Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMolina-Cabrera, Alexander
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2022-01-17T20:39:58Z
dc.date.available2022-01-17T20:39:58Z
dc.date.issued2021-10-21
dc.date.submitted2022-01-07
dc.identifier.citationMontoya, O.D.; Molina-Cabrera, A.; Hernández, J.C. A Comparative Study on Power Flow Methods Applied to AC Distribution Networks with Single-Phase Representation. Electronics 2021, 10, 2573. https://doi.org/10.3390/ electronics10212573spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10382
dc.description.abstractThis paper presents a comparative analysis of six different iterative power flow methods applied to AC distribution networks, which have been recently reported in the scientific literature. These power flow methods are (i) successive approximations, (ii) matricial backward/forward method, (iii) triangular-based approach, (iv) product linearization method, (v) hyperbolic linearization method, and (vi) diagonal approximation method. The first three methods and the last one are formulated without recurring derivatives, and they can be directly formulated in the complex domain; the fourth and fifth methods are based on the linear approximation of the power balance equations that are also formulated in the complex domain. The numerical comparison involves three main aspects: the convergence rate, processing time, and the number of iterations calculated using the classical Newton–Raphson method as the reference case. Numerical results from two test feeders composed of 34 and 85 nodes demonstrate that the derivative-free methods have linear convergence, and the methods that use derivatives in their formulation have quadratic convergencespa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics - vol. 10 n° 21spa
dc.titleA Comparative Study on Power Flow Methods Applied to AC Distribution Networks with Single-Phase Representationspa
dcterms.bibliographicCitationMurty, P. Load Flow Analysis. In Electrical Power Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 527–587. doi:10.1016/b978-0-08-101124-9.00019-x.spa
dcterms.bibliographicCitationAlbadi, M. Power Flow Analysis. In Computational Models in Engineering; IntechOpen: London, UK, 2020. doi:10.5772/intechopen.83374.spa
dcterms.bibliographicCitationTyagi, A.; Kumar, K.; Ansari, M.A.; Kumar, B. An efficient load flow solution for distribution system with addition of distributed generation using improved harmony search algorithms. J. Electr. Syst. Inf. Technol. 2020, 7, 1–16. doi:10.1186/s43067-020-00014-7spa
dcterms.bibliographicCitationMilano, F. Analogy and Convergence of Levenberg’s and Lyapunov-Based Methods for Power Flow Analysis. IEEE Trans. Power Syst. 2016, 31, 1663–1664. doi:10.1109/tpwrs.2015.2415455.spa
dcterms.bibliographicCitationAcosta, C.; Hincapié, R.A.; Granada, M.; Escobar, A.H.; Gallego, R.A. An Efficient Three Phase Four Wire Radial Power Flow Including Neutral-Earth Effect. J. Control Autom. Electr. Syst. 2013, 24, 690–701. doi:10.1007/s40313-013-0049-7spa
dcterms.bibliographicCitationHerrera-Briñez, M.C.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. The Equivalence between Successive Approximations and Matricial Load Flow Formulations. Appl. Sci. 2021, 11, 2905. doi:10.3390/app11072905spa
dcterms.bibliographicCitationShirmohammadi, D.; Hong, H.; Semlyen, A.; Luo, G. A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst. 1988, 3, 753–762. doi:10.1109/59.192932.spa
dcterms.bibliographicCitationCheng, C.; Shirmohammadi, D. A three-phase power flow method for real-time distribution system analysis. IEEE Trans. Power Syst. 1995, 10, 671–679. doi:10.1109/59.387902.spa
dcterms.bibliographicCitationHaque, M. Efficient load flow method for distribution systems with radial or mesh configuration. IEE Proc. Gener. Transm. Distrib. 1996, 143, 33. doi:10.1049/ip-gtd:19960045.spa
dcterms.bibliographicCitationTeng, J.H. A modified Gauss–Seidel algorithm of three-phase power flow analysis in distribution networks. Int. J. Electr. Power Energy Syst. 2002, 24, 97–102. doi:10.1016/s0142-0615(01)00022-9.spa
dcterms.bibliographicCitationTeng, J.H. A direct approach for distribution system load flow solutions. IEEE Trans. Power Deliv. 2003, 18, 882–887. doi:10.1109/tpwrd.2003.813818.spa
dcterms.bibliographicCitationYang, H.; Wen, F.; Wang, L. Newton-Raphson on power flow algorithm and Broyden Method in the distribution system. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia , 1–3 December 2008. doi:10.1109/pecon.2008.4762737.spa
dcterms.bibliographicCitationLagace, P.J.; Vuong, M.H.; Kamwa, I. Improving power flow convergence by Newton Raphson with a Levenberg-Marquardt method. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008. doi:10.1109/pes.2008.4596138spa
dcterms.bibliographicCitationAugugliaro, A.; Dusonchet, L.; Favuzza, S.; Ippolito, M.; Sanseverino, E.R. A backward sweep method for power flow solution in distribution networks. Int. J. Electr. Power Energy Syst. 2010, 32, 271–280. doi:10.1016/j.ijepes.2009.09.007spa
dcterms.bibliographicCitationLourenco, E.M.; Loddi, T.; Tortelli, O.L. Unified load flow analysis for emerging distribution systems. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010. doi:10.1109/isgteurope.2010.5638877.spa
dcterms.bibliographicCitationJesus, P.D.O.D.; Alvarez, M.; Yusta, J. Distribution power flow method based on a real quasi-symmetric matrix. Electr. Power Syst. Res. 2013, 95, 148–159. doi:10.1016/j.epsr.2012.08.011spa
dcterms.bibliographicCitationTortelli, O.L.; Lourenco, E.M.; Garcia, A.V.; Pal, B.C. Fast Decoupled Power Flow to Emerging Distribution Systems via Complex pu Normalization. IEEE Trans. Power Syst. 2015, 30, 1351–1358. doi:10.1109/tpwrs.2014.2343193.spa
dcterms.bibliographicCitationSianipar, G.H.M.; Setia, G.A.; Santosa, M.F. Implementation of Axis Rotation Fast Decoupled Load Flow on distribution systems. In Proceedings of the 2016 3rd Conference on Power Engineering and Renewable Energy (ICPERE), Yogyakarta, Indonesia, 29–30 November 2016. doi:10.1109/icpere.2016.7904872.spa
dcterms.bibliographicCitationGarces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828. doi:10.1109/tpwrs.2015.2394296.spa
dcterms.bibliographicCitationBolognani, S.; Zampieri, S. On the Existence and Linear Approximation of the Power Flow Solution in Power Distribution Networks. IEEE Trans. Power Syst. 2016, 31, 163–172. doi:10.1109/tpwrs.2015.2395452spa
dcterms.bibliographicCitationShen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. doi:10.3390/en11030511.spa
dcterms.bibliographicCitationMarini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243. doi:10.1016/j.epsr.2018.12.026spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. doi:10.1016/j.epsr.2020.106454spa
dcterms.bibliographicCitationBocanegra, S.Y.; Gil-Gonzalez, W.; Montoya, O.D. A New Iterative Power Flow Method for AC Distribution Grids with Radial and Mesh Topologies. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020. doi:10.1109/ropec50909.2020.9258750.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Giral, D.A. On the Matricial Formulation of Iterative Sweep Power Flow for Radial and Meshed Distribution Networks with Guarantee of Convergence. Appl. Sci. 2020, 10, 5802. doi:10.3390/app10175802spa
dcterms.bibliographicCitationHerrera-Briñez, M.C.; Montoya, O.D.; Molina-Cabrera, A.; Grisales-Noreña, L.F.; Giral-Ramirez, D.A. Convergence analysis of the triangular-based power flow method for AC distribution grids. Int. J. Electr. Comput. Eng. (IJECE) 2021, 12. doi:10.11591/ijece.v12i1.pp\%25pspa
dcterms.bibliographicCitationMontoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61. doi:10.3390/computation9060061.spa
dcterms.bibliographicCitationMontoya, O.D.; Rueda, L.E.; Gil-Gonzalez, W.; Molina-Cabrera, A.; Chamorro, H.R.; Soleimani, M. On the Power Flow Solution in AC Distribution Networks Using the Laurent’s Series Expansion. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2–5 February 2021. doi:10.1109/tpec51183.2021.9384936.spa
dcterms.bibliographicCitationSereeter, B.; Markensteijn, A.; Kootte, M.; Vuik, C. A novel linearized power flow approach for transmission and distribution networks. J. Comput. Appl. Math. 2021, 394, 113572. doi:10.1016/j.cam.2021.113572.spa
dcterms.bibliographicCitationKawambwa, S.; Mwifunyi, R.; Mnyanghwalo, D.; Hamisi, N.; Kalinga, E.; Mvungi, N. An improved backward/forward sweep power flow method based on network tree depth for radial distribution systems. J. Electr. Syst. Inf. Technol. 2021, 8, 1–18. doi:10.1186/s43067-021-00031-0spa
dcterms.bibliographicCitationDeng, J.J.; Chiang, H.D. Convergence Region of Newton Iterative Power Flow Method: Numerical Studies. J. Appl. Math. 2013, 2013, 1–12. doi:10.1155/2013/509496.spa
dcterms.bibliographicCitationKulworawanichpong, T. Simplified Newton–Raphson power-flow solution method. Int. J. Electr. Power Energy Syst. 2010, 32, 551–558. doi:10.1016/j.ijepes.2009.11.011.spa
dcterms.bibliographicCitationPrakash, D.; Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex. Eng. J. 2017, 56, 499–509. doi:10.1016/j.aej.2016.10.002spa
dcterms.bibliographicCitationMolzahn, D.K.; Hiskens, I.A. Convex Relaxations of Optimal Power Flow Problems: An Illustrative Example. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 650–660. doi:10.1109/tcsi.2016.2529281.spa
dcterms.bibliographicCitationGarces, A. A quadratic approximation for the optimal power flow in power distribution systems. Electr. Power Syst. Res. 2016, 130, 222–229. doi:10.1016/j.epsr.2015.09.006spa
dcterms.bibliographicCitationBahrami, S.; Therrien, F.; Wong, V.W.; Jatskevich, J. Semidefinite Relaxation of Optimal Power Flow for AC–DC Grids. IEEE Trans. Power Syst. 2017, 32, 289–304. doi:10.1109/tpwrs.2016.2543726spa
dcterms.bibliographicCitationMolzahn, D.K.; Holzer, J.T.; Lesieutre, B.C.; DeMarco, C.L. Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming. IEEE Trans. Power Syst. 2013, 28, 3987–3998. doi:10.1109/tpwrs.2013.2258044spa
dcterms.bibliographicCitationYuan, Z.; Hesamzadeh, M.R. Second-order cone AC optimal power flow: Convex relaxations and feasible solutions. J. Mod. Power Syst. Clean Energy 2018, 7, 268–280. doi:10.1007/s40565-018-0456-7.spa
dcterms.bibliographicCitationChowdhury, T.; Kamalasadan, S. A New Second-Order Cone Programming Model for Voltage Control of Power Distribution System with Inverter Based Distributed Generation. IEEE Trans. Ind. Appl. 2021, in press. doi:10.1109/tia.2021.3107825spa
dcterms.bibliographicCitationFerreira, L. Tellegen’s theorem and power systems-new load flow equations, new solution methods. IEEE Trans. Circuits Syst. 1990, 37, 519–526. doi:10.1109/31.52753.spa
dcterms.bibliographicCitationIssicaba, D.; Coelho, J. Evaluation of the Forward-Backward Sweep Load Flow Method using the Contraction Mapping Principle. Int. J. Electr. Comput. Eng. (IJECE) 2016, 6, 3229. doi:10.11591/ijece.v6i6.pp3229-3237spa
dcterms.bibliographicCitationWang, X.F.; Song, Y.; Irving, M. Modern Power Systems Analysis; Springer: New York, NY, USA, 2008. doi:10.1007/978-0-387- 72853-7.spa
dcterms.bibliographicCitationZhang, D.; Fu, Z.; Zhang, L. An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr. Power Syst. Res. 2007, 77, 685–694. doi:10.1016/j.epsr.2006.06.005.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/electronics10212573
dc.subject.keywordsPower flow methodsspa
dc.subject.keywordsElectric distribution gridsspa
dc.subject.keywordsSingle-phase representationspa
dc.subject.keywordsNumerical methods for distribution networksspa
dc.subject.keywordsLinear and quadratic convergencespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.