-5191
dcterms.bibliographicCitationSaine, P., Tyler, M., (2002) Ophthalmic Photography: Retinal Photography, Angiography, and Electronic Imaging, , Butterworth-Heinemann, Woburn, Massachusetts
dcterms.bibliographicCitationHolmes, T., Dynamic indocyanine green angiography measurements (2012) J. Biomed. Opt, 17 (11), p. 116028
dcterms.bibliographicCitationKirsch, R.A., Computer determination of the constituent structure of biological images (1971) Comput. Biomed. Res, 4 (3), pp. 315-328
dcterms.bibliographicCitationAl-Rawi, M., Qutaishat, M., Arrar, M., An improved matched filter for blood vessel detection of digital retinal images (2007) Computers in Biology and Medicine, 37 (2), pp. 262-267. , DOI 10.1016/j.compbiomed.2006.03.003, PII S0010482506000424
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1117/1.JBO.19.1.016023
dc.subject.keywordsBlind deconvolution
dc.subject.keywordsDeblurring
dc.subject.keywordsImage restoration
dc.subject.keywordsRetinal image
dc.subject.keywordsSpace-variant restoration
dc.subject.keywordsBlind deconvolution
dc.subject.keywordsClinical resources
dc.subject.keywordsDeblurring
dc.subject.keywordsInnovative strategies
dc.subject.keywordsPoint-spread functions
dc.subject.keywordsRestoration methods
dc.subject.keywordsRetinal image
dc.subject.keywordsSpace variants
dc.subject.keywordsAberrations
dc.subject.keywordsConvolution
dc.subject.keywordsDiagnosis
dc.subject.keywordsImage reconstruction
dc.subject.keywordsOphthalmology
dc.subject.keywordsRestoration
dc.subject.keywordsImage enhancement
dc.subject.keywordsAlgorithm
dc.subject.keywordsAngiography
dc.subject.keywordsArticle
dc.subject.keywordsArtifact
dc.subject.keywordsAstigmatism
dc.subject.keywordsAutomated pattern recognition
dc.subject.keywordsEye fundus
dc.subject.keywordsHuman
dc.subject.keywordsImage processing
dc.subject.keywordsMethodology
dc.subject.keywordsNormal distribution
dc.subject.keywordsOptics
dc.subject.keywordsPathology
dc.subject.keywordsReproducibility
dc.subject.keywordsRetina
dc.subject.keywordsRetina blood vessel
dc.subject.keywordsStatistical model
dc.subject.keywordsVision
dc.subject.keywordsVisual system examination
dc.subject.keywordsAlgorithms
dc.subject.keywordsAngiography
dc.subject.keywordsArtifacts
dc.subject.keywordsAstigmatism
dc.subject.keywordsDiagnostic Techniques, Ophthalmological
dc.subject.keywordsFundus Oculi
dc.subject.keywordsHumans
dc.subject.keywordsImage Processing, Computer-Assisted
dc.subject.keywordsModels, Statistical
dc.subject.keywordsNormal distribution
dc.subject.keywordsOptics and Photonics
dc.subject.keywordsPattern Recognition, Automated
dc.subject.keywordsReproducibility of Results
dc.subject.keywordsRetina
dc.subject.keywordsRetinal Vessels
dc.subject.keywordsVision, Ocular
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis research has been partly funded by the Spanish Ministerio de Ciencia e Innovación y Fondos FEDER (project DPI2009-08879) and projects TEC2010-09834-E and TEC2010-20307. Financial support was also provided by the Grant Agency of the Czech Republic under project 13-29225S. Authors are grateful to Juan Luís Fuentes from the Miguel Servet University Hospital (Zaragoza, Spain) for providing images. The first author also thanks the Spanish Ministerio de Educación for an FPU doctoral scholarship.
dc.type.spaArtículo
dc.identifier.orcid24329839300
dc.identifier.orcid7201466399
dc.identifier.orcid15846700100
dc.identifier.orcid55882243100


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.