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In this study, we analyzed the optimal location and sizing of distributed generators (DGs) in radial dis-
tributed networks using a hybrid master-slave metaheuristic technique. The master stage corresponds
to the selection of suitable points for the locations of the DGs, whereas the slave stage is the optimal
dimensioning problem. The Chu-Beasley genetic algorithm (CBGA) is employed to solve the master stage,
and the optimal power flow (OPF) method via the vortex search algorithm (VSA) is employed to solve the
slave stage. The OPF solution from the VSA technique uses a successive approximation power flow to
determine the voltage profiles and power losses by guaranteeing the energy balance in all the nodes of
the network. The conventional and widely used 33- and 69-node test feeders are used to validate the
hybrid CBGA-VSA for analyzing the optimal location and sizing of the DGs in the distribution networks
using MATLAB software. The numerical results demonstrate the efficiency of the proposed optimization
method in terms of power loss reduction as compared with the results available in the literature. An addi-
tional 24-h dimensioning analysis is included for demonstrating the efficiency and applicability of the
proposed methodology for daily operations with renewable generation.
� 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. General context

Electrical networks are shifting from a classical vertical connec-
tion, i.e., generation, transmission, distribution, and commercial-
ization where generation power plants are typically located far
from the consumers (power systems with hydro-dominated gener-
ation, as in the case of Colombia), to horizontal connections where
the loads and generators are located closer to each other [1]. This
paradigm shift is induced by the rapid advancement in power elec-
tronics by the integration of distributed energy resources at distri-
bution levels [2,3]. The integration of these devices (renewable
generation and energy storage technologies) has improved the
technical operating conditions of distribution networks (medium-
voltage AC networks), in terms of an improvement in voltage pro-
file, a reduction of active and reactive power losses, and the possi-
bility of attending to new users [4–8].

Classical distributed energy resources integrated into distribu-
tion networks include distributed generators (DGs) that provide
active power for minimizing the total power loss. In some cases,
DGs provide reactive power support, which increases their impact
with regard to power losses [9]. In addition, capacitor banks are
integrated into AC networks to support a part of the reactive power
consumed by constant power loads, which help increase the volt-
age profiles and reduce power loss. In the case of energy storage
devices [10], batteries (chemical storage devices) are used for sup-
porting the power in grids with a high penetration of renewable
generators to deal with the weather dependency of the latter
devices [1,11].

Regarding the distributed generation, several challenges need
to be addressed for installing plants at optimal locations and oper-
ating them in medium-voltage distribution systems. Some of the
solutions to these challenges are as follows [2]:
ion and
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� Define the optimal location of these devices as a function of the
grid topology and load conditions.

� Consider renewable energy resources with daily energy profiles
for providing a suitable power dispatch.

� Solve the nonlinear, nonconvex mixed-integral programming
model that represents the optimal location and distribution
operation with adequate processing times.

� Consider the problems of metaheuristic optimization tech-
niques that introduce uncertainties in planning due to its non-
deterministic structure.

The aforementioned challenges are the classical problems related to
the optimal location of DGs in AC distribution networks. These
problems allow providing efficient optimization methodologies
and robust solutions, considering free computational toolboxes
with low computational efforts, and the possibility of achieving
optimal solutions [4,12]. In the following section, the motivation
of this study is presented.

1.2. Motivation

The DGs need to be placed at optimal locations in AC networks,
to reduce fossil fuel consumption [13,14]. Pollution from fossil
fuels has been a severe worldwide concern, which led to the sign-
ing of the Paris Agreement [1]. The Colombian government is no
stranger to this issue; in 2014, the country’s national congress
approved Law 1715, which is related to the integration of renew-
able resources into the power system [15]. This law has promoted
multiple renewable generation projects primarily based on photo-
voltaic (PV) and wind energy, ranging from tens of kilowatts to
hundreds of megawatts, throughout the country. Currently, the
Colombian electrical network generates 16800 MW of power from
the power system, with the following distribution: 66% hydraulic,
28% thermal, and approximately 6% from smaller plants. However,
it is expected that the Colombian electrical system will experience
significant changes in its energy matrix by 2023, integrating at
least 1.7 GW of wind plants and solar PV that currently have a con-
nection concept from the mining-energetic planning unit UPME.
According to UPME, these numbers are expected to increase signif-
icantly in the future, as requests for the connection of approxi-
mately 10 GW of solar and wind plants have been received [16].

1.3. Review of the state-of-the-art techniques

In the literature, the problem of the optimal location and place-
ment of DGs in AC medium-voltage distribution systems has been
widely studied using metaheuristic optimization techniques and
nonlinear optimizers. These techniques are required because they
correspond to a mixed-integer nonlinear programming (MINLP)
problem, which is discrete due to the presence of binary variables
in the location of the DGs [12]. In general, the location and sizing of
DGs in distribution networks corresponds to an extension of the
classical optimal power flow (OPF) problem with discrete variables
[17]. The combination of continuous and discrete variables leads to
the preference of metaheuristic techniques in addressing the
MINLP problem [18]. These techniques allow the decoupling of
the location problem to the sizing problem by proposing master–
slave optimization methodologies [18,19], where the master stage
locates the DGs, and the slave stage is responsible for their sizing.

In the master stage, multiple discrete optimizers have been pro-
posed for selecting the candidate points suitable for the locations
of the DGs. Classical methodologies include genetic algorithms
[20,5], simulated annealing methods [21], krill herd algorithms
[22–24], tabu search algorithms [25], population-based incremen-
tal learning [2], teaching-based learning optimizers [26], bat and
firefly algorithms [27–30], harmonic search algorithms [31], impe-
Please cite this article as: O. D. Montoya, W. Gil-González and C. Orozco-Henao,
sizing of distributed generators in distribution networks: A novel hybrid appro
doi.org/10.1016/j.jestch.2020.08.002
rialist competitive algorithms [18], symbiotic organism search
algorithms [32], and bio-geography-based algorithms [33].

When the sizing problem is analyzed at the slave stage, the
challenge is to determine the OPF dispatch for some previously
located DGs, which is a classical problem known as the ‘‘OPF prob-
lem” [34]. To this end, the most classical slave algorithm is the par-
ticle swarm optimizer because it guarantees optimal solutions to
continuous problems (comparable to convex and interior point
approaches [5,35]). It is also easily implemented using any free
programming language [2,36]. Nevertheless, multiple recently pro-
posed OPF methods are also suitable for dimensioning the DGs,
such as the black hole optimizer [6], sine–cosine optimization
algorithm [37], and vortex-search algorithm [3].

Remark 1. The use of pure-algorithm approaches such as master–
slave optimizers requires that the slave stage be embedded in a
classical power flow approach for solving the power balance
equations, as these approaches are nonlinear and require numer-
ical methods for analysis. Typically used methods include the
Newton–Raphson method [2,33,38], classical backward/forward
power flow [39,40], and recent approaches such as successive
approximations [37,3,9].

Additionally, some approaches are based on branch-and-bound
methods that deal with the problem of the optimal location and
sizing of DGs simultaneously, as reported in [12,41]. Nevertheless,
due to the nonconvexities in the MINLP problem, these methods
become stuck in local optimum solutions in some cases. Therefore,
metaheuristics are preferred for the problem reported in this
study.

However, some studies proposed a heuristic method for locat-
ing and sizing DGs in distribution grids. Some of these studies were
based on loss-sensitivity factors [2,38], stability index [36], and
search methods over tree graphs [9]. Although these methods are
easy to implement and have lower computational times, they are
usually stuck in local optimums.

In the following section, we present the proposed master–slave
optimization algorithm and the main contributions of this study.

1.4. Contribution and scope

This study deals with the solution of the MINLP model for the
problem of the optimal location and sizing of DGs in electrical AC
distribution networks. We propose a master–slave optimization
algorithm based on the classical Chu-Beasley genetic algorithm
(CBGA) at the master stage and the vortex search algorithm
(VSA) at the slave stage. To the best of our knowledge, this hybrid
optimization approach has not been previously reported. The main
advantages of the proposed approach are as follows:

� There is a possibility of achieving the optimal global solution of
the OPF problem by implementing the VSA and successive
approximation power flow method, which guarantees an ade-
quate solution for each possible location of the DGs as demon-
strated by [3,42,9].

� An integer codification of the CBGA facilitates a more straight-
forward implementation with a small matrix that corresponds
to the population, which is efficient in comparison with classi-
cal binary formulations. This is because the infeasibilities
caused by recombination and mutation operators are elimi-
nated in the proposed codification.

Furthermore, this study focuses on the location and sizing of DGs in
AC networks, considering a unity power factor. In contrast to previ-
ously used methods, we include the Colombian daily operative
curves of load consumption and PV generators to determine the
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optimal sizing of DGs. This approach is different from the mutated
salp swarm algorithm proposed by [10], which focused on the opti-
mal location of PV generators without considering the daily load
and generation variations. In addition, our approach is different
from [43], which focused on the sizing of the DGs in electrical dis-
tribution networks without considering the optimal location
problem.
Remark 2. The proposed master–slave CBGA-VSA approach is
more efficient than the recently proposed approaches. The pro-
posed approach achieves the best-reported optimal solution with
negligible standard deviations and low computational times.
Additionally, it is a pure-algorithmic approach easily imple-
mentable in any programming package without requiring a
specialized optimization software.
1.5. Document organization

The remainder of this paper is organized as follows: Section 2
presents the compact mathematical formulation of the problem
using complex variables. Section 3 shows the master–slave
methodology by presenting the proposed integer CBGA in conjunc-
tion with the slave-stage approach based on the VSA and succes-
sive approximation power flow method. Section 4 presents the
configuration of the test systems composed of the conventional
33- and 69-node test feeders. Section 5 presents the numerical
results for the load peak condition and daily operative scenario
considering PV generators. Section 6 highlights the concluding
remarks and suggests possible future studies.

2. Mathematical modeling

The optimal location and dimensioning of DGs in radial distri-
bution networks correspond to a mixed-integer nonlinear opti-
mization problem [12], which is nondifferentiable and nonconvex
with multiple local minimums and nondeterministic polynomial
time [37]. The mathematical model for this problem is expressed
as follows:

Objective function:

minploss ¼ real VTYI
L V

I
� �

; ð1Þ
where ploss corresponds to the objective function value associated
with the power loss in all the branches of the network, V is a vector
that contains all the voltage profiles in complex form,YL is the com-
plex component of the admittance matrix associated with the
branches, and real �f g represents the real value of the complex num-
ber contained in its argument.

Set of constraints:

SI
CG þ SI

DG � SI
D ¼ diag VI

� �
YL þYN½ �V; ð2Þ

Vmin 6 Vj j 6 Vmax; ð3Þ
Smin
GC 6 SGCj j 6 Smax

GC ; ð4Þ
xDGS

min
DG 6 SDGj j 6 xDGS

max
DG ; ð5Þ

xTDGSDG 6 a1Treal SDf g; ð6Þ
imag SDGf g ¼ 0; ð7Þ
1TxDG 6 NDG; ð8Þ
where SCG and SDG are the complex vectors of power generation
from conventional generators and DGs, respectively; SD represents
the complex vector of power consumptions;YN is the component of
the admittance matrix related to the loads modeled as constant

impedances (note that Y ¼ YL þYN); V
min and Vmax are the mini-

mum and maximum magnitudes, respectively, allowed for all the

voltage profiles in the network; Smin
GC and Smax

GC represent the mini-
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mum and maximum power limits in the conventional generators,

respectively; Smin
DG and Smax

DG correspond to the minimum and maxi-
mum power bounds for the DGs, respectively; xDG is the vector con-
taining all the binary variables related to the location of a DG in the
grid; a defines the percentage of penetration of the distributed gen-
eration in the network; NDG is the maximum number of DGs
allowed for installation; 1 is a vector filled by ones with an appro-
priate dimension. In addition, diagð�Þ generates a diagonal matrix of
the vector contained in its argument and imag �f g extracts the imag-
inary component of the complex number in its argument.

The interpretation of the mathematical model expressed by Eqs.
(1)–(8) is as follows: the objective function (1) represents the min-
imization of the active power loss in all the resistive effects related
to the branches of the network. Expression (2) presents the com-
plex power balance in all the nodes of the grid, i.e., active and reac-
tive power balance; the acceptable bounds of voltage regulation
are defined in Eq. (3). The maximum apparent power capability
in the slack node is defined in Eq. (4); in expression (5), the appar-
ent power capability of each DG is bounded by considering xDG as a
binary decision variable that can activate its location in the net-
work. Eq. (6) limits the penetration of the total distributed gener-
ation in the network by the percentage factor of penetration,
denoted a. In Eq. (7), the reactive power capability of the dis-
tributed generation is nulled, which indicates that all the DGs that
will be installed in the network operate with unity power factor.
Finally, Eq. (8) bounds the maximum number of DGs allowed for
allocation to the network.

Remark 3. The optimization model (1)–(8) is nonlinear and
nonconvex for two main reasons [22]. First, the power balance
equation is a non-affine constraint that involves products between
voltage variables. Second, the presence of binary variables makes
the problem unsolvable using classical nonlinear methods due to
the impossibility of using derivatives in its analysis.

Based on the complexity of the optimization problem, meta-
heuristic optimization tools are required to address the nonlinear
nonconvexities for the problems of the optimal location and sizing
of DGs in distribution networks. In the following section, we pre-
sent a new hybrid approach based on a classical CBGA with an inte-
ger formulation that operates together with an emerging
continuous optimizer named VSA. This optimization approach pro-
duces the best optimal solution reported in the literature with an
easy implementation structure (i.e., pure-algorithmic method),
without approximating (linearizing) the power flow equations or
using sensitive indicators for reducing the size of the solution
space.

3. Proposed methodology

The solution of the optimal location and sizing of the DGs in the
distribution networks based on metaheuristics is typically
obtained using master–slave optimization strategies [2]. At the
master stage, a discrete optimization algorithm (i.e., CBGA) defines
the optimal location of all the DGs. At the slave stage, the OPF is
solved by a continuous optimizer (i.e., VSA). When the OPF prob-
lem is solved using a continuous metaheuristic approach, a con-
ventional power flow method is required for solving the power
balance equations (see (2)) [3]. Here, we employ an emerging
power flow method named the successive approximation method,
as it is applicable to radial and mesh grid structures [37].

3.1. Chu-Beasley genetic algorithm

CBGA is a classical metaheuristic approach with the capability
of solving continuous and discrete optimization problems by
Vortex search and Chu-Beasley genetic algorithms for optimal location and
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implementing three basic rules of evolution [5,44,45], namely,
selection, recombination, and mutation. These rules are applied
to individuals that conform to a population (potential solution in
optimization problems) from an initial to the final state after mul-
tiple generations. To summarize it, ‘‘genetic algorithms represent
the capability of survival of the strongest population (animal) over
time.”.

Here, we present the general concepts for implementing the
genetic algorithm proposed by Chu-Beasley, as reported in [46],
to select the candidate nodes for the optimal location of DGs.

3.1.1. Codification
Traditionally, CBGA is applied to binary populations. For the

problem of the optimal location of DGs, an individual x has the
dimensions 1� n� 1ð Þ, where the distribution network has n
nodes and each position xi can be either zero or one. An example
of a classical individual is presented in Fig. 1.

Such a higher occurrence indicates that the computational pro-
cessing time increases owing to the additional calculations
required in correcting the infeasibilities for each generational
cycle. To simplify this, we propose a discrete combination where
each individual takes the form presented in Fig. 2.

The proposed codification can contain each position number
between 2 and n, i.e., it is possible to locate a DG at all the nodes
except the slack node, which is typically located at node 1. In addi-
tion, an individual xi does not repeat nodes to maintain this
codification.

3.1.2. Generation of the initial population
Now, if each individual xi is placed inside a vector, the popula-

tion will take the form of a matrix with the dimensions NI � NDG,
where NI is the number of individuals in the population. Observe
that t is the iterative counter.

xt ¼

xt1
xt2

..

.

xtNI

2
666664

3
777775
¼

x11 x12 � � � x1NDG

x21 x22 � � � x2NDG

..

. ..
. . .

. ..
.

xNI1 xNI2 � � � xNINDG

2
66664

3
77775: ð9Þ

Each component of the initial population xij is a random natural
number between 0 and n, and the following constraint must be ful-
filled to preserve the feasibility of the solution:

xij – xik; 8k ¼ 1;2; . . . ;NDG ð10Þ
with k– j.

3.1.3. Fitness function evaluation
As in any metaheuristic optimization procedure, the develop-

ment through the solution space is guided by a fitness function
that helps deal with infeasibilities. This function corresponds to
an adaptation of the constraints as penalizations. To propose a fit-
ness function in this study for CBGA, we shall make the following
assumptions:
Fig. 1. Classical codification in genetic algorithms.

Fig. 2. Proposed codification.
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Assumption 1. The power balance Eq. (2) is guaranteed through a
power flowmethodology, as it has strong nonlinearities in equality
that can be solved numerically using power flow tools. This will be
addressed later in the methodology.
Assumption 2. The capability of the slack generator is unlimited,
which indicates that expression (4) is fulfilled, including the initial
case, i.e., when the distribution networks do not include the DGs.
Assumption 3. The constraints associated with the power outputs
at the distributed generation (see (5)–(7)) will be satisfied by the
VSA in the slave stage, which will be discussed later in this paper.

Note that expression (8) is directly fulfilled by the way the ini-
tial population has been created. Moreover, if we consider the
aforementioned assumptions, then the fitness function employed
by our proposed CBGA takes the following form:

zf 1 ¼ ploss � b1 min 0;V�Vmin� ��min 0;Vmax �Vf g� �
; ð11Þ

where b1 is a penalty factor that penalizes the voltage deviations in
the grid for a particular generation condition.

Now, considering the structure of the fitness function (11), all
the individuals in the population are evaluated as zf 1 xð Þ.

Remark 4. The evaluation of the objective function requires the
voltage profiles, which indicates that the evaluation of zf 1 is
indispensable in the slave stage. This evaluation is the VSA in
conjunction with a new power flow approach named the succes-
sive approximation method.
3.1.4. Selection
The selection in the proposed CBGA is the initial step for obtain-

ing a potential offspring individual that will be included in the pop-
ulation. Here, we select four arbitrary individuals contained in the
population, which are submitted to a tournament according to a
fitness function. Two of the chosen individuals have lower fitness
values (best solution in terms of power loss).

3.1.5. Recombination
In this step, we generate two offspring individuals by recombin-

ing their genetic information. Suppose that the individuals xti and xtj
have been obtained after the selection process as follows:

xti ¼ xi1 xi2 � � � xik � � � xiNDG½ �;

xtj ¼ xj1 xj2 � � � xjk � � � xjNDG

� �
;

ð12Þ

Now, assume that an arbitrary position of the vector is selected as
the recombination point, i.e., k� 1. Therefore, the individuals xtþ1

i

and xtþ1
j can recombined as follows:

xtþ1
i ¼ xi1 xi2 � � � xjk � � � xjNDG

� �
;

xtþ1
j ¼ xj1 xj2 � � � xik � � � xiNDG½ �:

ð13Þ

Remark 5. If repeated components in the offspring individual xtþ1
i

and xtþ1
j appear during the recombination process, each of the

offspring individuals must be corrected by eliminating the
repeated components, until rule (10) is guaranteed.
3.1.6. Mutation
Once the two potential individuals are generated as given in

expressions (13), an arbitrary position of each individual is
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mutated (changed) by replacing its value with an alternative value
between 2 and n, always guaranteeing feasibility on each one.

3.1.7. Population replacement
To decide if one of the individuals in the current population xt is

replaced by xtþ1
i and xtþ1

j to generate a new population, i.e., xtþ1, it is
necessary to evaluate the fitness function of each offspring individ-

ual. Then, xtþ1
i is selected instead of xtþ1

j only if zf 1 xtþ1
i

� �
6 zf 1 xtþ1

j

� 	
;

otherwise, xtþ1
j is selected.

For the selected individual (e.g., xtþ1
i ) to join the population, two

conditions must be satisfied:

UThe fitness function zf 1 xtþ1
i

� �
is at least better than or equal to

that of the worst individual contained in the population.
UIts genetic material (structure) is different from that of all the
individuals contained in the population (aspiration criterion).

An example of a possible offspring population is presented as
follows:

x ¼ xt1 xtþ1
i � � � xtNI

h i>

Remark 6. The CBGA only replaces one individual in the current
population at each time, which considerably improves its process-
ing times compared with that of the classical genetic algorithm
approach.
3.1.8. Stopping criteria
The search through the solution space in the proposed CBGA

stops if one of the following two criteria is satisfied:

UThe maximum number of iterations tmax is reached.
UThe best individual in the population xt has not been modified
after cmax consecutive iterations.

Note that cmax is selected as a percentage of the total iterations;
here, we select it as 25%, as recommended in [2].

3.1.9. Algorithmic implementation of the CBGA
Algorithm1 presents the necessary steps for implementing a

CBGA for the optimal location and sizing of DGs in radial distribu-
tion networks.

Algorithm1 Proposed master-slave optimization approach
for the optimal location and sizing of DGs in AC distribution
networks

1: Inputs:
2: Read the data of the AC network;
3: Define the number of generators available, i.e., NDG;
4: Define the percentage of penetration of distributed

generation i.e., a;
5: Generate the initial population x0;
6: Evaluate the fitness function for each individual in the

population (see the slave stage);
7: Make t ¼ 0;
8: while t 6 tmax do
9: Create the tournament for selecting four parents;
10: Make recombinations for generating four offspring

individuals;
11: Apply the mutation operator to the offspring

population;
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Algorithm 1 (continued)

Algorithm1 Proposed master-slave optimization approach
for the optimal location and sizing of DGs in AC distribution
networks

12: Evaluate the fitness function of the offspring
individuals, i.e., slave stage;

13: Select the offspring with the minimum fitness function;
14: Replace the worst individual in the population with the

selected offspring if the offspring has the best objective
function and fulfills the diversity criterion;

15: if c P cmax then
16: Select as the solution of the problem, the individual

with the best objective function in the current population
xt;

17: Return the optimal solution concerning the location
and sizing of DGs (see the slave stage);

18: break;
19: end if
20: t ¼ t þ 1;
21: end while
22: Output:
23: The best solution is found for the MINLP model;
3.2. Vortex search algorithm

The VSA is an optimization technique for solving continuous
problems based on the behavior of the stirred fluids that generate
vortex demeanors in pipes [3,47]. A significant advantage of this
optimization method in OPF analysis is that it operates with a
Gaussian distribution and variable radius that allow for the explo-
ration and exploitation of the solution space [48]. The authors of
[3,9] have proven that this method converges to the optimal solu-
tion in power flow problems with minimal standard deviations
[47]. Subsequently, we present the main steps in solving the OPF
problems in AC grids using the VSA technique combined with the
successive approximation power flow method.

The VSA technique operates with nonconcentric hyperspheres,
where the outer diameter represents the boundaries of the solution
space and the center of the hypersphere corresponds to the current
solution. Initially, the center of the hypersphere is defined as
follows:

l0 ¼ ymax þ ymin

2
; ð14Þ

where ymax and ymin are d� 1 vectors that define the upper and
lower bounds, respectively, in an optimization problem inside a d-
dimensional space. The number of solutions in the neighborhood
is denoted CsðsÞ, where s is the iteration number. Initially, s ¼ 0
and C0ðsÞ is generated by a random process using a Gaussian distri-
bution in the d-dimensional space. Here, C0ðsÞ ¼ fs1; s2; . . . ; sng,
where n represents the number of candidate solutions. Note that
a general Gaussian distribution can be defined in a multivariable
space as follows:

pðxjl;RÞ ¼ 2pð Þd Rj j
� 	�1

2
exp �1

2
y� lð ÞTR�1 y� lð Þ


 �
ð15Þ

where y 2 Rd�1 corresponds to a random vector of variables,
l 2 Rd�1 represents a simple mean (center) vector, and R 2 Rd�d

corresponds to the covariance matrix.
If the elements of the covariance matrix are equal and the off-

diagonal elements of this matrix are considered as zero, then the
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resulting form of the Gaussian distribution will be generated as
hyperspheres in a d-dimensional space [49].

A simple form to calculate R, considering zero covariances and
equal variances is

R ¼ r2Id�d; ð16Þ
where r is the variance of the Gaussian distribution and Id�d is an
identity matrix. Note that the standard deviation of the Gaussian
distribution (i.e., r0) can be defined as follows:

r0 ¼ max ymaxf g �min ymin
� �

2
; ð17Þ

where r0 is considered the radius of the hypersphere in a d-
dimensional space, i.e., r0. To attain an adequate exploration in
the solution space, r0 is the biggest possible hypersphere initially.
During the search process, its radius decreases closer to the optimal
solution. At the selection stage, the best solution s0;� 2 C0ðsÞ is
selected and memorized to modify the current center of the hyper-
sphere l0. Each solution slk needs to lie within its limits before the
selection step. The following rule is employed for this purpose:

slk ¼
ymax
l � ymin

l

� �
rl þ ymin

l ;

slk;

ymax
l � ymin

l

� �
rl þ ymin

l ;

slk < ymin
l

ymin
l 6 slk 6 ymax

l

slk > ymin
l

8><
>: ð18Þ

where k ¼ 1;2; . . . ;n; l ¼ 1;2; . . . ; d, and rl represent a uniformly dis-
tributed random number between 0 and 1. Note that the best solu-
tion ss;� 2 CsðsÞ is updated if the current solution is better, which
produces an updating of the center ls and its radius rs.

One of the most critical procedures in the implementation of
the VSA is the adaptive adjustment of the radius of the hyper-
sphere using a variable-step approach [50]. To perform this task,
we consider an exponential decrement of the radius, as recom-
mended in [47]. This exponential form is expressed as

rs ¼ r0 1� s
smax

� 

e�a s

smax ; ð19Þ

where the parameter a is defined heuristically as 6, and smax is the
total number of iterations [47].

Remark 7. The VSA technique is used in this study to solve the
resulting OPF problem (i.e., to determine the values of SDG) once
the CBGA defines the location of the DGs, i.e., it determines the
optimal sizing of these DGs by evaluating the fitness function (11).
Fig. 3. Electrical configuration of the 33-node test system.
The evaluation of the fitness function requires the solution of
the resulting power flow problem. Here, we employ the successive
approximation method reported in [3], which is formulated from
Eq. (2). Let us split Eq. (2) as follows:

S
I
CG ¼ diag VI

s

� �
YssVs þYsdVd½ �; ð20Þ

SI
DG � SI

D ¼ diag VI
d

� �
YdsVs þYddVd½ �; ð21Þ

where the subscripts s and d refer to the slack (conventional gener-
ators) nodes and demands, respectively. Notably, Vs is perfectly
known, and the interest lies in the solution for Vd. In addition, Eq.
(20) is linear, as SI

CG are free variables that absorb any change in
the demand. This indicates that, if SI

DG is known (provided by the
VSA), then Vd can be obtained by iteratively solving Eq. (21) as pre-
sented below:

Vmþ1
d ¼ Y�1

dd diag Vm;I
d

� �
SI

DG � SI
D �YdsVs

� �� �
; ð22Þ

where m is the iterative counter. In addition, this iterative proce-
dure is repeated until the voltage tolerance error between two con-
secutive iterations is satisfied.
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Finally, Algorithm2 shows the steps to implement the VSA tech-
nique used herein.

Algorithm2 Proposed slave optimization based on the VSA
for the optimal sizing of DGs

1: Inputs:
2: The initial center l0 is calculated from (14);
3: The initial radius r0 (or the standard deviation r0) is

calculated in (19);
4: Set the initial best fitness function as plossðsbestÞ ¼ 1

(minimization problem);
5: Make s ¼ 0;
6: while s 6 smax do
7: Generate the candidate solutions using a Gaussian

distribution around the center ls with a standard deviation
(radius) rs as defined in (15) to obtain CsðsÞ with d-
dimension rows and b columns (b represents the number of
DGs considered in the OPF problem);

8: If CsðsÞ crosses any upper or lower bound, place it within
its bounds using (18);

9: Evaluate the successive approximation power flow
problem (see (22)) for each sk in CsðsÞ and calculate its
corresponding fitness function as (11);

10: Select the best solution s� as the argument that
produces the minimum zf contained in CsðsÞ;

11: ifzf ðs�Þ < zf ðsbestÞthen
12: sbest ¼ s�;
13: zf ðsbestÞ ¼ zf ðs�Þ;
14: else
15: Retain the best solution attained so far sbest;
16: end if
17: Make the center lsþ1 equal to the best solution sbest;
18: Update the current radius rsþ1 as given by (19);
19: s ¼ sþ 1;
20: end while
21: Output:
22: The best solution is found for sbest and its fitness function

zf ðsbestÞ;

Remark 8. Note that the roles of the CBGA and the VSA in the
optimal location and sizing of DGs in electrical distribution
networks are the following:

UThe CBGA is a discrete optimization algorithm that deals with
the problem of the optimal location of DGs, as it defines the
subset of nodes, which will be located as shown in the codifica-
tion illustrated in Fig. 2.
UThe VSA is a continuous optimization approach that
addresses the problem of the optimal sizing of DGs (i.e., OPF);
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Fig. 4. Electrical configuration of the 69-node test system.

Fig. 5. Percentage of power consumption and availability on a typical sunny day in the Caribbean region of Colombia.
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this algorithm takes the location of the DGs and defines their
sizing via continuous searching. The main advantage of the
VSA is that it guarantees the convergence to the global opti-
mum for nonlinear optimization problems as reported in [3,48].

4. Test systems and simulation cases

This section presents the electrical configuration and test sys-
tem information of the radial distribution systems employed in
this study for validating the MINLP formulation and its solution
in the GAMS package [8]. Two test systems were used: a 33-node
test system and a 69-node test feeder. The complete details of
these test systems are presented below.

4.1. 33-node test feeder

This test system was composed of 33 nodes and 32 branches
with an operating voltage of 12:66 kV. The slack node is located
at node 1, and its configuration is presented in Fig. 3. This feeder
had the total active and reactive power demands of 3715 kW
and 2300 kvar, respectively. The initial active power losses of this
system were 210:9876 kW. For this test system, the possibility of
installing three DGs was considered because it was the most com-
monly reported solution in the literature [2]. The power of each DG
was limited from 300 kW to 1200 kW1. In addition, we considered
the voltage and power base values of 12.66 kV and 1000 kW,
respectively.
1 Note that these bounds were selected to guarantee equal conditions for
comparison with the techniques reported in the literature.
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The information of all the branches and the load consumption
of the 33-node test feeder are listed in Table 6.

4.2. 69-node test feeder

This test system consisted of 69 nodes and 68 branches with an
operating voltage of 12.66 kV. The slack node is located at node 1,
and its configuration is depicted in Fig. 4. This feeder had the total
active and reactive power demands of 3890.7 kW and 2693.6 kvar,
respectively. The initial active power losses of this system were
224.9520 kW. We considered the installation of three DGs, with
the power of each DG ranging from 0 to 2000 kW. We also consid-
ered 12.66 kV and 1000 kW as the voltage and power base values,
respectively.

The information of all the branches and the load consumption
of the 69-node test feeder are presented in Table 7.

4.3. Simulation cases

To validate the proposed master–slave optimization algorithm,
we considered two simulation cases as follows:

� Case1: This simulation case evaluated the possibility of locating
three DGs for each test system, considering that the load was
under peak consumption condition, as reported in Tables 6
and 7. This simulation case was the typical simulating condition
reported in the literature for locating DGs in AC distribution
networks. For simplicity, we considered a unity power factor
for operating all the DGs.

� Case2: In this case, we considered the possibility of integrating
three DGs with PV technology, considering the typical curves of
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Table 2
Comparative results for the optimal sizing and dimensioning of DGs for the 33-node
test feeder under simulation case 1.

Method Loss
½kW�

Location
(Node)

Size [MW]

KHA [22] 75.4116 {13,25,30} {0.8107,0.8368,0.8410}
LSFSA [22] 82.0525 {6,18,30} {1.1124,0.4874,0.8679}
GA-PSO [5] 103.3600 {11,16,32} {0.9250,0.8630,1.2000}
TLBO [4] 75.5400 {10,24,31} {0.8246,1.0311,0.8862}
QOTLBO [4] 74.1008 {12,24,29} {0.8808,1.0592,1.0714}
HSA-PABC [53] 72.8129 {14,24,30} {0.7550,1.0730,1.0680}
GA-IWD [54] 110.5100 {11,16,32} {1.2214,0.6833,1.2135}
AHA [55] 72.8340 {13,24,30} {0.7920,1.0680,1.0270}
MSSA [10] 72.7854 {13,24,30} {0.8010,1.0910,1.0530}
MINLP [12] 72.7862 {13,24,30} {0.8000,1.0900,1.0500}
CHVSA [9] 78.4534 {6,14,31} {1.1846,0.6468,0.6881}

CBGA-VSA 72.7853 {13,24,30} {0.8018,1.0913,1.0536}
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a Colombian utility [51]. These curves were the percentages of
the load variation and the availability of renewable generation
of the PV plants considering daily operations. Fig. 5 displays
these curves in terms of per-unit representation [52].

5. Computational validation

To solve the general MINLP model for the problem of the opti-
mal location and sizing of DGs in radial distribution systems, we
employed the MATLAB software version 2017b on a desktop com-
puter with an INTEL(R) Core(TM) i5� 3550 3:5-GHz processor and
8 GB of RAM running on a 64-bit version of Microsoft Windows 7
Professional.

To implement the proposed master–slave optimization
approach to deal with the optimal location and sizing of DGs in dis-
tribution networks, we consider the information reported in
Table 1. Note that these parameters correspond to the CBGA,
VSA, and successive approximation power flow method,
respectively.

5.1. Case1

For a comparison on the 33-node test feeder, we considered the
following published papers in the literature: krill herd algorithm
(KHA) [22], loss sensitivity factor simulated annealing (LSFSA)
[22], combined genetic algorithm (GA) and particle swarm opti-
mization (PSO) (GA-PSO) [5], teaching–learning based optimiza-
tion (TLBO) [4], quasi-oppositional teaching–learning-based
optimization (QOTLBO) [4], harmony search algorithm with PSO
embedded artificial bee colony (HSA-PABC) [53], hybrid intelligent
water drops and GA (GA-IWD) [54], heuristic approach (AHA) [55],
mutated salp swarm algorithm (MSSA) [10], MINLP model [12],
and constructive heuristic vortex search algorithm (CHVSA) [9].

The results of all the previous methods and the proposed mas-
ter–slave approach are listed in Table 2 for a comparison. Note that
we evaluated each size reported in each corresponding literature to
obtain the same number of decimals in the power loss value, for a
fair comparison.

From Table 2, it can be observed that the proposed approach
reaches the global minimum of the problem (72.7853 kW), which
can be considered a technical tie with the results of the MSSA and
MINLP models (72.7854 and 72.7862 kW, respectively). Further-
more, these techniques identified the same group of nodes for
locating all the DGs, i.e., nodes 13, 24, and 30, with similar power
Table 1
Parameters for implementing the proposed hybrid CBGA-VSA
algorithm.

Parameter Value (Method)

Chu-Beasley genetic algorithm
Population size 10
Number of iterations 100
Population generation Gaussian Distribution
Non-improvements cmax ¼ 25
Tournament individuals 4 (random selected)
Recombination 100 %
Mutation 50 %

Vortex search algorithm
Population size 4
Number of iterations 100
Population generation Gaussian Distribution

Successive approximation power flow
Number of iterations 1000
Tolerance 1� 10�10

Experimental tests per system
Number of evaluations 100

Please cite this article as: O. D. Montoya, W. Gil-González and C. Orozco-Henao,
sizing of distributed generators in distribution networks: A novel hybrid appro
doi.org/10.1016/j.jestch.2020.08.002
dispatches (dimension of the DGs). Thus, the slave stage is crucial
in obtaining the optimal solution. Furthermore, the proposed CBGA
in discrete form is adequate for solving the MINLP model for the
optimal location and sizing problems of DGs in AC grids with lower
standard deviations and speed convergence when hybridized using
the VSA method.

Both previous hybrid approaches that use GA present worse
performances, as shown in Table 2 (see the GA-PSO and GA-IWD
methods), compared with the results presented in this study. The
difference may be attributed to the parameterization of the GA
and the use of binary codification in the previous methods,
whereas this study presents an integer codification that helps
obtain the best numerical results.

In Fig. 6, the power loss reductions achieved by each method are
presented. The losses confirm that the best approach for the 33-
node test feeder is the proposed hybrid method between the CBGA
and VSA, which is conclusively tied with the MSSA and MINLP
methods.

For the voltage profile in the base case (i.e., without distributed
generation), the worst voltage profile occurred at node 18 with
0.9038 p.u. Nevertheless, after applying the proposed CBGA-VSA,
the worst voltage profile occurred at node 33 with 0.9687 p.u. This
indicates a general improvement of approximately 6.49%, which
exceeds the typical value of 0.95 p.u. required by regulatory poli-
cies in the distribution system operation [12].

The proposed hybrid CBGA-VSA approach was evaluated 100
consecutive times, demonstrating an average processing time of
approximately 20.2001 s for reaching the optimal solution, with
a minimal power loss of approximately 72.7853 kW, a maximum
of 74.5616 kW, a mean of 72.9895 kW, and a standard deviation
of 0.3592 kW. These results confirm that the proposed approach
has a lower processing time, and it is at least 88 times faster in
comparison with [2]. Moreover, for the dispersion of the solutions
when compared with the KHA reported in [22] (a mean of
75.4940 kW and a maximum of 75.6380 kW), our approach pro-
duces better results inclusive of the worst case, as our approach
showed an improvement by approximately 0.8500 kW with
respect to the best solution reported by the KHA.

For the 69-node test system based on the literature reports, we
removed the HSA-PABC and included the hybrid teaching–
learning-based optimization-grey wolf optimizer (HTLBOGWO)
reported by [56] for a comparison. HSA-PABC was removed
because it did not report any information for the 69-node test
feeder.

Table 3 reports the numerical validation of the proposed
approach and the previous methods. First, four approaches, i.e.,
MSSA, MINLP, CHVSA, and CBGA-VSA showed a tie as the differ-
ence among them was lower than 1.30 W, which is negligible for
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Fig. 6. Total reduction of the power loss in the 33-node test feeder achieved by the different methods.

Table 3
Comparative results for the optimal sizing and dimensioning of DGs for the 69-node
test feeder under simulation case 1.

Method Loss
½kW�

Location
(Node)

Size [MW]

KHA [22] 69.5730 {12,22,61} {0.4962,0.3113,1.7354}
LSFSA [22] 72.1120 {18,60,65} {0.4204,1.3311,0.4298}
GA-PSO [5] 84.5909 {21,61,63} {0.9105,1.1926,0.8849}
TLBO [4] 72.4157 {15,61,63} {0.5919,0.8188,0.9003}
QOTLBO [4] 71.6345 {18,61,63} {0.5334,1.1986,0.5672}
HTLBOGWO [56] 71.7281 {18,61,62} {0.5330,1.0000,0.7730}
GA-IWD [54] 80.9100 {20,61,64} {0.9115,1.3926,0.8059}
AHA [55] 69.6669 {12,21,61} {0.4710,0.3120,1.6890}
MSSA [10] 69.4077 {11,18,61} {0.5260,0.3800,1.7180}
MINLP [12] 69.4090 {11,17,61} {0.5300,0.3800,1.7200}
CHVSA [9] 69.4088 {11,17,61} {0.5284,0.3794,1.7186}

CBGA-VSA 69.4077 {11,18,61} {0.5268,0.3801,1.7190}
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practical purposes. Nevertheless, the CBGA-VSA and MSSA
achieved the same numerical solution, i.e., power losses of
69.4077 kW, and were hence the most efficient algorithms in com-
parison with the other approaches. The KHA and AHA methods
were adequate algorithms for the 69-node test feeder because both
reduced the power loss up to 67.5730 kW and 69.6669 kW, respec-
tively, i.e., lower than 70 kW, contrary to the other algorithms.

From the literature approaches (including our proposal)
reported in Table 3, we identify nodes 11, 17, 18, 61, and 63 as
the most sensitive nodes for the optimal location of DGs. Addition-
ally, the best results were obtained for nodes 11, 18, and 61 as for
the MSSA and CBGA-VSA.

Fig. 7 reports the percentage of power loss reduction for the
base case. This plot confirms that six techniques exceeded a power
loss reduction of 69%, with the MSSA and the proposed approach
being the best models (comparing the power losses in Table 3).
The approaches that use GA (e.g., GA-PSO and GA-IWD) were
implemented using binary codifications that were difficult to
develop through the solution space; consequently, both
Fig. 7. Total reduction of the power loss in the 69-no
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approaches were stuck in local optimums for both test feeders.
However, our proposed integer CBGA demonstrates the capability
of reaching the global optimum when combined with efficient
OPF approaches, as reported in [3,9] for the VSA.

After 100 consecutive iterations, we observed a maximum, min-
imum, mean, and standard deviation of approximately
70.7219 kW, 69.4077 kW, 69.5409 kW, and 0.3400 kW, respec-
tively. The worst result from our approach (70.7219 kW) was bet-
ter than those of the KHA, LSFSA, GA-PSO, TLBO, QOTLBO,
HTLBOGWO, and GA-IWD approaches (see the second column of
Table 3. Additionally, a lower standard deviation was obtained in
comparison with the results reported in [22]. For the computa-
tional time, the average time taken by the CBGA-VSA for the 69-
node test feeder was 62.2219 s, which was at least 32 times faster
than the method reported in [2].

Regarding the voltage profile improvement, the worst voltage
value for the base case corresponded to node 65 with 0.9092 p.u.
After applying the proposed CBGA-VSA, a minimum voltage of
approximately 0.9790 p.u was obtained in the same node, which
indicated an improvement of approximately 6.98% in the voltage
profile of the network after sizing and locating all the DGs.
5.2. Case2

In this simulation case, we explored the possibility of including
three DGs at each test feeder, considering that they are all PVs and
follow the typical Colombian power output curve reported in Fig. 5.
Moreover, we consider that all the demands vary with the percent-
age of consumption per hour reported in the same plot.

Table 4 reports the best solution for the proposed hybrid mas-
ter–slave optimizer after 100 consecutive evaluations. The location
of the DGs in this scenario coincides with the nodes reported in the
first case for the 33-node test system (i.e., nodes 13, 24, and 30 in
Table 2). For the 69-node test feeder (Table 3), nodes 11 and 61 are
equal, and node 18 is moved to node 17, which is a neighbor as
plotted in Table 7.
de test feeder achieved by the different methods.
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Table 4
Optimal sizing and dimensioning of PV sources in AC distribution networks using the
proposed approach.

System Loss [kWh/day] Location (Node) Size [MW]

33-nodes 1915.6694 {13,24,30} {0.9676,1.9999,1.2000}
69-nodes 1999.6510 {11,17,61} {0.6538,0.4446,2.0000}

Fig. 8. Processing time behaviors for the proposed hybrid approach in the 33- and
69-node test feeders.
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After the dimensions achieved by the proposed approach in the
33-node test feeder were observed, two PV nodes having the max-
imum capacity of 1200 kW were selected, whereas only the DG
located at node 61 was sized as 2000 kW in the 69-node test fee-
der. Nonetheless, these increases in the DG dimensions occurred
because the PV generators can only support power for 12 h during
an operative day in Colombia. This duration was different from the
first case where the DGs continuously generated the same power
irrespective of the time of the day.

The initial daily losses for the 33- and 66-node test feeders were
2508.6343 kWh/day and 2664.7952 kWh/day, respectively, which
indicate that the CBGA-VSA hybrid approach achieved daily reduc-
tions of approximately 23.64 % and 24.96 %, respectively (Table 4).
This reduction corresponds to the third part of the first simulation
case, which is caused by the time dependency of the second simu-
lation case, as previously explained.

5.3. Complementary analysis

We perform 100 consecutive evaluations for the 33- and 69-
node test feeders to observe the effectiveness of the proposed mas-
ter–slave CBGA-VSA for dealing with the problem of the optimal
location and sizing of DGs in radial distribution networks. These
repetitions allow observing the maximum and minimum values
of the objective functions achieved by our proposed method.
Table 5 reports the best and worst solutions for the presented case
Case1. In addition, Fig. 8 shows the processing time behaviors for
each test feeder.

From Table 5, we can observe that the difference between the
best and worst solutions in the 33-node test feeder is 1:7762kW,
which indicates that our approach is better than the following lit-
erature approaches: KHA [22], LSFSA [22], GA-PSO [5], TLBO [4],
QOTLBO [4], GA-IWD [54], and CHVSA [9]. Note that the same
behavior can be observed for the 69-node test feeder (the differ-
ence between the best and worst results is 1:3142 kW) when com-
pared with Table 3 and the worst solution for this system in
Table 5. These comparisons confirm that the proposed hybrid opti-
mization method shows the best performance inclusive of the
worst case when compared with previous literature results.

From Table 5, it can also be observed that, in the case of the 33-
node test feeder, the best and worst solutions share two nodes, i.e.,
nodes 13 and 24, and differ in the third one; nevertheless, node 30
is electrically near node 32 as presented in Fig. 3. Therefore, these
solutions are near in terms of power loss reduction. In the case of
the 69-node test feeder, the difference in the locations of the DGs
between the worst solutions indicates that they are electrically
Table 5
Best and worst solutions for the 33- and 69-node test feeder at the peak load
condition.

Solution type Loss [kW] Location (Node) Size [MW]

33-node test feeder
Best 72.7853 {13,24,30} {0.8018,1.0913,1.0536}
Worst 74.5615 {13,24,32} {0.8406,1.1298,0.8941}

69-node test feeder
Best 69.4077 {11,18,61} {0.5268,0.3801,1.7109}
Worst 70.7219 {10,17,60} {0.5446,0.3957,1.6903}
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near the best one. Thus, there exist alternative solutions near the
optimal one, which can also be considered for utilities in case the
optimal solution is restricted and cannot be implemented owing
to environmental, geographical, or social factors.

In terms of computational performance, Fig. 8 shows the mini-
mum, maximum, and mean processing times required for locating
and sizing DGs in AC distribution networks with the proposedmas-
ter–slave CBGA-VSA approach. Note that the approach takes
approximately 20 s for the 33-node test feeder, and approximately
60 s for the 69-node one. This computational performance allows
evaluating multiple scenarios for planning and operation in distri-
bution systems with minimum requirements. This can be attrac-
tive for distribution companies as the tools presented in this
study can be simulated in multiple operative scenarios for taking
economic decisions regarding investment, operation, and
maintenance.

Notably, we decided not to compare the processing times with
previous results from the literature, as they depend on the charac-
teristics of the computers used during the simulations. However,
the processing times of our approach are in the range of one min-
ute, which can be considered highly efficient according to meta-
heuristic standards. This is an additional contribution of our
proposed hybrid approach.

Fig. 9 illustrates the probability of the proposed method finding
the best-presented solution. The CBGA-VSA approach presents a
likelihood of finding the best solution of 94.5 % and 93.3 % for
the 33- and 69-node test feeders, respectively. These results indi-
cate that the proposed approach is well calibrated, and it will find
the best solution in most cases.

To demonstrate the effectiveness of the proposed hybrid opti-
mization method for solving the problem of the optimal location
and sizing of DGs in AC distribution networks independent of the
stochastic nature of the metaheuristic optimization approach, the
nonparametric statistical test known as the Wilcoxon test is
applied for both test feeders. This test attempts to identify if two
(or more) independent samples have the same median, which
entails that they are statistically comparable [57]. In the case of
the proposed hybrid CBGA-VSA, we consider the first simulation
with 100 evaluations for both the test feeders as the control sam-
ple. In addition, 10 new simulations are performed with 100 eval-
uations. These data are evaluated through theWilcoxon test, which
provides the mean p-values of approximately 0:8098 for the 33-
node test feeder and 0:1159 for the 69-node test feeder. These
results indicate that the different simulations performed in both
test feeders have the same medians, i.e., each simulation is statis-
tically comparable to the other ones. Thus, the proposed CBGA-VSA
optimization method has the ability to reach the global optimum
each time when it is evaluated at least 100 times. Note that this
result is especially important for evaluating the effectiveness of a
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Fig. 9. Normal distribution for the proposed method: (a) 33-node test feeder and
(b) 69-node test feeder.

Table 6
Electrical parameters of the 33-node test feeder.
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metaheuristic optimization technique regarding the stochasticity
present in its evolution performance inside the solution space,
i.e., its ability to reach the global optimum of the studied problem.
Node i Node j Rij [X] Xij [X] Pj [kW] Qj [kW]

1 2 0.0922 0.0477 100 60
2 3 0.4930 0.2511 90 40
3 4 0.3660 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.8190 0.7070 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.0300 0.7400 60 20
9 10 1.0400 0.7400 60 20
10 11 0.1966 0.0650 45 30
11 12 0.3744 0.1238 60 35
12 13 1.4680 1.1550 60 35
13 14 0.5416 0.7129 120 80
14 15 0.5910 0.5260 60 10
15 16 0.7463 0.5450 60 20
16 17 1.2890 1.7210 60 20
17 18 0.7320 0.5740 90 40
2 19 0.1640 0.1565 90 40
19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50
23 24 0.8980 0.7091 420 200
24 25 0.8960 0.7011 420 200
6 26 0.2030 0.1034 60 25
26 27 0.2842 0.1447 60 25
27 28 1.0590 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.9630 150 70
31 32 0.3105 0.3619 210 100
32 33 0.3410 0.5302 60 40
6. Conclusions and future work

A novel hybrid master–slave optimization approach for solving
the problem of the optimal location and sizing of DGs in AC distri-
bution networks based on the CBGA and VSA was presented. At the
master stage, the CBGA was employed to solve the location prob-
lem using an integer representation, and at the slave stage, the
VSA was employed for defining the optimal dimension of the
DGs (i.e., OPF solution). The numerical results confirmed that this
hybrid optimizer achieved the optimal solutions reported in the lit-
erature for 33- and 69-node test feeders. The findings also demon-
strated that an integer codification for CBGA allows the optimal
global solution to be reached in contrast to the classical GA-PSO
and GA-IWDmethods. In addition, after 100 consecutive iterations,
the results of the proposed approach were better than those of
some approaches reported in the literature. Even in the worst case,
the solutions of the hybrid CBGA-VSA were better than those of
TLBO, QOTLBO, LSFSA, and HTLBOGWO.—.

Regarding the computational requirements, the proposed
hybrid approach takes a few seconds for solving the complete
MINLP model, which is an advantage in planning projects where
multiple evaluations are required before taking a decision regard-
ing inversion by the utilities. The processing time is approximately
20 s for the 33-node test feeder and approximately 60 s for the 69-
node test system. In addition, the proposed approach is a pure-
algorithmic approach and does not require any specialized soft-
ware; hence, it can be regarded as free software design.
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For the optimal location and dimensioning of PV plants, consid-
ering a daily operative environment, the proposed method demon-
strated a daily energy reduction of approximately 23% for both the
test systems. This energy minimization is adequate in distribution
networks, as PV sources are limited to a maximum of 12 h of oper-
ation in the Colombian power system scenario, which conditions
the effective power injection to a reduced number of hours per
day due to the Gaussian form of the PV generation curve.

The Wilcoxon test allowed demonstrating that, independent of
the stochastic nature, the proposed hybrid CBGA-VSA optimization
algorithm allows reaching the optimal solution of the problem
when multiple evaluations are performed, as for each run (100
consecutive evaluations), the median of the data is the same as that
of the control set in statistical terms. This indicates that the solu-
tion strategy finds, on average, the same set of solutions each time
it is employed to solve the studied optimization problem.

In future studies, the proposed approach can be embedded into
a distribution system planning project for the optimal selection
and sizing of renewable energy resources in AC power systems.
Additionally, the proposed method can be adapted for the optimal
operation of battery energy storage systems in distribution net-
works, considering the penetration of renewables in daily operat-
ing conditions and the typical demand and generation curves.
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Appendix A. Electrical parameters

Tables 6 and 7 present the electrical parameters of the 33- and 69-
node test feeders, respectively.
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Table 7
Electrical parameters of the 69-node test feeder.

Node i Node j Rij [X] Xij [X] Pj [kW] Qj [kW]

1 2 0.0005 0.0012 0 0
2 3 0.0005 0.0012 0 0
3 4 0.0015 0.0036 0 0
4 5 0.0251 0.0294 0 0
5 6 0.3660 0.1864 2.6 2.2
6 7 0.3810 0.1941 40.4 30
7 8 0.0922 0.0470 75 54
8 9 0.0493 0.0251 30 22
9 10 0.8190 0.2707 28 19
10 11 0.1872 0.0619 145 104
11 12 0.7114 0.2351 145 104
12 13 1.0300 0.3400 8 5
13 14 1.0440 0.3450 8 5.5
14 15 1.0580 0.3496 0 0
15 16 0.1966 0.0650 45.5 30
16 17 0.3744 0.1238 60 35
17 18 0.0047 0.0016 60 35
18 19 0.3276 0.1083 0 0
19 20 0.2106 0.0690 1 0.6
20 21 0.3416 0.1129 114 81
21 22 0.0140 0.0046 5 3.5
22 23 0.1591 0.0526 0 0
23 24 0.3460 0.1145 28 20
24 25 0.7488 0.2475 0 0
25 26 0.3089 0.1021 14 10
26 27 0.1732 0.0572 14 10
3 28 0.0044 0.0108 26 18.6
28 29 0.0640 0.1565 26 18.6
29 30 0.3978 0.1315 0 0
30 31 0.0702 0.0232 0 0
31 32 0.3510 0.1160 0 0
32 33 0.8390 0.2816 14 10
33 34 1.7080 0.5646 19.5 14
34 35 1.4740 0.4873 6 4
3 36 0.0044 0.0108 26 18.55
36 37 0.0640 0.1565 26 18.55
37 38 0.1053 0.1230 0 0
38 39 0.0304 0.0355 24 17
39 40 0.0018 0.0021 24 17
40 41 0.7283 0.8509 1.2 1
41 42 0.3100 0.3623 0 0
42 43 0.0410 0.0475 6 4.3
43 44 0.0092 0.0116 0 0
44 45 0.1089 0.1373 39.22 26.3
45 46 0.0009 0.0012 39.22 26.3
4 47 0.0034 0.0084 0 0
47 48 0.0851 0.2083 79 56.4
48 49 0.2898 0.7091 384.7 274.5
49 50 0.0822 0.2011 384.7 274.5
8 51 0.0928 0.0473 40.5 28.3
51 52 0.3319 0.1114 3.6 2.7
9 53 0.1740 0.0886 4.35 3.5
53 54 0.2030 0.1034 26.4 19
54 55 0.2842 0.1447 24 17.2
55 56 0.2813 0.1433 0 0
56 57 1.5900 0.5337 0 0
57 58 0.7837 0.2630 0 0
58 59 0.3042 0.1006 100 72
59 60 0.3861 0.1172 0 0
60 61 0.5075 0.2585 1244 888
61 62 0.0974 0.0496 32 23
62 63 0.1450 0.0738 0 0
63 64 0.7105 0.3619 227 162
64 65 1.0410 0.5302 59 42
11 66 0.2012 0.0611 18 13
66 67 0.0047 0.0014 18 13
12 68 0.7394 0.2444 28 20
68 69 0.0047 0.0016 28 20
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