Mostrar el registro sencillo del ítem

dc.contributor.authorMeza, Jhacson
dc.contributor.authorContreras Ortiz, Sonia Helena
dc.contributor.authorRomero, Lenny A
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.coverage.spatialColombia
dc.date.accessioned2021-08-06T12:30:11Z
dc.date.available2021-08-06T12:30:11Z
dc.date.issued2021-05-21
dc.date.submitted2021-08-05
dc.identifier.citationJhacson Meza, Sonia H. Contreras-Ortiz, Lenny A. Romero Perez, and Andrés G. Marrugo "Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light," Optical Engineering 60(5), 054106 (21 May 2021). ttps://doi.org/10.1117/1.OE.60.5.054106spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10356
dc.description.abstractWe propose a three-dimensional (3D) multimodal medical imaging system that combines freehand ultrasound and structured light 3D reconstruction in a single coordinate system without requiring registration. To the best of our knowledge, these techniques have not been combined as a multimodal imaging technique. The system complements the internal 3D information acquired with ultrasound with the external surface measured with the structured light technique. Moreover, the ultrasound probe’s optical tracking for pose estimation was implemented based on a convolutional neural network. Experimental results show the system’s high accuracy and reproducibility, as well as its potential for preoperative and intraoperative applications. The experimental multimodal error, or the distance from two surfaces obtained with different modalities, was 0.12 mmspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOptical Engineering 60(5), 054106 (21 May 2021).spa
dc.titleThree-dimensional multimodal medical imaging system based on freehand ultrasound and structured lightspa
dcterms.bibliographicCitationP. Mascagni et al., “New intraoperative imaging technologies: innovating the surgeon’s eye toward surgical precision,” J. Surg. Oncol. 118, 265–282 (2018).spa
dcterms.bibliographicCitationE. J. R. van Beek et al., “Value of MRI in medicine: more than just another test?” J. Magn. Reson. Imaging 49, e14–e25 (2019).spa
dcterms.bibliographicCitationS. H. C. Ortiz, T. Chiu, and M. D. Fox, “Ultrasound image enhancement: a review,” Biomed. Signal Process. Control 7(5), 419–428 (2012).spa
dcterms.bibliographicCitationQ. Huang and Z. Zeng, “A review on real-time 3d ultrasound imaging technology,” Biomed. Res. Int. 2017, 6027029 (2017).spa
dcterms.bibliographicCitationE. Colley et al., “A methodology for non-invasive 3-d surveillance of arteriovenous fistulae using freehand ultrasound,” IEEE Trans. Biomed. Eng. 65(8), 1885–1891 (2018).spa
dcterms.bibliographicCitationS. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Lasers Eng. 106, 119–131 (2018).spa
dcterms.bibliographicCitationA. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for threedimensional surface metrology: a review [Invited],” J. Opt. Soc. Am. A 37(9), B60–18 (2020).spa
dcterms.bibliographicCitationF. Zhang et al., “Coaxial projective imaging system for surgical navigation and telementoring,” J. Biomed. Opt. 24, 105002 (2019).spa
dcterms.bibliographicCitationS. Van der Jeught and J. J. J. Dirckx, “Real-time structured light-based otoscopy for quantitative measurement of eardrum deformation,” J. Biomed. Opt. 22, 016008 (2017).spa
dcterms.bibliographicCitationT. T. Quang et al., “Fluorescence imaging topography scanning system for intraoperative multimodal imaging,” PLoS One 12, e0174928 (2017).spa
dcterms.bibliographicCitationE. M. A. Anas, P. Mousavi, and P. Abolmaesumi, “A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy,” Med. Image Anal. 48, 107–116 (2018).spa
dcterms.bibliographicCitationM. Anzidei et al., “Imaging-guided chest biopsies: techniques and clinical results,” Insights Imaging 8(4), 419–428 (2017).spa
dcterms.bibliographicCitationA. K. Bowden et al., “Optical technologies for improving healthcare in low-resource settings: introduction to the feature issue,” Biomed. Opt. Express 11, 3091–3094 (2020).spa
dcterms.bibliographicCitationS. R. Cherry, “Multimodality imaging: beyond PET/CT and SPECT/CT,” Semin. Nucl. Med. 39(5), 348–353 (2009).spa
dcterms.bibliographicCitationT. L. Walker, R. Bamford, and M. Finch-Jones, “Intraoperative ultrasound for the colorectal surgeon: current trends and barriers,” ANZ J. Surg. 87(9), 671–676 (2017).spa
dcterms.bibliographicCitationB. Li et al., “Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer,” Rev. Sci. Instrum. 85(5), 053703 (2014).spa
dcterms.bibliographicCitationT. A. N. Hernes et al., “Computer-assisted 3d ultrasound-guided neurosurgery: technological contributions, including multimodal registration and advanced display, demonstrating future perspectives,” Int. J. Med. Rob. Comput. Assisted Surg. 2(1), 45–59 (2006).spa
dcterms.bibliographicCitationF. Lindseth et al., “Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3d ultrasound,” Comput. Aided Surg. 8(2), 49–69 (2003).spa
dcterms.bibliographicCitationH. Fatakdawala et al., “Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques,” Biomed. Opt. Express 4(9), 1724–1741 (2013).spa
dcterms.bibliographicCitationY. Li, J. Chen, and Z. Chen, “Multimodal intravascular imaging technology for characterization of atherosclerosis,” J. Innovative Opt. Health Sci. 13(1), 2030001 (2020). Meza et al.: Three-dimensional multimodal medical imaging system based on freehand ultrasound. . . Optical Engineering 054106-12 May 2021 • Vol. 60(5) Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 May 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-usespa
dcterms.bibliographicCitationC. Mela, F. Papay, and Y. Liu, “Novel multimodal, multiscale imaging system with augmented reality,” Diagnostics 11(3), 441 (2021)spa
dcterms.bibliographicCitationD. M. McClatchy, III et al., “Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue,” Phys. Med. Biol. 62(23), 8983 (2017).spa
dcterms.bibliographicCitationO. V. Olesen et al., “Motion tracking for medical imaging: a nonvisible structured light tracking approach,” IEEE Trans. Med. Imaging 31(1), 79–87 (2012).spa
dcterms.bibliographicCitationL. Pino-Almero et al., “Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables,” J. Biomed. Opt. 21(11), 116001 (2016).spa
dcterms.bibliographicCitationC.-W. J. Cheung et al., “Freehand three-dimensional ultrasound system for assessment of scoliosis,” J. Orthop. Translat. 3(3), 123–133 (2015).spa
dcterms.bibliographicCitationR. Vairavan et al., “A brief on breast carcinoma and deliberation on current non-invasive imaging techniques for detection,” Curr. Med. Imaging Rev. 13, 85–121 (2017).spa
dcterms.bibliographicCitationF. Šroubek et al., “A computer-assisted system for handheld whole-breast ultrasonography,” Int. J. Comput. Assist. Radiol. Surg. 14(3), 509–516 (2019)spa
dcterms.bibliographicCitationW. Norhaimi et al., “Breast surface variation phase map analysis with digital fringe projection,” Proc. SPIE 11197, 1119717 (2019).spa
dcterms.bibliographicCitationS. Horvath et al., “Towards an ultrasound probe with vision: structured light to determine surface orientation,” Lect. Notes Comput. Sci. 7264, 58–64 (2011).spa
dcterms.bibliographicCitationE. Basafa et al., “Visual tracking for multi-modality computer-assisted image guidance,” Proc. SPIE 10135, 101352S (2017).spa
dcterms.bibliographicCitationS.-Y. Sun, M. Gilbertson, and B. W. Anthony, “Probe localization for freehand 3d ultrasound by tracking skin features,” Lect. Notes Comput. Sci. 8674, 365–372 (2014).spa
dcterms.bibliographicCitationJ. Wang et al., “Ultrasound tracking using probesight: camera pose estimation relative to external anatomy by inverse rendering of a prior high-resolution 3d surface map,” in IEEE Winter Conf. Appl. Comput. Vision, IEEE, pp. 825–833 (2017).spa
dcterms.bibliographicCitation.-W. Hsurager, et al., “Comparison of freehand 3-d ultrasound calibration techniques using a stylus,” Ultrasound Med. Biol. 34(10), 1610–1621 (2008).spa
dcterms.bibliographicCitationR. W. Prager et al., “Rapid calibration for 3-d freehand ultrasound,” Ultrasound Med. Biol. 24(6), 855–869 (1998).spa
dcterms.bibliographicCitationL. Mercier et al., “A review of calibration techniques for freehand 3-d ultrasound systems,” Ultrasound Med. Biol. 31(4), 449–471 (2005).spa
dcterms.bibliographicCitationF. Torres et al., “Image tracking and volume reconstruction of medical ultrasound,” Rev. mexicana ingeniera biomed. 33(2), 101–115 (2012).spa
dcterms.bibliographicCitationL. Lu et al., “Motion induced error reduction methods for phase shifting profilometry: a review,” Opt. Lasers Eng. 141, 106573 (2021).spa
dcterms.bibliographicCitationR. Juarez-Salazar et al., “Key concepts for phase-to-coordinate conversion in fringe projection systems,” Appl. Opt. 58(18), 4828–4834 (2019)spa
dcterms.bibliographicCitationS. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006)spa
dcterms.bibliographicCitationY. Hu et al., “Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks,” Lect. Notes Comput. Sci. 10555, 105–115 (2017).spa
dcterms.bibliographicCitationJ. Meza et al., “A low-cost multi-modal medical imaging system with fringe projection profilometry and 3D freehand ultrasound,” Proc. SPIE 11330, 1133004 (2020).spa
dcterms.bibliographicCitationJ. Meza, L. A. Romero, and A. G. Marrugo, “Markerpose: robust real-time planar target tracking for accurate stereo pose estimation,” https://arxiv.org/abs/2105.00368 (2021).spa
dcterms.bibliographicCitationD. Hu, D. DeTone, and T. Malisiewicz, “Deep ChArUco: dark ChArUco marker pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vision and Pattern Recognit., pp. 8436–8444 (2019).spa
dcterms.bibliographicCitationD. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: self-supervised interest point detection and description,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit. Workshops, pp. 224–236 (2018).spa
dcterms.bibliographicCitationY. Sun, “Analysis for center deviation of circular target under perspective projection,” Eng. Comput. 36(7), 2403–2413 (2019). Meza et al.: Three-dimensional multimodal medical imaging system based on freehand ultrasound. . . Optical Engineering 054106-13 May 2021 • Vol. 60(5) Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 May 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-usespa
dcterms.bibliographicCitationP.-W. Hsu et al., “Freehand 3D ultrasound calibration: a review,” in Advanced Imaging in Biology and Medicine, C. W. Sensen and B. Hallgrímsson, eds., pp. 47–84, Springer, Berlin, Heidelberg (2009).spa
dcterms.bibliographicCitationZ. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).spa
dcterms.bibliographicCitationS. Zhang, High-Speed 3D Imaging with Digital Fringe Projection Techniques, CRC Press (2016).spa
dcterms.bibliographicCitation. Lindseth et al., “Probe calibration for freehand 3-d ultrasound,” Ultrasound Med. Biol. 29(11), 1607–1623 (2003).spa
dcterms.bibliographicCitationB. E. Schaafsma et al., “Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer,” Br. J. Surg. 100(8), 1037 (2013).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1117/1.OE.60.5.054106
dc.subject.keywordsUltrasoundspa
dc.subject.keywordsStructured-lightspa
dc.subject.keywordsThree-dimensionspa
dc.subject.keywordsMultimodal medical imagingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.format.size14 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.