Mostrar el registro sencillo del ítem

dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:30Z
dc.date.available2020-03-26T16:32:30Z
dc.date.issued2018
dc.identifier.citationJournal of Energy Storage; Vol. 20, pp. 163-172
dc.identifier.issn2352152X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8852
dc.description.abstractThis paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calculate the active and reactive power reference values for the SMES system, and these gains are calculated with a particle swarm optimization (PSO) algorithm. The proposed methodology is assessed with a classical PI controller, feedback linearization (FL) controller and a passivity-based PI control (PI-PBC). Operating limits for VSC are also considered, which gives priority to active power over reactive power. The IEEE Second Benchmark model is employed to demonstrate the assessment of the proposed methodology where PI-PBC presents better performance than the classical PI and FL controllers in all the operating conditions considered. © 2018 Elsevier Ltdeng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053785230&doi=10.1016%2fj.est.2018.09.001&partnerID=40&md5=7fab4633151c3c4467fb4579faafa563
dc.titleControl of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
dcterms.bibliographicCitationYu, Y.N., Electric Power System Dynamics (1983), Academic Press New York (Chapter 5)
dcterms.bibliographicCitationI.S.W. Group, Terms, definitions and symbols for subsynchronous oscillations (1985) Trans. Power Appl. Sys., PAS-104 (6), pp. 1326-1334
dcterms.bibliographicCitationAdrees, A., Risk Based Assessment of Subsynchronous Resonance in AC/DC Systems (2017), Springer-Verlag GmbH Cham (Chapter 1)
dcterms.bibliographicCitationZakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596
dcterms.bibliographicCitationZobaa, A., (2013) Energy Storage – Technologies and Applications, , InTech Rijeka (Chapter 1)
dcterms.bibliographicCitationGiraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) Green Technologies Conference (GreenTech), 2018, IEEE, pp. 65-70
dcterms.bibliographicCitationIbrahim, H., Ilinca, A., Perron, J., Energy storage systems – characteristics and comparisons (2008) Renew. Sustain. Energy Rev., 12 (5), pp. 1221-1250
dcterms.bibliographicCitationArsoy, A.B., Liu, Y., Ribeiro, P.F., Wang, F., StatCom-SMES (2003) IEEE Ind. Appl. Mag., 9 (2), pp. 21-28
dcterms.bibliographicCitationNgamroo, I., Robust SMES controller design based on inverse additive perturbation for stabilization of interconnected power systems with wind farms (2010) Energy Convers. Manage., 51 (3), pp. 459-464
dcterms.bibliographicCitationNgamroo, I., An optimization of robust SMES with specified structure H controller for power system stabilization considering superconducting magnetic coil size (2011) Energy Convers. Manage., 52 (1), pp. 648-651
dcterms.bibliographicCitationShi, J., Tang, Y., Dai, T., Ren, L., Li, J., Cheng, S., Determination of SMES capacity to enhance the dynamic stability of power system (2010) Physica C, 470 (20), pp. 1707-1710. , Proceedings of the 22nd International Symposium on Superconductivity (ISS 2009)
dcterms.bibliographicCitationPappachen, A., Fathima, A.P., Load frequency control in deregulated power system integrated with SMES-TCPS combination using ANFIS controller (2016) Int. J. Electr. Power Energy Syst., 82, pp. 519-534
dcterms.bibliographicCitationFarahani, M., Ganjefar, S., Solving LFC problem in an interconnected power system using superconducting magnetic energy storage (2013) Physica C, 487, pp. 60-66
dcterms.bibliographicCitationDevotta, J., Rabbani, M., Elangovan, S., Application of superconducting magnetic energy storage unit for damping of subsynchronous oscillations in power systems (1999) Energy Convers. Manage., 40 (1), pp. 23-37
dcterms.bibliographicCitationRabbani, M., Devotta, J., Elangovan, S., Multi-mode wide range subsynchronous resonance stabilization using superconducting magnetic energy storage unit (1999) Int. J. Electr. Power Energy Syst., 21 (1), pp. 45-53
dcterms.bibliographicCitationFarahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39
dcterms.bibliographicCitationJing Shi, Yuejin Tang, Li Ren, Jingdong Li, Shijie Cheng, Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationOrtega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems, IEEE Trans (2017) Power Syst., 32 (3), pp. 2445-2454
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171
dcterms.bibliographicCitationAly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494
dcterms.bibliographicCitationSadeghi, M.S., Vafamand, N., Khooban, M.H., LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems (2016) J. Franklin Inst., 353 (13), pp. 2835-2858
dcterms.bibliographicCitationModirkhazeni, A., Almasi, O.N., Khooban, M.H., Improved frequency dynamic in isolated hybrid power system using an intelligent method (2016) Int. J. Electr. Power Energy Syst., 78, pp. 225-238
dcterms.bibliographicCitationKhooban, M.H., Niknam, T., Sha-Sadeghi, M., A time-varying general type-II fuzzy sliding mode controller for a class of nonlinear power systems (2016) J. Intell. Fuzzy Syst., 30 (5), pp. 2927-2937
dcterms.bibliographicCitationHemeida, M.G., Rezk, H., Hamada, M.M., A comprehensive comparison of STATCOM versus SVC-based fuzzy controller for stability improvement of wind farm connected to multi-machine power system (2018) Electr. Eng., 100 (2), pp. 935-951
dcterms.bibliographicCitationLeon, A., Solsona, J., Valla, M.I., Comparison among nonlinear excitation control strategies used for damping power system oscillations (2012) Energy Convers. Manage., 53 (1), pp. 55-67
dcterms.bibliographicCitationHammad, A., El-Sadek, M., Application of a thyristor controlled var compensator for damping subsynchronous oscillations in power systems (1984) IEEE Trans. Power Appl. Syst., (1), pp. 198-212
dcterms.bibliographicCitationAbi-Samra, N., Smith, R., McDermott, T., Chidester, M., Analysis of thyristor-controlled shunt SSR countermeasures (1985) IEEE Trans. Power Appl. Syst., (3), pp. 583-597
dcterms.bibliographicCitationPatil, K., Senthil, J., Jiang, J., Mathur, R., Application of STATCOM for damping torsional oscillations in series compensated AC systems (1998) IEEE Trans. Energy Convers., 13 (3), pp. 237-243
dcterms.bibliographicCitationPadiyar, K., Prabhu, N., Design and performance evaluation of subsynchronous damping controller with STATCOM (2006) IEEE Trans. Power Deliv., 21 (3), pp. 1398-1405
dcterms.bibliographicCitationVarma, R.K., Salehi, R., SSR mitigation with a new control of PV solar farm as STATCOM (PV-STATCOM) (2017) IEEE Trans. Sustain. Energy, 8 (4), pp. 1473-1483
dcterms.bibliographicCitationRaju, D.K., Umre, B.S., Junghare, A.S., Babu, B.C., Mitigation of subsynchronous resonance with fractional-order PI based UPFC controller (2017) Mech. Syst. Sig. Process., 85, pp. 698-715
dcterms.bibliographicCitationBongiorno, M., Angquist, L., Svensson, J., A novel control strategy for subsynchronous resonance mitigation using SSSC (2008) IEEE Trans. Power Deliv., 23 (2), pp. 1033-1041
dcterms.bibliographicCitationThirumalaivasan, R., Janaki, M., Prabhu, N., Damping of SSR using subsynchronous current suppressor with SSSC (2013) IEEE Trans. Power Syst., 28 (1), pp. 64-74
dcterms.bibliographicCitationRajaram, T., Reddy, J.M., Xu, Y., Kalman filter based detection and mitigation of subsynchronous resonance with SSSC (2017) IEEE Trans. Power Syst., 32 (2), pp. 1400-1409
dcterms.bibliographicCitationZhu, W., Spee, R., Mohler, R., Alexander, G., Mittelstadt, W., Maratukulam, D., An EMTP study of SSR mitigation using the thyristor controlled series capacitor (1995) IEEE Trans. Power Deliv., 10 (3), pp. 1479-1485
dcterms.bibliographicCitationWu, C.J., Lee, Y.S., Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations (1993) IEEE Trans. Energy Convers., 8 (1), pp. 63-70
dcterms.bibliographicCitationRahim, A., Nowicki, E., A robust damping controller for SMES using loop-shaping technique (2005) Int. J. Electr. Power Energy Syst., 27 (5), pp. 465-471
dcterms.bibliographicCitationWang, L., Tseng, H., Suppression of common-mode torsional oscillations of nonidentical turbine-generators using SMES (1999) IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233), vol. 1, pp. 117-122
dcterms.bibliographicCitationSedighizadeh, M., Esmaili, M., Parvaneh, H., Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework (2018) J. Energy Storage, 18, pp. 498-508
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258
dcterms.bibliographicCitationSoman, R., Ravindra, H., Huang, X., Schoder, K., Steurer, M., Yuan, W., Zhang, M., Chen, X., Preliminary investigation on economic aspects of superconducting magnetic energy storage (SMES) systems and high-temperature superconducting (HTS) transformers (2018) IEEE Trans. Appl. Supercond., 28 (4), pp. 1-5
dcterms.bibliographicCitationShandilya, S.K., Shandilya, S.K., Shandilya, S., Deep, K., Nagar, A.K., Handbook of Research on Soft Computing and Nature-inspired Algorithms (2017)
dcterms.bibliographicCitationGil-González, W.J., Mora-Flórez, J.J., Pérez-Londoñ, S., Comparative analysis of metaheuristics optimization techniques to parameterize fault locators for power distribution systems (2013) Ing. Compet., 15 (1), pp. 103-115
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907
dcterms.bibliographicCitationOrtega, R., der Schaft, A.V., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466
dcterms.bibliographicCitationPérez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890
dcterms.bibliographicCitationPerko, L., Differential equations and dynamical systems, vol. 7 (2013), Springer Science & Business Media
dcterms.bibliographicCitationA. ABB, Grid Systems HVDC. It's Time to Connect-technical Description of HVDC Light® Technology, Tech. Rep. (2013), ABB, Technical Report
dcterms.bibliographicCitationBeerten, J., Cole, S., Belmans, R., Modeling of multi-terminal VSC HVDC systems with distributed DC voltage control (2014) IEEE Trans. Power Syst., 29 (1), pp. 34-42
dcterms.bibliographicCitationI. S. R. W. Group, Second benchmark model for computer simulation of subsynchronous resonance (1985) IEEE Trans. Power App. Syst., PAS-104 (5), pp. 1057-1066
dcterms.bibliographicCitationLuongo, C.A., Baldwin, T., Ribeiro, P., Weber, C.M., A 100 MJ SMES demonstration at FSU-CAPS (2003) IEEE Trans. Appl. Supercond., 13 (2), pp. 1800-1805
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.est.2018.09.001
dc.subject.keywordsParticle swarm optimization
dc.subject.keywordsProportional-integral passivity-based control
dc.subject.keywordsSubsynchronous oscillation
dc.subject.keywordsSuperconducting magnetic energy storage
dc.subject.keywordsBenchmarking
dc.subject.keywordsControllers
dc.subject.keywordsElectric energy storage
dc.subject.keywordsElectric power transmission
dc.subject.keywordsFeedback linearization
dc.subject.keywordsMagnetic storage
dc.subject.keywordsParticle swarm optimization (PSO)
dc.subject.keywordsReactive power
dc.subject.keywordsRobustness (control systems)
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsTwo term control systems
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsOperating condition
dc.subject.keywordsPassivity based control
dc.subject.keywordsPrimary frequencies
dc.subject.keywordsSeries compensated transmission lines
dc.subject.keywordsSub-synchronous oscillations
dc.subject.keywordsSuperconducting magnetic energy storage system
dc.subject.keywordsSuperconducting magnetic energy storages
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program of Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.