Mostrar el registro sencillo del ítem

dc.contributor.authorFajardo Cuadro, Juan Gabriel
dc.contributor.authorNegrette, Camilo
dc.contributor.authorYabrudy, Daniel
dc.contributor.authorCardona, Camilo
dc.date.accessioned2022-04-01T21:04:34Z
dc.date.available2022-04-01T21:04:34Z
dc.date.issued2021-11-01
dc.date.submitted2022-03-24
dc.identifier.citationASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Volume 8B-20212021 Article number V08BT08A007ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021Virtual, Online1 November 2021 through 5 November 2021Code 176672spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10656
dc.description.abstractIn this investigation, the conventional and advanced exergy analysis is used to obtain information about the conditions of the heat exchangers belonging to a crude oil distillation unit, previously to future studies to establish the most cost-efficient moments for the execution of maintenance activities in the exchangers. Conventional, unavoidable, avoidable, endogenous, and exogenous exergy destruction is calculated and the combinations between these last four terms. Mexogenous analysis is applied to individualize the relationships between the exchangers of the network. The results put the total exergy destruction at over 61.6 MW, being 63% avoidable. Five heat exchangers are considered critical because they concentrate the highest rates of exergy destruction, corresponding to 39% of the total exergy destruction in the network, this categorization allows focusing the improvement works on heat exchangers that will produce a substantial increase in the efficiency of the preheat train. Additionally, to evaluate the performance in a better way, the effect of unavoidable exergy destruction on performance measurement of exchangers through the exergy efficiency is studied, indicating that in some cases removing the unavoidable part can increase the second law efficiency by more than fifteen percentage pointsspa
dc.format.extent11 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceASME 2008 International Mechanical Engineering Congress and Exposition, Vol. 10 (2021)spa
dc.titleAdvanced exergetic analysis of preheat train of a crude oil distillation unitspa
dcterms.bibliographicCitationMalinauskaite, J., Jouhara, H., Egilegor, B., Al-Mansour, F., Ahmad, L., Pusnik, M. Energy efficiency in the industrial sector in the EU, Slovenia, and Spain (Open Access) (2020) Energy, 208, art. no. 118398.spa
dcterms.bibliographicCitationDunlop, T. Mind the gap_ A social sciences review of energy efficiency (2019) Soc. Sci, p. 12.spa
dcterms.bibliographicCitationHan, Y. (2020) Review: Energy efficiency evaluation of complex petrochemical industries, p. 15.spa
dcterms.bibliographicCitationLi, H., Sun, R., Dong, K., Guo, R. Refining operations: Energy consumption and emission (2016) Journal of Computational and Theoretical Nanoscience, 13 (2), pp. 1497-1502spa
dcterms.bibliographicCitationColetti, F., Macchietto, S. Predicting refinery energy losses due to fouling in heat exchangers (2009) Computer Aided Chemical Engineering, 27 (C), pp. 219-224.spa
dcterms.bibliographicCitationColetti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks; a thermo- hydraulic based analysis (2010) Computer Aided Chemical Engineering, 28 (C), pp. 19-24.spa
dcterms.bibliographicCitationColetti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks: A thermo-hydraulic based analysis (2011) Computers and Chemical Engineering, 35 (5), pp. 907-917.spa
dcterms.bibliographicCitationMüller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. Heat exchanger fouling: Environmental impacts (2009) Heat Transfer Engineering, 30 (10-11), pp. 773-776.spa
dcterms.bibliographicCitationRivero, R. Application of the exergy concept in the petroleum refining and petrochemical industry (2002) Energy Conversion and Management, 43 (9-12), pp. 1199-1220.spa
dcterms.bibliographicCitationIzyan, Z.N., Shuhaimi, M. Exergy analysis for fuel reduction strategies in crude distillation unit (2014) Energy, 66, pp. 891-897.spa
dcterms.bibliographicCitationTsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270.spa
dcterms.bibliographicCitationFajardo, J., Valle, H., Buelvas, A. Avoidable and Unavoidable Exergetic Destruction Analysis of a Nitric Acid Production Plant (2018) Volume 6B: Energy Pittsburgh, Pennsylvania, USA, Novspa
dcterms.bibliographicCitationSmaïli, F., Vassiliadis, V. S., Wilson, D. I. (2001) Mitigation of Fouling in Refinery Heat Exchanger Networks by Optimal Management of Cleaning, p. 19. Maspa
dcterms.bibliographicCitationFard, M.M., Pourfayaz, F. Advanced exergy analysis of heat exchanger network in a complex natural gas refinery (2019) Journal of Cleaner Production, 206, pp. 670-687spa
dcterms.bibliographicCitationRivero, R., Rendón, C., Gallegos, S. Exergy and exergoeconomic analysis of a crude oil combined distillation unit (2004) Energy, 29 (12-15 SPEC. ISS.), pp. 1909-1927spa
dcterms.bibliographicCitationWang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863spa
dcterms.bibliographicCitationFajardo, J., Barreto, D., Sarria, B., Yabrudy, D., Negrete, C., Cardona, C. (2020) Efficiency centered maintenance of preheat train of a crude oil distillation unit, p. 12.spa
dcterms.bibliographicCitationPolley, G.T., Wilson, D.I., Yeap, B.L., Pugh, S.J. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains (2002) Applied Thermal Engineering, 22 (7), pp. 777-788.spa
dcterms.bibliographicCitation(1997) Technical Data Book-Petroleum Refining. Cited 423 times. American Petroleum Institute, 6th ed. Washington, D.C. United States: API Publishing Servicesspa
dcterms.bibliographicCitationDas, D.K., Nerella, S., Kulkarni, D. Thermal properties of petroleum and gas-to-liquid products (2007) Petroleum Science and Technology, 25 (4), pp. 415-425spa
dcterms.bibliographicCitationE. U. Schlünder, Ed., Heat exchanger design handbook, 1st ed., vol. 1. Düsseldorf: Hemisphere Publishing Corporation, 1983spa
dcterms.bibliographicCitationC. Yan, L. Lv, S. Wei, A. Eslamimanesh, and W. Shen, “Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant,” Appl. Therm. Eng., vol. 154, pp. 637–649, May 2019.spa
dcterms.bibliographicCitationA. Bejan, G. Tsatsaronis, and M. Moran, Thermal Design and Optimization, 1st ed. New York, United States: John Wiley & Sons, Inc, 1996.spa
dcterms.bibliographicCitationTsatsaronis and T. Morosuk, “Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas,” Energy, vol. 35, no. 2, pp. 820–829, Feb. 2010.spa
dcterms.bibliographicCitationG. Tsatsaronis, S. O. Kelly, and T. V. Morosuk, “Endogenous and Exogenous Exergy Destruction in Thermal Systems,” in Advanced Energy Systems, Chicago, Illinois, USA, pp. 311–317, Jan. 2006.spa
dcterms.bibliographicCitationS. Kelly, G. Tsatsaronis, and T. Morosuk, “Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts,” Energy, vol. 34, no. 3, pp. 384–391, Mar. 2009.spa
dcterms.bibliographicCitationT. Morosuk and G. Tsatsaronis, “Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis,” Energy, vol. 36, no. 6, pp. 3771–3778, Jun. 2011.spa
dcterms.bibliographicCitationA. Vatani, M. Mehrpooya, and A. Palizdar, “Advanced exergetic analysis of five natural gas liquefaction processes,” Energy Convers. Manag., vol. 78, pp. 720–737, Feb. 2014.spa
dcterms.bibliographicCitationG. D. Vučković, M. M. Stojiljković, and M. V. Vukić, “First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler,” Energy Convers. Manag., vol. 104, pp. 8–16, Nov. 2015.spa
dcterms.bibliographicCitationO. Balli, “Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous,” Appl. Therm. Eng., vol. 111, pp. 152–169, Jan. 2017spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1115/IMECE2021-69268
dc.subject.keywordsAdvanced Exergy Analysisspa
dc.subject.keywordsCrude Oil Distillation Unitspa
dc.subject.keywordsExergy destructionspa
dc.subject.keywordsHeat Exchangerspa
dc.subject.keywordsPreheat Trainspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.