Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina-Verona, Duban A.
dc.contributor.authorCoronado-Hernández, Oscar E
dc.contributor.authorEspinoza-Román, Héctor G
dc.contributor.authorFuertes-Miquel, Vicente S
dc.contributor.authorRamos, Helena M
dc.date.accessioned2023-07-19T21:20:58Z
dc.date.available2023-07-19T21:20:58Z
dc.date.issued2023-02-21
dc.date.submitted2023-07
dc.identifier.citationPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S.; Ramos, H.M. Rapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Model. Water 2023, 15, 834. https://doi.org/10.3390/w15050834spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12208
dc.description.abstractA filling operation generates continuous changes over the shape of an air–water interface, which can be captured using a 3D CFD model. This research analyses the influence of different hydro-pneumatic tank pressures and air pocket sizes as initial conditions for studying rapid filling operations in a 7.6 m long PVC pipeline with an irregular profile, using the OpenFOAM software. The analysed scenarios were validated using experimental measurements, where the 3D CFD model was suitable for simulating them. In addition, a mesh sensitivity analysis was performed. Air pocket pressure patterns, water velocity oscillations, and the different shapes of the air–water interface were analysed.spa
dc.format.extent12 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater (Switzerland) - Vol. 15 No 5 (2023)spa
dc.titleRapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Modelspa
dcterms.bibliographicCitationFuertes, V. Hydraulic Transients with Entrapped Air Pockets (2001) Ph.D. Thesis. Cited 17 times. Department of Hydraulic Engineering, Polytechnic University of Valencia, Editorial Universitat Politècnica de València, Valencia, Spainspa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188spa
dcterms.bibliographicCitationZhou, L., Liu, D., Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959. Cited 79 times. doi: 10.1061/(ASCE)HY.1943-7900.0000750spa
dcterms.bibliographicCitationZhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline (2018) Journal of Hydraulic Engineering, 144 (8), art. no. 04018045. Cited 50 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001491spa
dcterms.bibliographicCitationVasconcelos, J.G. Dynamic Approach to the Description of Flow Regime Transition in Stormwater Systems (2005) Ph.D. Thesis. Cited 27 times. University of Michigan Library, Ann Arbor, MI, USAspa
dcterms.bibliographicCitationVasconcelos, J.G., Wright, S.J. Experimental investigation of surges in a stormwater storage tunnel (2005) Journal of Hydraulic Engineering, 131 (10), pp. 853-861. Cited 66 times. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)spa
dcterms.bibliographicCitationChosie, C.D., Hatcher, T.M., Vasconcelos, J.G. Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows (2014) Journal of Hydraulic Engineering, 140 (8), art. no. 04014038. Cited 20 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0000898spa
dcterms.bibliographicCitationZhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)spa
dcterms.bibliographicCitationZhou, F., Hicks, F., Steffler, P. Analysis of effects of air pocket on hydraulic failure of urban drainage infrastructure (2004) Canadian Journal of Civil Engineering, 31 (1), pp. 86-94. Cited 49 times. doi: 10.1139/l03-077spa
dcterms.bibliographicCitationDe Martino, G., Fontana, N., Giugni, M. Transient flow caused by air expulsion through an orifice (2008) Journal of Hydraulic Engineering, 134 (9), pp. 1395-1399. Cited 45 times. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1395)spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves (Open Access) (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061. Cited 23 times. http://www.nrcresearchpress.com/loi/cjce doi: 10.1139/cjce-2016-0209spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Ramos, H.M. Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis (2019) Water (Switzerland), 11 (9), art. no. 1814. Cited 17 times. https://res.mdpi.com/d_attachment/water/water-11-01814/article_deploy/water-11-01814.pdf doi: 10.3390/w11091814spa
dcterms.bibliographicCitationMartin, C., Lee, N.H. Rapid expulsion of entrapped air through an orifice (1998) BHR Group Conference Series Publication, 39, pp. 125-132. Cited 28 times. St. Edmunds B., (ed), Professional Engineering Publishing, London, UKspa
dcterms.bibliographicCitationZhou, L., Pan, T., Wang, H., Liu, D., Wang, P. Rapid air expulsion through an orifice in a vertical water pipe (2019) Journal of Hydraulic Research, 57 (3), pp. 307-317. Cited 20 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1475427spa
dcterms.bibliographicCitationRomero, G., Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Ponz-Carcelén, R., Biel-Sanchis, F. Transient phenomena generated in emptying operations in large-scale hydraulic pipelines (Open Access) (2020) Water (Switzerland), 12 (8), art. no. 2313. Cited 3 times. https://res.mdpi.com/d_attachment/water/water-12-02313/article_deploy/water-12-02313.pdf doi: 10.3390/w12082313spa
dcterms.bibliographicCitationZhou, L., Liu, D.-Y., Ou, C.-Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (Open Access) (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140. Cited 79 times. http://jeacfm.cse.polyu.edu.hk/download/download.php?dirname=vol5no1&act=d&f=vol5no1-10_ZhouL.pdf doi: 10.1080/19942060.2011.11015357spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104spa
dcterms.bibliographicCitationBesharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M. Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (Open Access) (2016) Water Resources Management, 30 (8), pp. 2687-2702. Cited 30 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-016-1310-1spa
dcterms.bibliographicCitationMartins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046spa
dcterms.bibliographicCitationFang, H., Zhou, L., Cao, Y., Cai, F., Liu, D. 3D CFD simulations of air-water interaction in T-junction pipes of urban stormwater drainage system (2022) Urban Water Journal, 19 (1), pp. 74-86. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2021.1955282spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Paternina-Verona, D.A., Oyuela, S., Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., (...), Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines (2022) Water (Switzerland), 14 (6), art. no. 888. Cited 6 times. https://www.mdpi.com/2073-4441/14/6/888/pdf doi: 10.3390/w14060888spa
dcterms.bibliographicCitationWang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., (...), Xu, C. CFD approach for column separation in water pipelines (2016) Journal of Hydraulic Engineering, 142 (10), art. no. 04016036. Cited 32 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.000117spa
dcterms.bibliographicCitationWu, G., Duan, X., Zhu, J., Li, X., Tang, X., Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models (Open Access) (2021) Journal of Hydroinformatics, 23 (2), pp. 231-248. Cited 7 times. https://iwaponline.com/jh/article/23/2/231/80219/Investigations-of-hydraulic-transient-flows-in doi: 10.2166/HYDRO.2021.134spa
dcterms.bibliographicCitationPaternina-Verona, D.A., Coronado-Hernández, O.E., Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM (Open Access) (2022) Urban Water Journal, 19 (6), pp. 569-578. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2022.2050929spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (Open Access) (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (Open Access) (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819spa
dcterms.bibliographicCitationHurtado-Misal, A.D., Hernández-Sanjuan, D., Coronado-Hernández, O.E., Espinoza-Román, H., Fuertes-Miquel, V.S. Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2d cfd model (Open Access) (2021) Water (Switzerland), 13 (18), art. no. 2526. Cited 8 times. https://www.mdpi.com/2073-4441/13/18/2526/pdf doi: 10.3390/w13182526spa
dcterms.bibliographicCitationPaternina-Verona, D.A., Coronado-Hernández, O.E., Espinoza-Román, H.G., Besharat, M., Fuertes-Miquel, V.S., Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events (2022) Sustainability (Switzerland), 14 (21), art. no. 14600. Cited 4 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su142114600spa
dcterms.bibliographicCitationGreenshields, C., Weller, H. (2022) Notes on Computational Fluid Dynamics: General Principles. Cited 35 times. CFD Direct Ltd., Reading, UKspa
dcterms.bibliographicCitationHirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries (1981) Journal of Computational Physics, 39 (1), pp. 201-225. Cited 12480 times. doi: 10.1016/0021-9991(81)90145-5spa
dcterms.bibliographicCitationBombardelli, F.A., Hirt, C.W., Garcia, M.H. Computations of curved free surface water flow on spiral concentratorsa (2001) Journal of Hydraulic Engineering, 127 (7), pp. 627-631. Cited 27 times. doi: 10.1061/(ASCE)0733-9429(2001)127:7(629)spa
dcterms.bibliographicCitationMenter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15798 times. doi: 10.2514/3.12149spa
dcterms.bibliographicCitationMenter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective (Open Access) (2009) International Journal of Computational Fluid Dynamics, 23 (4), pp. 305-316. Cited 683 times. doi: 10.1080/10618560902773387spa
dcterms.bibliographicCitationBlazek, J. Computational Fluid Dynamics: Principles and Applications: Third Edition (2015) Computational Fluid Dynamics: Principles and Applications: Third Edition, pp. 1-447. Cited 430 times. http://www.sciencedirect.com/science/book/9780080999951 ISBN: 978-012801172-0; 978-008099995-1 doi: 10.1016/C2013-0-19038-1spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/w15050834
dc.subject.keywordsAir-water interfacespa
dc.subject.keywordsCFDspa
dc.subject.keywordsEntrapped air pocketspa
dc.subject.keywordsFilling eventsspa
dc.subject.keywordsThermodynamic behaviourspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.