Mostrar el registro sencillo del ítem

dc.contributor.authorMontano, Jhon
dc.contributor.authorGarzón, Oscar Daniel
dc.contributor.authorRosales Muñoz, Andrés Alfonso
dc.contributor.authorGrisales-Noreña, L.F.
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-07-21T15:40:14Z
dc.date.available2023-07-21T15:40:14Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationMontano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12273
dc.description.abstractThis article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the solution to the OPF problem considering its constraints and variables, and the slave stage assesses the fitness of the solution proposed by the master stage. To validate the methodology suggested in this article, three test systems cited multiple times in the literature were used: the 10, 21 and the 69 nodes test systems. In addition, three scenarios varying the allowable power limits for the Distributed Generators (DGs) are presented; thus, the methodology explores solutions under different conditions. To prove its efficiency and robustness, the solution was compared with four other methods reported in the literature: Ant Lion Optimization (ALO), Black Hole Optimization (BHO), the Continuous Genetic Algorithm (CGA), and Particle Swarm Optimization (PSO). The results show that the methodology proposed here to reduce power losses presents the best solution in terms of standard deviation. © 2022 The Authorsspa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceResults in Engineering Volume 16, December 2022, 100654spa
dc.titleApplication of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networksspa
dcterms.bibliographicCitationGarzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031spa
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W., Garrido, V.M. Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (2), art. no. 8664198, pp. 300-304. Cited 9 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2904211spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018spa
dcterms.bibliographicCitationMontoya, O.D., Giral-Ramírez, D.A., Grisales-Noreña, L.F. Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm (2022) Results in Engineering, 13, art. no. 100348. Cited 7 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100348spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Gil-González, W.J., Perea-Moreno, A.-J., Perea-Moreno, M.-A. A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors (2020) Electronics (Switzerland), 9 (12), art. no. 2062, pp. 1-20. Cited 14 times. https://www.mdpi.com/2079-9292/9/12/2062/pdf doi: 10.3390/electronics9122062spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488spa
dcterms.bibliographicCitationRault, P., Guillaud, X., Colas, F., Nguefeu, S. Investigation on interactions between AC and DC grids (2013) 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, art. no. 6652229. Cited 17 times. ISBN: 978-146735669-5 doi: 10.1109/PTC.2013.6652229spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach (2020) Ain Shams Engineering Journal, 11 (2), pp. 409-418. Cited 51 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.08.011spa
dcterms.bibliographicCitationMontoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (Open Access) (2020) Engineering Science and Technology, an International Journal, 23 (3), pp. 527-533. Cited 22 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2019.06.010spa
dcterms.bibliographicCitationChaudhuri, N., Chaudhuri, B., Majumder, R., Yazdani, A. Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control (Open Access) (2014) Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control, 9781118729106, pp. 1-263. Cited 193 times. http://www.wiley.com/remtitle.cgi?isbn=1118729102 ISBN: 978-111896048-6; 978-111872910-6 doi: 10.1002/9781118960486spa
dcterms.bibliographicCitationPrieto-Araujo, E., Egea-Alvarez, A., Fekriasl, S.F., Gomis-Bellmunt, O. DC Voltage Droop Control Design for Multiterminal HVDC Systems Considering AC and DC Grid Dynamics (Open Access) (2016) IEEE Transactions on Power Delivery, 31 (2), art. no. 7140832, pp. 575-585. Cited 92 times. doi: 10.1109/TPWRD.2015.2451531spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018spa
dcterms.bibliographicCitationGrisales-Noreña, L.F. O. D. Garzón Rivera, J. A. Ocampo Toro, C. A. Ramos-Paja, M. A. Rodriguez Cabal, Metaheuristic Optimization Methods for Optimal Power Flow Analysis in Dc Distribution Networks.spa
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008spa
dcterms.bibliographicCitationMontoya, O., Gil-González, W., Grisales-Noreña, L. Optimal Power Dispatch of Dgs in Dc Power Grids: A Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the Opf Problem.spa
dcterms.bibliographicCitationRosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (Open Access) (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703spa
dcterms.bibliographicCitationGiraldo, J.A., Montoya, O.D., Grisales-Noreña, L.F., Gil-González, W., Holguín, M. Optimal power flow solution in direct current grids using Sine-Cosine algorithm (2019) Journal of Physics: Conference Series, 1403 (1), art. no. 012009. Cited 8 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1403/1/012009spa
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003spa
dcterms.bibliographicCitationAbualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H. The Arithmetic Optimization Algorithm (2021) Computer Methods in Applied Mechanics and Engineering, 376, art. no. 113609. Cited 1106 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2020.113609spa
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640spa
dcterms.bibliographicCitationGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (Open Access) (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069spa
dcterms.bibliographicCitationKaur, S., Kumbhar, G., Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 63, pp. 609-617. Cited 193 times. doi: 10.1016/j.ijepes.2014.06.023spa
dcterms.bibliographicCitationSultana, S., Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Applied Soft Computing Journal, 40, pp. 391-404. Cited 130 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.11.036spa
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.1016/j.rineng.2022.100654
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsDC-DC Converter;spa
dc.subject.keywordsElectric Potentialspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.