Mostrar el registro sencillo del ítem

dc.creatorRahimi A.
dc.creatorSenior D.E.
dc.creatorShorey A.
dc.creatorYoon, Y.K.
dc.date.accessioned2020-03-26T16:32:42Z
dc.date.available2020-03-26T16:32:42Z
dc.date.issued2016
dc.identifier.citationProceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328
dc.identifier.isbn9781509012039
dc.identifier.issn05695503
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8982
dc.description.abstractIn this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featuring skin effect suppression. Half mode substrate integrated waveguide (HMSIW) resonators and two-pole bandpass filters, embedded inside a glass interposer substrate, are used as test vehicles for the demonstration of insertion loss improvement in K-band. The utilized conductor is made of 20 layers of Cu/NiFe with each pair of 360 nm/30 nm, respectively, where NiFe layers with negative permeability in frequency range of interest are used for eddy current cancelling and improving the conductor loss. Control devices using the same glass substrate and conductor made of pure copper are fabricated for comparison purposes. The glass interposer substrate (SGW3, Corning Incorporated) has a thickness of 0.13 mm and the TGV's with a diameter of 0.08 mm. Up to 0.3 dB reduction in the insertion loss is achieved by using the proposed superlattice approach on glass substrates. © 2016 IEEE.eng
dc.description.sponsorshipIEEE Components, Packaging, and Manufacturing Technology (CPMT) Society
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84987808849&doi=10.1109%2fECTC.2016.249&partnerID=40&md5=f01d2e5b2bb4aa875c10b862895a0343
dc.sourceScopus2-s2.0-84987808849
dc.titleIn-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
dcterms.bibliographicCitationSukumaran, D.V., Bandyopadhyay, T., Chen, Q., Kumbhat, N., Liu, F., Pucha, R., Sato, Y., Tummala, K., Design, Fabrication and characterization of low-cost glass interposers with fin-pitch through-package-vias (2011) Proc. of 61st Electron. Compon. Technol. Conf. (ECTC), , Lake Buena Vista, FL May 31-June 3
dcterms.bibliographicCitationYook, J.M., Kim, D., Kim, J.C., High performance ipds and tgv interposer technology using the photosensitive glass (2014) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2014, , Lake Buena Vista, FL May
dcterms.bibliographicCitationRahimi, A., Yoon, Y.K., Integrated low loss rf passive components based on glass interposer technology (2015) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2015, , San Diego, CA, May
dcterms.bibliographicCitationDunn, T., Lee, C., Tronolone, M., Shorey, A., Metrology for characterization of wafer thickness uniformity during 3d-ic processing Courtesy of Corning Incorporated, , www.corning.com/semiglass
dcterms.bibliographicCitationRahimi, A., Wu, J., Cheng, X., Yoon, Y.K., Radial superlattice conductors with eddy current suppression for microwave applications (2015) Journal of Applied Physics, 117 (11). , Mar
dcterms.bibliographicCitationBernard, P.A., Gautray, J.M., Measurement of dielectric constant using a microstrip ring resonator (1991) IEEE Trans. Microw. Theory Tech, 39 (3), pp. 592-595. , Mar
dcterms.bibliographicCitationKim, C., Yoon, Y.K., High frequency characterization and analytical modeling of through glass via (tgv) for 3d thin-film interposer and mems packaging (2013) Proc. of 63rd Electron. Compon. Technol. Conf. (ECTC), , Las Vegas, NV, May 28-31
dcterms.bibliographicCitationDong, Y., Yang, T., Itoh, T., Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters (2009) IEEE Trans. Microw. Theory Tech, 57 (9), pp. 2211-2223. , Aug
dcterms.bibliographicCitationSenior, D.E., Cheng, X., Machado, M., Yoon, Y.K., Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide (2010) Antennas and Propagation Society International Symposium (APSURSI 2010 IEEE, Toronto, on, pp. 1-4
dcterms.bibliographicCitationKim, C., Senior, D.E., Shorey, A., Kim, H.J., Thomas, W., Yoon, Y.K., Through-glass interposer integrated high quality rf components (2014) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2014, , Lake Buena Vista, FL, May
dcterms.bibliographicCitationWang, B.K., Chen, Y.A., Shorey, A., Piech, G., Thin glass substrate development and integration for through glass vias (TGV) with copper (Cu) interconnections (2012) 7th Int. Microsystem, Packaging, Assembly and Circuit Tech. Conf, , Taipei, Thailand 24-26 Oct
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event66th IEEE Electronic Components and Technology Conference, ECTC 2016
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/ECTC.2016.249
dc.subject.keywordsComplementary split ring resonator
dc.subject.keywordsCu/NiFe nano-superlattice conductors
dc.subject.keywordsGlass interposer technology
dc.subject.keywordsSkin effect suppression
dc.subject.keywordsThrough glass via
dc.subject.keywordsBandpass filters
dc.subject.keywordsDielectric losses
dc.subject.keywordsEddy current testing
dc.subject.keywordsGlass
dc.subject.keywordsInsertion losses
dc.subject.keywordsNetwork components
dc.subject.keywordsOptical resonators
dc.subject.keywordsResonators
dc.subject.keywordsSubstrate integrated waveguides
dc.subject.keywordsWaveguide filters
dc.subject.keywordsWaveguides
dc.subject.keywordsComplementary split ring resonators
dc.subject.keywordsConductor architectures
dc.subject.keywordsGlass substrates
dc.subject.keywordsHalf-mode substrate integrated waveguides
dc.subject.keywordsLow dielectric loss
dc.subject.keywordsNegative permeability
dc.subject.keywordsSuperlattice approach
dc.subject.keywordsThrough glass via
dc.subject.keywordsSubstrates
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate31 May 2016 through 3 June 2016
dc.type.spaConferencia
dc.identifier.orcid56297560700
dc.identifier.orcid36698427600
dc.identifier.orcid6601969625
dc.identifier.orcid7402126778


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.