Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMedina-Quesada, Ángeles
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2023-07-24T18:52:40Z
dc.date.available2023-07-24T18:52:40Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12409
dc.description.abstractBipolar direct current (DC) networks are emerging electrical systems used to improve the distribution capabilities of monopolar DC networks. These grids work with positive, negative, and neutral poles, and they can transport two times the power when compared to monopolar DC grids. The distinctive features of bipolar DC grids include the ability to deal with bipolar loads (loads connected between the positive and negative poles) and with unbalanced load conditions, given that the loads connected to the positive and neutral poles are not necessarily equal to the negative and neutral ones. This load imbalance deteriorates voltages when compared to positive and negative poles, and it causes additional power losses in comparison with balanced operation scenarios. This research addresses the problem of pole-swapping in bipolar DC networks using combinatorial optimization methods in order to reduce the total grid power losses and improve the voltage profiles. Bipolar DC networks with a non-solidly grounded neutral wire composed of 21 and 85 nodes are considered in the numerical validations. The implemented combinatorial methods are the Chu and Beasley genetic algorithm, the sine-cosine algorithm, and the black-hole optimization algorithm. Numerical results in both test feeders demonstrate the positive effect of optimal pole-swapping in the total final power losses and the grid voltage profiles. All simulations were run in the MATLAB programming environment using the triangular-based power flow method, which is intended for radial distribution system configurations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics (Switzerland)spa
dc.titleOptimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizersspa
dcterms.bibliographicCitationGarcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4spa
dcterms.bibliographicCitationMacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522spa
dcterms.bibliographicCitationGuo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166spa
dcterms.bibliographicCitationGarces, A., Montoya, O.D., Gil-Gonzalez, W. Power Flow in Bipolar DC Distribution Networks Considering Current Limits (2022) IEEE Transactions on Power Systems, 37 (5), pp. 4098-4101. Cited 7 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3181851spa
dcterms.bibliographicCitationLee, J.-O., Kim, Y.-S., Jeon, J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108357. Cited 10 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108357spa
dcterms.bibliographicCitationLi, B., Wang, W., Liu, Y., Li, B., Wen, W. Research on power flow calculation method of true bipolar VSC-HVDC grids with different operation modes and control strategies (Open Access) (2021) International Journal of Electrical Power and Energy Systems, Part A 126, art. no. 106558. Cited 18 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106558spa
dcterms.bibliographicCitationTavakoli, S.D., Khajesalehi, J., Hamzeh, M., Sheshyekani, K. Decentralised voltage balancing in bipolar dc microgrids equipped with trans-z-source interlinking converter (Open Access) (2016) IET Renewable Power Generation, 10 (5), pp. 703-712. Cited 34 times. http://www.theiet.org/ doi: 10.1049/iet-rpg.2015.0222spa
dcterms.bibliographicCitationLiao, J., You, X., Liu, H., Huang, Y. Voltage stability improvement of a bipolar DC system connected with constant power loads (Open Access) (2021) Electric Power Systems Research, 201, art. no. 107508. Cited 8 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2021.107508spa
dcterms.bibliographicCitationMedina-Quesada, Á., Montoya, O.D., Hernández, J.C. Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals (Open Access) (2022) Sensors, 22 (8), art. no. 2914. Cited 10 times. https://www.mdpi.com/1424-8220/22/8/2914/pdf doi: 10.3390/s22082914spa
dcterms.bibliographicCitationLee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 24 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733spa
dcterms.bibliographicCitationChew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817spa
dcterms.bibliographicCitationAcosta, C., Hincapié, R.A., Granada, M., Escobar, A.H., Gallego, R.A. An efficient three phase fourwire radial power flow including neutral-earth effect (2013) Journal of Control, Automation and Electrical Systems, 24 (5), pp. 690-701. Cited 9 times. doi: 10.1007/s40313-013-0049-7spa
dcterms.bibliographicCitationDe Oliveira-De Jesus, P.M., Alvarez, M.A., Yusta, J.M. Distribution power flow method based on a real quasi-symmetric matrix (Open Access) (2013) Electric Power Systems Research, 95, pp. 148-159. Cited 35 times. doi: 10.1016/j.epsr.2012.08.011spa
dcterms.bibliographicCitationAlbadr, M.A., Tiun, S., Ayob, M., Al-Dhief, F. Genetic algorithm based on natural selection theory for optimization problems (Open Access) (2020) Symmetry, 12 (11), art. no. 1758, pp. 1-31. Cited 53 times. https://www.mdpi.com/2073-8994/12/11/1758/pdf doi: 10.3390/sym12111758spa
dcterms.bibliographicCitationYepes, V., Martí, J.V., García, J. Black hole algorithm for sustainable design of counterfort retaining walls (Open Access) (2020) Sustainability (Switzerland), 12 (7), art. no. 2767. Cited 32 times. https://res.mdpi.com/d_attachment/sustainability/sustainability-12-02767/article_deploy/sustainability-12-02767.pdf doi: 10.3390/su12072767spa
dcterms.bibliographicCitationAttia, A.-F., El Sehiemy, R.A., Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (Open Access) (2018) International Journal of Electrical Power and Energy Systems, 99, pp. 331-343. Cited 257 times. doi: 10.1016/j.ijepes.2018.01.024spa
dcterms.bibliographicCitationKumar, S., Datta, D., Kumar Singh, S., Azar, A.T., Vaidyanathan, S. Black hole algorithm and its applications (2015) Studies in Computational Intelligence, 575, pp. 147-170. Cited 38 times. http://www.springer.com/series/7092 doi: 10.1007/978-3-319-11017-2_7spa
dcterms.bibliographicCitationArenas-Acuña, C.A., Rodriguez-Contreras, J.A., Montoya, O.D., Rivas-Trujillo, E. Black-hole optimization applied to the parametric estimation in distribution transformers considering voltage and current measures (2021) Computers, 10 (10), art. no. 124. Cited 10 times. https://www.mdpi.com/2073-431X/10/10/124/pdf doi: 10.3390/computers10100124spa
dcterms.bibliographicCitationGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationTamilselvan, V., Jayabarathi, T., Raghunathan, T., Yang, X.-S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm (2018) Alexandria Engineering Journal, 57 (4), pp. 2775-2786. Cited 90 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2018.01.004spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/electronics11132034
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsDC-DC Converter;spa
dc.subject.keywordsElectric Potentialspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.