Mostrar el registro sencillo del ítem

dc.contributor.authorVelilla-Díaz, Wilmer
dc.contributor.authorGuillén-Rujano, Renny
dc.contributor.authorPérez-Ruiz, José David
dc.contributor.authorLópez de Lacalle, Luis Norberto,
dc.contributor.authorPalencia, Argemiro
dc.contributor.authorMaury, Heriberto
dc.contributor.authorZambrano, Habib R.
dc.date.accessioned2024-02-01T20:28:01Z
dc.date.available2024-02-01T20:28:01Z
dc.date.issued2024-02-01
dc.date.submitted2024-02-01
dc.identifier.citationVelilla-Díaz, Wilmer, Roger Pinzón, Renny Guillén-Rujano, José David Pérez-Ruiz, Luis Norberto López de Lacalle, Argemiro Palencia, Heriberto Maury, and Habib R. Zambrano. 2024. "Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique" Metals 14, no. 2: 182. https://doi.org/10.3390/met14020182spa
dc.identifier.issn2075-4701
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12602
dc.description.abstractFatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is proposed to estimate the extension of fatigue life achieved through the implementation of the stop-hole technique. The model’s predictions are validated using data obtained from fatigue crack growth tests conducted on both unrepaired and repaired M(T) specimens, following the guidelines outlined in the ASTM E647 standard. The error of the fracture mechanics-based model was 1.4% in comparison with the fatigue tests.spa
dc.format.extent16 Paginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceMetalsspa
dc.titleFatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Techniquespa
dcterms.bibliographicCitationYousefi, A.; Jolaiy, S.; Hedayati, R.; Serjouei, A.; Bodaghi, M. Fatigue Life Improvement of Cracked Aluminum 6061-T6 Plates Repaired by Composite Patches. Materials 2021, 14, 1421. https://doi.org/10.3390/ma14061421.spa
dcterms.bibliographicCitationLiu, X.; Wu, J.; Xi, J.; Yu, Z. Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon- Aramid Fiber/Epoxy Sandwich Composite Patch. Materials 2019, 12, 1655. https://doi.org/10.3390/ma12101655.spa
dcterms.bibliographicCitationAabid, A.; Hrairi, M.; Ali, J.S.M.; Sebaey, T.A. A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches. Materials 2022, 15, 3086. https://doi.org/10.3390/ma15093086.spa
dcterms.bibliographicCitationChao Lu, Y.; Peng Yang, F.; Chen, T.; Gong, H. The retardation effect of combined application of stop-hole and overload on sheet steel. Int. J. Fatigue 2020, 132, 105414. https://doi.org/10.1016/j.ijfatigue.2019.105414.spa
dcterms.bibliographicCitationYao, Y.; Ji, B.; Fu, Z.; Zhou, J.; Wang, Y. Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges. J. Constr. Steel Res. 2019, 162, 105747. https://doi.org/10.1016/j.jcsr.2019.105747.spa
dcterms.bibliographicCitationJiang, X.; Lv, Z.; Qiang, X.; Zhang, J. Improvement of Stop-Hole Method on Fatigue-Cracked Steel Plates by Using High-Strength Bolts and CFRP Strips. Adv. Civ. Eng. 2021, 2021, 6632212. https://doi.org/10.1155/2021/6632212.spa
dcterms.bibliographicCitationRazavi, S.M.J.; Ayatollahi, M.R.; Sommitsch, C.; Moser, C. Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique. Eng. Fract. Mech. 2017, 169, 226–237. https://doi.org/10.1016/j.engfracmech.2016.11.013.spa
dcterms.bibliographicCitationAyatollahi, M.R.; Razavi, S.M.J.; Yahya, M.Y. Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique. Eng. Fract. Mech. 2015, 145, 115–127. https://doi.org/10.1016/j.engfracmech.2015.03.027.spa
dcterms.bibliographicCitationDeng, Q.; Yin, X.; Wang, D.; Abdel Wahab, M. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method. Int. J. Fatigue 2022, 156, 106640. https://doi.org/10.1016/j.ijfatigue.2021.106640.spa
dcterms.bibliographicCitationTaghizadeh, H.; Chakherlou, T.; Ghorbani, H.; Mohammadpour, A. Prediction of fatigue life in cold expanded fastener holes subjected to bolt tightening in Al alloy 7075-T6 plate. Int. J. Mech. Sci. 2015, 90, 6–15. https://doi.org/10.1016/j.ijmecsci.2014.10.026.spa
dcterms.bibliographicCitationTakahashi, I. A simple repair method of fatigue cracks using stop-holes reinforced with wedge members: Applicability to reinitiated cracks and effects of an anti-fatigue smart paste. Weld. Int. 2020, 34, 267–287. https://doi.org/10.1080/09507116.2021.1915567.spa
dcterms.bibliographicCitationBranco, C.; Infante, V.; Baptista, R. Fatigue behaviour of welded joints with cracks, repaired by hammer peening. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 785–798. https://doi.org/10.1111/j.1460-2695.2004.00777.x.spa
dcterms.bibliographicCitationTai, M.; Miki, C. Fatigue strength improvement by hammer peening treatment—Verification from plastic deformation, residual stress, and fatigue crack propagation rate. Weld. World 2014, 58, 307–318. https://doi.org/10.1007/s40194-014-0115-1.spa
dcterms.bibliographicCitationTai, M.; Miki, C. Improvement effects of fatigue strength by burr grinding and hammer peening under variable amplitude loading. Weld. World 2012, 56, 109–117. https://doi.org/10.1007/BF03321370.spa
dcterms.bibliographicCitationBaker, A.; Jones, R. Bonded Repair of Aircraft Structures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; Volume 7. https://doi.org/10.1007/978-94-009-2752-0_7.spa
dcterms.bibliographicCitationMarazani, T.; Madyira, D.M.; Akinlabi, E.T. Repair of cracks in metals: A review. Procedia Manuf. 2017, 8, 673–679. https://doi.org/10.1016/j.promfg.2017.02.086.spa
dcterms.bibliographicCitationLozano, C.M.; Riveros, G.A. Effects of Adhesive Bond-Slip Behavior on the Capacity of Innovative FRP Retrofits for Fatigue and Fracture Repair of Hydraulic Steel Structures. Materials 2019, 12, 1495. https://doi.org/10.3390/ma12091495.spa
dcterms.bibliographicCitationSong, P.; Shieh, Y. Stop drilling procedure for fatigue life improvement. Int. J. Fatigue 2004, 26, 1333–1339. https://doi.org/10.1016/j.ijfatigue.2004.04.009.spa
dcterms.bibliographicCitationWu, H.; Imad, A.; Benseddiq, N.; de Castro, J.T.P.; Meggiolaro, M.A. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method. Int. J. Fatigue 2010, 32, 670–677. https://doi.org/10.1016/j.ijfatigue.2009.09.011.spa
dcterms.bibliographicCitationSchubbe, J.J.; Bolstad, S.H.; Reyes, S. Fatigue crack growth behavior of aerospace and ship-grade aluminum repaired with composite patches in a corrosive environment. Compos. Struct. 2016, 144, 44–56. https://doi.org/10.1016/j.compstruct.2016.01.107.spa
dcterms.bibliographicCitationErrouane, H.; Sereir, Z.; Chateauneuf, A. Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension. Int. J. Adhes. Adhes. 2014, 49, 64–72. https://doi.org/10.1016/j.ijadhadh.2013.12.004.spa
dcterms.bibliographicCitationZarrinzadeh, H.; Kabir, M.; Deylami, A. Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 2017, 133, 24–32. https://doi.org/10.1016/j.engstruct.2016.12.011.spa
dcterms.bibliographicCitationFerdous, M.; Naka, K.; Makabe, C.; Miyazaki, T.; others. A review of simple methods for arresting crack growth. Adv. Mat. Res. 2015, 1110, 185–190. https://doi.org/10.4028/www.scientific.net/AMR.1110.185.spa
dcterms.bibliographicCitationZarrinzadeh, H.; Kabir, M.; Deylami, A. Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading. Thin‐Walled Struct. 2017, 112, 140–148. https://doi.org/10.1016/j.tws.2016.12.023.spa
dcterms.bibliographicCitationMohammed, S.M.K.; Bouiadjra, B.B.; Benyahia, F.; Albedah, A. Analysis of the single overload effect on fatigue crack growth in AA 2024-T3 plates repaired with composite patch. Eng. Fract. Mech. 2018, 202, 147–161. https://doi.org/10.1016/j.engfracmech. 2018.09.008.spa
dcterms.bibliographicCitationHuang, C.; Chen, T.; Feng, S. Finite element analysis of fatigue crack growth in CFRP-repaired four-point bend specimens. Eng. Struct. 2019, 183, 398–407. https://doi.org/10.1016/j.engstruct.2019.01.045.spa
dcterms.bibliographicCitationYe, H.; Wang, T.; Shuai, C.; Liu, C.; Xu, X. A novel driving force parameter ΔKeff1-αKmaxα for fatigue crack propagation in prestressed-CFRP-repaired steel structure. Compos. Struct. 2019, 214, 183–190. https://doi.org/10.1016/j.compstruct.2019.02.006.spa
dcterms.bibliographicCitationAlshoaibi, A.M.; Fageehi, Y.A. Finite Element Simulation of a Crack Growth in the Presence of a Hole in the Vicinity of the Crack Trajectory. Materials 2022, 15, 363. https://doi.org/10.3390/ma15010363.spa
dcterms.bibliographicCitationGhfiri, R.; Shi, H.J.; Guo, R.; Mesmacque, G. Effects of expanded and non-expanded hole on the delay of arresting crack propagation for aluminum alloys. Mater. Sci. Eng A 2000, 286, 244–249. https://doi.org/10.1016/S0921-5093(00)00805-4.spa
dcterms.bibliographicCitationDomazet, Ž. Comparison of fatigue crack retardation methods. Eng. Fail. Anal. 1996, 3, 137–147. https://doi.org/10.1016/1350- 6307(96)00006-4.spa
dcterms.bibliographicCitationMoshtaghi, M.; Safyari, M. Effect of Work-Hardening Mechanisms in Asymmetrically Cyclic-Loaded Austenitic Stainless Steels on Low-Cycle and High-Cycle Fatigue Behavior. Steel Res. Int. 2021, 92, 2000242. https://doi.org/10.1002/srin.202000242.spa
dcterms.bibliographicCitationVelilla-Díaz, W.; Zambrano, H.R. Effects of Grain Boundary Misorientation Angle on the Mechanical Behavior of Al Bicrystals. Nanomaterials 2023, 13, 3031. https://doi.org/10.3390/nano13233031.spa
dcterms.bibliographicCitationTian, L.; Cheng, Z. Fracture and Fatigue Analyses of Cracked Structures Using the Iterative Method. Geofluids 2021, 2021, 4434598. https://doi.org/10.1155/2021/4434598.spa
dcterms.bibliographicCitationZhang, P.; Li, J.; Zhao, Y.; Li, J. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics. Sci. Rep. 2023, 13, 14567. https://doi.org/10.1038/s41598-023-41804-z.spa
dcterms.bibliographicCitationYang, D. Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam. Sustainability 2021, 13, 1678. https://doi.org/10.3390/su13041678.spa
dcterms.bibliographicCitationVelilla-Díaz, W.; Ricardo, L.; Palencia, A.; Zambrano, H.R. Fracture toughness estimation of single-crystal aluminum at nanoscale. Nanomaterials 2021, 11, 680. https://doi.org/10.3390/nano11030680.spa
dcterms.bibliographicCitationLiu, J.; Feng, G.; Wang, J.; Ren, H.; Song, W.; Lin, P. Fatigue Life Assessment in the Typical Structure of Large Container Vessels Based on Fracture Mechanics. J. Mar. Sci. Eng. 2023, 11, 2075. https://doi.org/10.3390/jmse11112075.spa
dcterms.bibliographicCitationLeonetti, D.; Maljaars, J.; Snijder, B.; Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimation. Eng. Fract. Mech. 2021, 242, 107487. https://doi.org/10.1016/j.engfracmech.2020.107487.spa
dcterms.bibliographicCitationAttarha, M.; Sattari-Far, I. Comparison of the continuum damage and fracture mechanics in fatigue assessment of components containing residual stresses. Mech. Based Des. Struct. Mach. 2023, 1–18. https://doi.org/10.1080/15397734.2023.2255662.spa
dcterms.bibliographicCitationVelilla-Díaz, W.; Zambrano, H.R. Crack length effect on the fracture behavior of single-crystals and bi-crystals of aluminum. Nanomaterials 2021, 11, 2783. https://doi.org/10.3390/nano11112783.spa
dcterms.bibliographicCitationAlrayes, O.; Könke, C.; Ooi, E.T.; Hamdia, K.M. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Materials 2023, 16, 863. https://doi.org/10.3390/ma16020863.spa
dcterms.bibliographicCitationKristensen, P.; Niordson, C.; Martínez-Pañeda, E. An assessment of phase field fracture: Crack initiation and growth. Phil. Trans. R. Soc. A 2021, 379, 20210021. https://doi.org/10.1098/rsta.2021.0021.spa
dcterms.bibliographicCitationStandard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/e0647-15e01.html (accessed on 29 January 2024).spa
dcterms.bibliographicCitationParis, P.C. A rational analytic theory of fatigue. Trends Engin 1961, 13, 9–14.spa
dcterms.bibliographicCitationWheeler, O. Spectrum loading and crack growth. Trans. of ASCE. J. Basic. Eng. 1972, 94, 181–186. https://doi.org/10.1115/1.3425362.spa
dcterms.bibliographicCitationAnderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017.spa
dcterms.bibliographicCitationHarter, J.A. AFGROW users guide and technical manual. Technical report, Air Force Research Lab Wright-Patterson Afb Oh Air Vehicles Directorate. Air Force Res. Lab. 1999, 10. Available online: https://apps.dtic.mil/sti/citations/ADA370431 (accessed on 29 January 2024).spa
dcterms.bibliographicCitationIrwin, G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech. 1957, 24, 361–364. https://doi.org/10.1115/1.4011547.spa
dcterms.bibliographicCitationFett, T. Stress Intensity Factors‐T‐Stresses‐Weight Functions; Institute of Ceramics in Mechanical Engineering, University of Karlsruhe: Karlsruhe, Germany, 2008.spa
dcterms.bibliographicCitationBudynas, R.G.; Nisbett, J. Diseño en Ingeniería Mecánica de Shigley, 8th ed.; McGraw-Hill Interamericana: Mexico City, Mexico, 2008.spa
dcterms.bibliographicCitationANSYS. Ansys User’s Manual: Theory Reference, R22; Swanson Analysis System Inc.: Houston, TX, USA, 2007.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/ met14020182
dc.subject.keywordsFatigue crack growth;spa
dc.subject.keywordsStop-holesspa
dc.subject.keywordsFracture mechanicsspa
dc.subject.keywordsMathematical modelspa
dc.subject.keywordscrack arrestspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Mecánicaspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.