Mostrar el registro sencillo del ítem

dc.creatorContreras Ortiz, Sonia Helena
dc.creatorChiu T.
dc.creatorFox M.D.
dc.date.accessioned2020-03-26T16:32:56Z
dc.date.available2020-03-26T16:32:56Z
dc.date.issued2012
dc.identifier.citationBiomedical Signal Processing and Control; Vol. 7, Núm. 5; pp. 419-428
dc.identifier.issn17468094
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9096
dc.description.abstractMedical ultrasound imaging uses pulsed acoustic waves that are transmitted and received by a hand-held transducer. This is a mature technology that it is widely used around the world. Among its advantages are that it is cost-effective, flexible, and does not require ionizing radiation. However, the image quality is affected by degradation of ultrasound signals when propagating through biological tissues. Many efforts have been done in the last three decades to improve the quality of the images. This paper reviews some of the most important methods for ultrasound enhancement. We classified these techniques into two groups: preprocessing and post-processing, analyzed their benefits and limitations, and presented our beliefs about where ultrasound research could be directed to, in order to improve its effectiveness and broaden its applications. © 2011 Elsevier Ltd.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84863724273&doi=10.1016%2fj.bspc.2012.02.002&partnerID=40&md5=9af047b9c81aa0916b6e6de451555fcb
dc.titleUltrasound image enhancement: A review
dcterms.bibliographicCitationCronan, J.J., Ultrasound: Is There a Future in Diagnostic Imaging? (2006) JACR Journal of the American College of Radiology, 3 (9), pp. 645-646. , DOI 10.1016/j.jacr.2006.04.006, PII S1546144006002109
dcterms.bibliographicCitationMoreau, J.F., Re: ""Ultrasound: Is There a Future in Diagnostic Imaging?"" (2007) JACR Journal of the American College of Radiology, 4 (1), pp. 78-79. , DOI 10.1016/j.jacr.2006.11.011, PII S1546144006006648
dcterms.bibliographicCitationWells, P., Ultrasound imaging (2006) Physics in Medicine and Biology, 51 (13), pp. 83-R98
dcterms.bibliographicCitationHarvey, C.J., Pilcher, J.M., Eckersley, R.J., Blomley, M.J., Cosgrove, D.O., Advances in ultrasound (2002) Clinical Radiology, 57 (3), pp. 157-177
dcterms.bibliographicCitationQuistgaard, J.U., Signal acquisition and processing in medical diagnostic ultrasound (1997) IEEE Signal Processing Magazine, 14 (1), pp. 67-74
dcterms.bibliographicCitationMacOvski, A., (1983) Medical Imaging Systems, , Prentice-Hall
dcterms.bibliographicCitationPrince, J., Links, J., (2006) Medical Imaging Signals and Systems, , Pearson Prentice Hall
dcterms.bibliographicCitationNg, J., Prager, R., Kingsbury, N., Treece, G., Gee, A., Modeling ultrasound imaging as a linear, shift-variant system (2006) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53 (3), pp. 549-563
dcterms.bibliographicCitationGoodman, J., (2007) Speckle Phenomena in Optics: Theory and Applications, , Roberts & Co
dcterms.bibliographicCitationWagner, R.F., Smith, S.W., Sandrik, J.M., Lopez, H., Statistics of speckle in ultrasound b-scans (1983) IEEE Transactions on Sonics and Ultrasonics, 30 (3), pp. 156-163
dcterms.bibliographicCitationBurckhardt, C.B., Speckle in ultrasound B-mode scans (1978) IEEE Transactions on Sonics and Ultrasonics, 25 (1), pp. 1-6
dcterms.bibliographicCitationDutt, V., Greenleaf, J.F., Adaptive speckle reduction filter for log-compressed B-scan images (1996) IEEE Transactions on Medical Imaging, 15 (6), pp. 802-813. , PII S0278006296086995
dcterms.bibliographicCitationKaplan, D., Ma, Q., On the statistical characteristics of log-compressed Rayleigh signals: Theoretical formulation and experimental results (1994) Journal of the Acoustical Society of America, 95 (3), pp. 1396-1400
dcterms.bibliographicCitationAbd-Elmoniem, K.Z., Youssef, A.-B.M., Kadah, Y.M., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion (2002) IEEE Transactions on Biomedical Engineering, 49 (9), pp. 997-1014. , DOI 10.1109/TBME.2002.1028423
dcterms.bibliographicCitationKremkau, F.W., Taylor, K.J.W., Artifacts in ultrasound imaging (1986) Journal of Ultrasound in Medicine, 5 (4), pp. 227-237
dcterms.bibliographicCitationFeldman, K.S.B.M., Us artifacts (2009) Radiographics, 29 (4), pp. 1179-1189
dcterms.bibliographicCitationLaing, F., Kurtz, A., The importance of ultrasonic side-lobe artifacts (1982) Radiology, 145 (3), pp. 763-768
dcterms.bibliographicCitationLu, J.-Y., Zou, H., Greenleaf, J.F., Biomedical ultrasound beam forming (1994) Ultrasound in Medicine and Biology, 20 (5), pp. 403-428. , DOI 10.1016/0301-5629(94)90097-3
dcterms.bibliographicCitationJensen, J.A., Nikolov, S.I., Gammelmark, K.L., Pedersen, M.H., Synthetic aperture ultrasound imaging (2006) Ultrasonics, 44 (SUPPL.), pp. e5-e15. , DOI 10.1016/j.ultras.2006.07.017, PII S0041624X06003374
dcterms.bibliographicCitationMandersson, S.G., Bengt, Weighted least-squares pulse-shaping filters with application to ultrasonic signals (1989) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 36 (1), pp. 109-113. , cited by (since 1996) 5
dcterms.bibliographicCitationWilkening, W., Brendel, B., Jiang, H., Lazenby, J., Ermert, H., Optimized receive filters and phase-coded pulse sequences for contrast agent and nonlinear imaging 2 Ultrasonics Symposium, 2001 IEEE, pp. 1733-1737. , cited by (since 1996) 10
dcterms.bibliographicCitationGuenther, D.A., Walker, W.F., Optimal apodization design for medical ultrasound using constrained least squares part I: theory (2007) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54 (2), pp. 332-341. , DOI 10.1109/TUFFC.2007.247
dcterms.bibliographicCitationMisaridis, T., Jensen, J.A., Use of modulated excitation Signals in medical ultrasound. Part I: Basic concepts and expected benefits (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 177-190. , DOI 10.1109/TUFFC.2005.1406545
dcterms.bibliographicCitationMisaridis, T., Jensen, J.A., Use of modulated excitation signals in medical ultrasound. Part II: Design and performance for medical imaging applications (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 192-206. , DOI 10.1109/TUFFC.2005.1406546
dcterms.bibliographicCitationMisaridis, T., Jensen, J.A., Use of modulated excitation signals in medical ultrasound. Part III: High frame rate imaging (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 208-218. , DOI 10.1109/TUFFC.2005.1406547
dcterms.bibliographicCitationChiao, H.X., Coded excitation for diagnostic ultrasound: A system developer's perspective (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (2), pp. 160-170. , cited by (since 1996) 113
dcterms.bibliographicCitationJensen, J.A., FIELD: A program for simulating ultrasound systems (1996) Medical and Biological Engineering and Computing, 34 (SUPPL. 1), pp. 351-352
dcterms.bibliographicCitationJensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39 (2), pp. 262-267
dcterms.bibliographicCitationContreras Ortiz, S.H., MacIone, J.J., Fox, M.D., Enhancement of ultrasound images by displacement, averaging, and interlacing (2010) Journal of Electronic Imaging, 19 (1)
dcterms.bibliographicCitationShankar P.Mohana, Newhouse, V.L., Speckle reduction with improved resolution in ultrasound images (1985) IEEE transactions on sonics and ultrasonics, SU-32 (4), pp. 537-543
dcterms.bibliographicCitationShankar P.Mohana, Speckle reduction in ultrasound b-scans using weighted averaging in spatial compounding (1986) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-33 (6), pp. 754-758
dcterms.bibliographicCitationBashford, G.R., Morse, J.L., Circular ultrasound compounding by designed matrix weighting (2006) IEEE Transactions on Medical Imaging, 25 (6), pp. 732-741. , DOI 10.1109/TMI.2006.873610, 1637531
dcterms.bibliographicCitationBerson, M., Roncin, A., Pourcelot, L., Compound scanning with an electrically steered beam (1981) Ultrasonic Imaging, 3 (3), pp. 303-308. , DOI 10.1016/0161-7346(81)90162-0
dcterms.bibliographicCitationJespersen, S.K., Wilhjelm, J.E., Sillesen, H., Multi-angle compound imaging (1998) Ultrasonic Imaging, 20 (2), pp. 81-102
dcterms.bibliographicCitationTrahey, G.E., Smith, S.W., Von Ramm, O.T., Speckle pattern correlation with lateral aperture translation: Experimental results and implications for spatial compounding (1986) Modelling, Measurement and Control A, UFFC-33 (3), pp. 257-264
dcterms.bibliographicCitationVogt, M., Ermert, H., Limited-angle spatial compound imaging of skin with high-frequency ultrasound (20 mhz) (2008) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (9), pp. 1975-1983
dcterms.bibliographicCitationHansen, C., Huttebrauker, N., Wilkening, W., Brunke, S., Ermert, H., Full angle spatial compounding for improved replenishment analyses in contrast perfusion imaging: In vitro studies (2008) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (4), pp. 819-830. , DOI 10.1109/TUFFC.2008.716, 4494776
dcterms.bibliographicCitationMacIone, J., Yang, Z., Fox, M., Paired-angle multiplicative compounding (2008) Ultrasonic Imaging, 30 (2), pp. 112-130
dcterms.bibliographicCitationPai C.L.O'Donnell, M., Elevational spatial compounding (1994) Ultrasonic Imaging, 16 (3), pp. 176-189. , DOI 10.1006/uimg.1994.1011
dcterms.bibliographicCitationBehar, V., Adam, D., Friedman, Z., A new method of spatial compounding imaging (2003) Ultrasonics, 41 (5), pp. 377-384
dcterms.bibliographicCitationAdam, D., Beilin-Nissan, S., Friedman, Z., Behar, V., The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images (2006) Ultrasonics, 44 (2), pp. 166-181. , DOI 10.1016/j.ultras.2005.10.003, PII S0041624X05001009
dcterms.bibliographicCitationWilhjelm, J.E., Jensen, M.S., Jespersen, S.K., Sahl, B., Falk, E., Visual and quantitative evaluation of selected image combination schemes in ultrasound spatial compound scanning (2004) IEEE Transactions on Medical Imaging, 23 (2), pp. 181-190
dcterms.bibliographicCitationAbbott, J.G., Thurstone, F.L., Acoustic speckle: Theory and experimental analysis (1979) Ultrasonic Imaging, 1 (4), pp. 303-324. , DOI 10.1016/0161-7346(79)90024-5
dcterms.bibliographicCitationTrahey, G.E., Allison, J.W., Smith, S.W., Von Ramm, O.T., A quantitative approach to speckle reduction via frequency compounding (1986) Ultrasonic Imaging, 8 (3), pp. 151-164. , DOI 10.1016/0161-7346(86)90006-4
dcterms.bibliographicCitationMagnin, P.A., Von Ramm, O.T., Thurstone, F.L., Frequency compounding for speckle contrast reduction in phased array images (1982) Ultrasonic Imaging, 4 (3), pp. 267-281. , DOI 10.1016/0161-7346(82)90011-6
dcterms.bibliographicCitationChang, J.H., Kim, H.H., Lee, J., Shung, K.K., Frequency compounded imaging with a high-frequency dual element transducer (2010) Ultrasonics, 50 (45), pp. 453-457
dcterms.bibliographicCitationNewhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S., Flaw-to-grain echo enhancement by split-spectrum processing (1982) Ultrasonics, 20 (2), pp. 59-68. , DOI 10.1016/0041-624X(82)90003-8
dcterms.bibliographicCitationDantas, R.G., Costa, E.T., Ultrasound speckle reduction using modified gabor filters (2007) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54 (3), pp. 530-538. , DOI 10.1109/TUFFC.2007.276
dcterms.bibliographicCitationSanchez, J.R., Oelze, M., Oelze, M.L., An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation (2009) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56 (7), pp. 1327-1339
dcterms.bibliographicCitationLi, P.C., Chen, M.J., Strain compounding: A new approach for speckle reduction (2002) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49 (1), pp. 39-46
dcterms.bibliographicCitationChristopher, T., Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging (1997) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 (1), pp. 125-139
dcterms.bibliographicCitationHumphrey, V.F., Nonlinear propagation in ultrasonic fields: Measurements, modelling and harmonic imaging (2000) Ultrasonics, 38 (1), pp. 267-272. , DOI 10.1016/S0041-624X(99)00122-5
dcterms.bibliographicCitationDuck, F.A., Nonlinear acoustics in diagnostic ultrasound (2002) Ultrasound in Medicine and Biology, 28 (1), pp. 1-18. , DOI 10.1016/S0301-5629(01)00463-X, PII S030156290100463X
dcterms.bibliographicCitationMuir, T.G., Carstensen, E.L., Prediction of nonlinear acoustic effects at biomedical frequencies and intensities (1980) Ultrasound in Medicine and Biology, 6 (4), pp. 345-357. , DOI 10.1016/0301-5629(80)90004-6
dcterms.bibliographicCitationWard, B., Baker, A.C., Humphrey, V.F., Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound (1997) Journal of the Acoustical Society of America, 101 (1), pp. 143-154. , DOI 10.1121/1.417977
dcterms.bibliographicCitationDe Jong, N., Cornet, R., Lancee, C.T., Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements (1994) Ultrasonics, 32 (6), pp. 455-459. , DOI 10.1016/0041-624X(94)90065-5
dcterms.bibliographicCitationSimpson, D.H., Chin, C.T., Burns, P.N., Pulse inversion doppler: A new method for detecting nonlinear echoes from microbubble contrast agents (1999) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46 (2), pp. 372-382
dcterms.bibliographicCitationFrinking, P.J.A., Bouakaz, A., Kirkhorn, J., Ten Cate, F.J., De Jong, N., Ultrasound contrast imaging: Current and new potential methods (2000) Ultrasound in Medicine and Biology, 26 (6), pp. 965-975
dcterms.bibliographicCitationThijssen, J.M., Ultrasonic speckle formation, analysis and processing applied to tissue characterization (2003) Pattern Recognition Letters, 24 (4-5), pp. 659-675. , DOI 10.1016/S0167-8655(02)00173-3, PII S0167865502001733
dcterms.bibliographicCitationNoble, J.A., Boukerroui, D., Ultrasound image segmentation: A survey (2006) IEEE Transactions on Medical Imaging, 25 (8), pp. 987-1010. , DOI 10.1109/TMI.2006.877092, 1661695
dcterms.bibliographicCitationLee, J.-S., Digital image enhancement and noise filtering by use of local statistics (1980) IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 2 (2), pp. 165-168
dcterms.bibliographicCitationFrost Victor, S., Stiles Josephine Abbott, Shanmugan, K.S., Holtzman Julian, C., Model for radar images and its application to adaptive digital filtering of multiplicative noise (1982) IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4 (2), pp. 157-166
dcterms.bibliographicCitationBamber, J.C., Daft, C., Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images (1986) Ultrasonics, 24 (1), pp. 41-44. , DOI 10.1016/0041-624X(86)90072-7
dcterms.bibliographicCitationChen, Y., Yin, R., Flynn, P., Broschat, S., Aggressive region growing for speckle reduction in ultrasound images (2003) Pattern Recognition Letters, 24 (4-5), pp. 677-691. , DOI 10.1016/S0167-8655(02)00174-5, PII S0167865502001745
dcterms.bibliographicCitationPerona Pietro, Malik Jitendra, Scale-space and edge detection using anisotropic diffusion (1990) IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), pp. 629-639. , DOI 10.1109/34.56205
dcterms.bibliographicCitationYongjian, Y., Acton, S.T., Speckle reducing anisotropic diffusion (2002) IEEE Transactions on Image Processing, 11 (11), pp. 1260-1270
dcterms.bibliographicCitationKrissian, K., Westin, C.-F., Kikinis, R., Vosburgh, K.G., Oriented speckle reducing anisotropic diffusion (2007) IEEE Transactions on Image Processing, 16 (5), pp. 1412-1424. , DOI 10.1109/TIP.2007.891803
dcterms.bibliographicCitationGuo, H., Odegard, J.E., Lang, M., Gopinath, R.A., Selesnick, I.W., Burrus, C.S., Wavelet based speckle reduction with application to sar based atd/r (1994) Proceedings of the ICIP-94, IEEE International Conference on Image Processing, 1, pp. 75-79
dcterms.bibliographicCitationZong, X., Laine, A.F., Geiser, E.A., Speckle Reduction and Contrast Enhancement of Echocardiograms via Multiscale Nonlinear Processing (1998) IEEE Transactions on Medical Imaging, 17 (4), pp. 532-540. , PII S0278006298080495
dcterms.bibliographicCitationGupta, S., Chauhan, R.C., Sexana, S.C., Wavelet-based statistical approach for speckle reduction in medical ultrasound images (2004) Medical and Biological Engineering and Computing, 42 (2), pp. 189-192. , DOI 10.1007/BF02344630
dcterms.bibliographicCitationYue, Y., Croitoru, M.M., Bidani, A., Zwischenberger, J.B., Clark Jr., J.W., Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images (2006) IEEE Transactions on Medical Imaging, 25 (3), pp. 297-311. , DOI 10.1109/TMI.2005.862737
dcterms.bibliographicCitationMichailovich, O.V., Adam, D., A novel approach to the 2-D blind deconvolution problem in medical ultrasound (2005) IEEE Transactions on Medical Imaging, 24 (1), pp. 86-104. , DOI 10.1109/TMI.2004.838326
dcterms.bibliographicCitationAbeyratne, U.R., Petropulu, A.P., Reid, J.M., Higher order spectra based deconvolution of ultrasound images (1995) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42 (6), pp. 1064-1075
dcterms.bibliographicCitationTaxt, T., Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images (1997) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 (3), pp. 666-674
dcterms.bibliographicCitationTaxt, T., Strand, J., Two-dimensional noise-robust blind deconvolution of ultrasound images (2001) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48 (4), pp. 861-867. , DOI 10.1109/58.935701
dcterms.bibliographicCitationWan, S., Raju, B.I., Srinivasan, M.A., Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets (2003) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50 (10), pp. 1286-1295
dcterms.bibliographicCitationLoizou, C.P., Pattichis, C.S., Christodoulou, C.I., Istepanian, R.S.H., Pantziaris, M., Nicolaides, A., Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (10), pp. 1653-1669. , DOI 10.1109/TUFFC.2005.1561621
dcterms.bibliographicCitationFinn, S., Glavin, M., Jones, E., Echocardiographic speckle reduction comparison (2011) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58 (1), pp. 82-101
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_dcae04bc
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/review
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.bspc.2012.02.002
dc.subject.keywordsSpeckle reduction
dc.subject.keywordsUltrasound enhancement
dc.subject.keywordsUltrasound imaging
dc.subject.keywordsBiological tissues
dc.subject.keywordsMedical ultrasound imaging
dc.subject.keywordsPost processing
dc.subject.keywordsSpeckle reduction
dc.subject.keywordsUltrasound image enhancements
dc.subject.keywordsUltrasound imaging
dc.subject.keywordsUltrasound signal
dc.subject.keywordsDegradation
dc.subject.keywordsLonizing radiation
dc.subject.keywordsUltrasonic imaging
dc.subject.keywordsUltrasonics
dc.subject.keywordsAnisotropic diffusion
dc.subject.keywordsApodization
dc.subject.keywordsArtifact
dc.subject.keywordsBeamforming technique
dc.subject.keywordsClinical effectiveness
dc.subject.keywordsCompounding
dc.subject.keywordsContrast enhancement
dc.subject.keywordsDeconvolution
dc.subject.keywordsDiagnostic procedure
dc.subject.keywordsDigital filtering
dc.subject.keywordsDynamically focused transmission and reception
dc.subject.keywordsFrequency compounding
dc.subject.keywordsHarmonic imaging
dc.subject.keywordsHuman
dc.subject.keywordsImage processing
dc.subject.keywordsLimited diffraction beam
dc.subject.keywordsPriority journal
dc.subject.keywordsPulse compression
dc.subject.keywordsPulse inversion
dc.subject.keywordsReview
dc.subject.keywordsSpatial compounding
dc.subject.keywordsStrain compounding
dc.subject.keywordsUltrasound
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo de revisión
dc.identifier.orcid57210822856
dc.identifier.orcid56447970600
dc.identifier.orcid7401718655


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.