Mostrar el registro sencillo del ítem

dc.contributor.authorChirinos, Juan
dc.contributor.authorIbarra, Darmenia
dc.contributor.authorMorillo, Ángel
dc.contributor.authorLlovera, Ligia
dc.contributor.authorGonzález, Teresa
dc.contributor.authorZárraga, Jeannette
dc.contributor.authorLarreal, Oswaldo
dc.contributor.authorGuerra, Mayamarú
dc.coverage.spatialColombia
dc.date.accessioned2021-08-06T12:29:17Z
dc.date.available2021-08-06T12:29:17Z
dc.date.issued2021-04-24
dc.date.submitted2021-08-05
dc.identifier.citationJuan Chirinos, Darmenia Ibarra, Ángel Morillo, Ligia Llovera, Teresa González, Jeannette Zárraga, Oswaldo Larreal, Mayamarú Guerra, Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand, Polyhedron, Volume 203, 2021, 115232, ISSN 0277-5387, https://doi.org/10.1016/j.poly.2021.115232.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10355
dc.description.abstractTransition metal complexes of Co(II), Cu(II), and Fe(II) bearing a rigid symmetrical 2,20 -(1,2-phenylene)bis (1H-benzimidazole) ligand, PhBIm2, were synthesized and fully characterized by ESI-MS, FT-IR, 1 H NMR (for paramagnetic species), UV–Vis spectroscopy and microanalytical techniques. Besides the cobalt complex was subject of X-ray structural analysis. The molecular crystal structure of the PhBIm2Co(II)Cl2 complex revealed the metal center in a pseudo-tetrahedral environment with not significant lengthening or compressing of the bonds in the PhBIm2 framework upon chelation of the ligand. All complexes catalyze the aerobic oxidation of o-catechol to o-quinone under mild conditions. The results show that the oxidation rate depends on the electronic stabilizing effect to the metal center rather than the steric hindrance of the ligand. Kinetic parameters (Vmax, kcat, KM) were estimated by mean of the Michaelis–Menten model and Lineweaver–Burk plot. Catechol oxidation rates of complexes 2–4 are in the same order of magnitudes of mononuclear and dinuclear Cu(II) complexes bearing imidazole-based ligands but lower than observed for the catecholase enzymespa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePolyhedron, Volume 203, 2021.spa
dc.titleSynthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligandspa
dcterms.bibliographicCitationB. Kaim, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley, 1994.spa
dcterms.bibliographicCitationT. Klabunde, C. Eicken, J.C. Sacchettini, B. Krebs, Crystal structure of a plant catechol oxidase containing a dicopper center, Nat. Struct. Biol. 5 (1998) 1084– 1090.spa
dcterms.bibliographicCitationM. Boice, F. Borcheta, A. Cunningham, J. Trent, Cosmestic compositions containing quinones and their topical use on skin and hair, US20180116928A1. (2018).spa
dcterms.bibliographicCitationT. Deming, Y. Miaoer, Synthesis and crosslinking of catechol containing copolypeptides, USOO6506577B1. (2003).spa
dcterms.bibliographicCitationG. Maier, C. Bernt, A. Butler, Catechol oxidation: Considerations in the design of wet adhesive materials, Biomater. Sci. 6 (2018) 332–339, https://doi.org/ 10.1039/c7bm00884h.spa
dcterms.bibliographicCitationJ. Yang, M. Stuart, M. Kamperman, Jack of all trades: Versatile catechol crosslinking mechanisms, Chem. Soc. Rev. 43 (2014) 8271–8298, https://doi. org/10.1039/c4cs00185k.spa
dcterms.bibliographicCitationJ. Bolton, T. Dunlap, Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects, Chem. Res. Toxicol. 30 (2017) 13–37, https://doi. org/10.1021/acs.chemrestox.6b00256.spa
dcterms.bibliographicCitationB. Kim, D. Oh, S. Kim, J. Seo, D. Hwang, A. Masic, D. Han, H. Cha, Musselmimetic protein-based adhesive hydrogel, Biomacromol. 15 (2014) 1579– 1585, https://doi.org/10.1021/bm4017308.spa
dcterms.bibliographicCitationR. Marion, N. Saleh, N. Le Poul, D. Floner, O. Lavastre, F. Geneste, Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(ii) complexes by introduction of non-coordinating groups in Ntripodal ligands, New J. Chem. 36 (2012) 1828–1835, https://doi.org/10.1039/ c2nj40265c.spa
dcterms.bibliographicCitationP. Wang, G. Yap, C. Riordan, Five-coordinate MII-semiquinonate (M = Fe, Mn, Co) complexes: Reactivity models of the catechol dioxygenases, Chem. Commun. 50 (2014) 5871–5873, https://doi.org/10.1039/c3cc49143aspa
dcterms.bibliographicCitationE. Mentasti, E. Pelizzetti, Reactions between iron(III) and catechol (odihydroxybenzene). Part I. Equilibria and kinetics of complex formation in aqueous acid solution, J. Chem. Soc. Dalt. Trans. (1973) 2605–2608, https://doi. org/10.1039/DT9730002605.spa
dcterms.bibliographicCitationP. Kamau, R. Jordan, Kinetic study of the oxidation of catechol by aqueous copper(II), Inorg. Chem. 41 (2002) 3076–3083, https://doi.org/10.1021/ ic010978c.spa
dcterms.bibliographicCitationS. Dey, A. Mukherjee, The synthesis, characterization and catecholase activity of dinuclear cobalt(II/III) complexes of an O-donor rich Schiff base ligand, New J. Chem. 38 (2014) 4985–4995, https://doi.org/10.1039/c4nj00715h.spa
dcterms.bibliographicCitationM. Das, B. Kumar, K.R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands, Inorg. Chim. Acta 469 (2018) 111–122, https://doi.org/10.1016/j. ica.2017.09.013.spa
dcterms.bibliographicCitationA. Sarkar, A. Chakraborty, A. Adhikary, S. Maity, A. Mandal, D. Samanta, P. Ghosh, D. Das, Exploration of catecholase-like activity of a series of magnetically coupled transition metal complexes of Mn, Co and Ni: new insights into solution state behavior of Mn complex, Dalton Trans. 48 (2019) 14164–14177.spa
dcterms.bibliographicCitationI.A. Koval, P. Gamez, C. Belle, K. Selmeczi, J. Reedijk, Synthetic models of the active site of catechol oxidase: mechanistic studies, Chem Soc Rev 35 (2006) 814–840, https://doi.org/10.1039/b516250p.spa
dcterms.bibliographicCitationS.K. Dey, A. Mukherjee, Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies, Coord. Chem. Rev. 310 (2016) 80–115, https://doi.org/10.1016/j.ccr.2015.11.002.spa
dcterms.bibliographicCitationL. Martins, E. Souza, T. Fernandez, B. De Souza, S. Rachinski, C. Pinheiro, R. Faria, A. Casellato, S. Machado, A. Mangrich, M. Scarpellini, Binuclear CuII Table 3 Kinetic parameters for aerobic oxidation of o-catechol to o-quinone with complexes 2–4. kcat 103 (s1 ) St Error KM (mM) St Error Vmax 103 (mM s1 ) St Error kcat/KM (M1 s 1 ) Ref. 2 6.10 0.73 118 21.3 6.10 21.3 0.0517 This work 3 1.57 0.13 110 9.9 1.57 9.9 0.014 This work 4 1.41 0.61 623 38.4 1.41 32.4 0.0023 This work a [CoL2]Cl 32.78 – 1.8 7.50x10-4 3.28 5.62x10-7 18.21 [55] b [Co3(OMe)4L2]ClO4 922 – 7.81 5.27x10-3 1.5 4.47x10-5 118.05 [56] c [Cu2(L)2(H2O)2] 866.67 – 4.3 – 104.6 – 201.55 [22] d CuLCl2 3.1 – 1.62 – – – 1.9 [9] e CuLCl2 60.1 – 0.28 – 1.30 – 214.64 [57] f CuLCl2 108.9 – 0.45 – 2.36 – 242 [57] h (L)FeIII(l-Ophenoxo)FeIII] 1.21 – 7.20 – – – 0.17 [58] a HL = (E)-2-((3-(2-hydroxyethylthio)propylimino)methyl)phenol; b H2L = N,N0 -dimethyl-N,N0 -bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine; c H2L = 2-[(2-hydroxy-5-R-benzyl)amino]cyclohexane-1-carboxylic acid; d L = 6-(((1H-Pyrazol-1-yl)methyl)(thiophen-2-ylmethyl)amino)hexan-1-ol; e L = [(2-(pyridyl-2-yl)ethyl)((1-methylimidazol-2-yl)methyl)]imine; f L = [(2-(pyridyl-2-yl)ethyl)((1-methylimidazol-2-yl)methyl)]amine; h L = [(bbpmp)(H2O)(Cl)FeIII(l-Ophenoxo)FeIII(H2O)(Cl)]Cl J. Chirinos, D. Ibarra, Á. Morillo et al. Polyhedron 203 (2021) 115232 6 complexes as catalysts for hydrocarbon and catechol oxidation reactions with hydrogen peroxide and molecular oxygen, J. Braz. Chem. Soc. 21 (2010) 1218– 1229, https://doi.org/10.1590/S0103-50532010000700009.spa
dcterms.bibliographicCitationA. Ramadan, S. Shaban, M. Ibrahim, M. El-Hendawy, H. Eissa, S. Al-Harbi, Copper(II) complexes containing pyridine-based and phenolatebased systems: Synthesis, characterization, DFT study, biomimetic catalytic activity of catechol oxidase and phenoxazinone synthase, J. Chin. Chem. Soc. (2019) 1– 17, https://doi.org/10.1002/jccs.201900113.spa
dcterms.bibliographicCitationM. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, Homogeneous and heterogenized copper(II) complexes as catechol oxidation catalysts, J. Mol. Catal. A Chem. 198 (2003) 231–240, https://doi.org/10.1016/ S1381-1169(02)00692-1.spa
dcterms.bibliographicCitationC. Belle, K. Selmeczi, S. Torelli, J.L. Pierre, Chemical tools for mechanistic studies related to catechol oxidase activity, Comptes Rendus Chim. 10 (2007) 271–283, https://doi.org/10.1016/j.crci.2006.10.007.spa
dcterms.bibliographicCitationB. Sreenivasulu, F. Zhao, S. Gao, J.J. Vittal, Synthesis, structures and catecholase activity of a new series of dicopper(II) complexes of reduced Schiff base ligands, Eur. J. Inorg. Chem. (2006) 2656–2670, https://doi.org/10.1002/ ejic.200600022.spa
dcterms.bibliographicCitationS. Sarkar, W.R. Lee, C.S. Hong, H.I. Lee, Tetrameric self-assembly of a Cu(II) complex containing schiff-base ligand and its unusually high catecholase-like activity, Bull. Korean Chem. Soc. 34 (2013) 2731–2736, https://doi.org/ 10.5012/bkcs.2013.34.9.2731spa
dcterms.bibliographicCitationD. Dey, S. Das, H. Yadav, A. Ranjani, L. Gyathri, S. Roy, P. Guin, D. Dhanasekaran, A. Choudhury, M. Abdulkader, B. Biswas, Design of a mononuclear copper(II)- phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties, Polyhedron 106 (2016) 106–114, https://doi.org/10.1016/j. poly.2015.12.055.spa
dcterms.bibliographicCitationB. Jacobsen, J. Chirinos, G. Vernon, Diene polymerisation, WO 2007/015074 Al. (2007).spa
dcterms.bibliographicCitationJ. Zi, M. Moszner, E. Kwaskowska-che, Reactions of the hexaaquarhodium (III) cation with bis(benzimidazol-2-ylmethyl) methylamine and PPh3: syntheses and properties of new hydrido- and carbonylrhodium complexes, Inorganica Chim. Acta. 357 (2004) 2483–2493, https://doi.org/10.1016/j.ica.2003.10.020.spa
dcterms.bibliographicCitationR. Cariou, J. Chirinos, V. Gibson, G. Jacobsen, A. Tomov, G. Britovsek, A. White, The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene, Dalt. Trans. 39 (2010), https://doi.org/10.1039/c0dt00402b.spa
dcterms.bibliographicCitationA. Tomov, J. Nobbs, J. Chirinos, P. Saini, R. Malinowski, S. Ho, C. Young, D. McGuinness, A. White, M. Elsegood, G. Britovsek, Alternating a-olefin distributions via single and double insertions in chromium-catalyzed ethylene oligomerization, Organometallics 36 (2017), https://doi.org/ 10.1021/acs.organomet.6b00671.spa
dcterms.bibliographicCitationJ. Braden, R. Cariou, J. Shabaker, R. Taylor, Rapid transfer hydrogenation of acetophenone using ruthenium catalysts bearing commercially available and readily accessible nitrogen and phosphorous donor ligands, Appl. Catal. A 570 (2019) 367–375, https://doi.org/10.1016/j.apcata.2018.11.031.spa
dcterms.bibliographicCitationW. Yang, Y. Chen, W. Sun, Correlating cobalt net charges with catalytic activities of the 2-(Benzimidazolyl)-6-(1-aryliminoethyl) pyridylcobalt complexes toward ethylene polymerization, Macromol. React. Eng. 9 (2015) 473–479, https://doi.org/10.1002/mren.201400064.spa
dcterms.bibliographicCitationP. Selvam, P. Radhika, S. Janagaraj, A. Kumar, Synthesis of novel 2-substituted benzimidazole derivatives as potential anti microbial agents, Research in Biotechnology 2 (2011) 50–57.spa
dcterms.bibliographicCitationP. Mathur, Activation of peroxyl and molecular oxygen using bisbenzimidazole diamide copper (II) compounds, J. Chem. Sci. 118 (2006) 553–568, https://doi.org/10.1007/BF02703953spa
dcterms.bibliographicCitationC. Matthews S. Heath M. Elsegood W. Clegg A. Leese J. Lockhart Differential binding of a facultative tridentate ligand 4-(benzimidazol-2-yl)-3- thiabutanoic acid to Cu J. Chem. Soc., Dalt. Trans. (1998) 1973–1977spa
dcterms.bibliographicCitationC. Icsel, V. Yilmaz, S . Aydinlik, M. Aygun, New manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) saccharinate complexes of 2,6-bis(2-benzimidazolyl) pyridine as potential anticancer agents, Eur. J. Med. Chem. (2020), https://doi. org/10.1016/j.ejmech.2020.112535.spa
dcterms.bibliographicCitationR. Esteghamat-Panah, H. Hadadzadeh, H. Farrokhpour, J. Simpson, A. Abdolmaleki, F. Abyar, Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-Bis(2-benzimidazolyl) pyridine, Eur. J. Med. Chem. 15 (2017) 658–971, https://doi.org/10.1016/j. ejmech.2016.11.005.spa
dcterms.bibliographicCitationK. Mandal, Oxidase Studies of Substituted Catechols using Copper (II) Complex of Bis (2-benzimidazolylmethyl) ether, Int. J. Sci. Res. 3 (2014) 1303–1305. https://www.ijsr.net/archive/v3i7/MDIwMTQxMjgx.pdf.spa
dcterms.bibliographicCitationA. Martínez, I.D. Membrillo, V. Ugalde-Saldívar, L. Gasque, Dinuclear copper complexes with imidazole derivative ligands: A theoretical study related to catechol oxidase activity, J. Phys. Chem. B. 116 (2012) 8038–8044, https://doi. org/10.1021/jp300444m.spa
dcterms.bibliographicCitationE. Mijangos, J. Reedijkb, L. Gasque, Copper(II) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity, Dalton Trans. (2008) 1857–1863, https://doi.org/10.1039/B714283H.spa
dcterms.bibliographicCitationL. Dudd, E. Venardou, E. Garcia-Verdugo, P. Licence, A. Blake, C. Wilson, M. Poliakoff, Synthesis of benzimidazoles in high-temperature water, Green Chem. 5 (2003) 187–192, https://doi.org/10.1039/b212394k.spa
dcterms.bibliographicCitationD. Evans, Paramagnetic Susceptibility, etc., Paramagnetic Susceptibility, etc. 2003 400. The determination of the pararnagnetic susceptibility, J. Chem. Soc. 1959 (2003) 2003–2005.spa
dcterms.bibliographicCitationCrystal Clear. Crystal Structure, RigakuMSC. Texas, USA, 2004, (n.d.).spa
dcterms.bibliographicCitationG. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A Found. Crystallogr. 64 (2008) 112–122, https://doi.org/10.1107/S0108767307043930.spa
dcterms.bibliographicCitationG. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8, https://doi.org/10.1107/S2053229614024218.spa
dcterms.bibliographicCitationA. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36 (2003) 7–13, https://doi.org/10.1107/S0021889802022112spa
dcterms.bibliographicCitationD. Dey, S. Das, H.R. Yadav, A. Ranjani, L. Gyathri, S. Roy, P.S. Guin, D. Dhanasekaran, A.R. Choudhury, M.A. Akbarsha, B. Biswas, Design of a mononuclear copper(II)-phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties, Polyhedron 106 (2016) 106–114, https:// doi.org/10.1016/j.poly.2015.12.055.spa
dcterms.bibliographicCitationY. Toubi, R. Touzani, S. Radi, S. El Kadiri, Synthesis, characterization and catecholase activity of copper (II) complexes with bispyrazole tri-podal Ligands, J. Mater. Environ. Sci. 3 (2012) 328–341.spa
dcterms.bibliographicCitationA. Lever, Inorganic electronic spectroscopy, 2nd edition., Elsevier, New York, 1984.spa
dcterms.bibliographicCitationS. Satyanarayana, K. Nagasundara, Synthesis and spectral properties of the complexes of cobalt(II), nickel(II), copper (II), zinc(II), and cadmium(II) with 2- (Thiomethyl-20 -benzimidazolyl)-benzimidazole, Synth. React. Inorg. Met.-Org. Chem. 34 (2004) 883–895, https://doi.org/10.1081/SIM-120037514spa
dcterms.bibliographicCitationM. Amirnasr, A. Mahmoudkhani, A. Gorji, S. Dehghanpour, H. Bijanzadeh, Cobalt(II), nickel(II), and zinc(II) complexes with bidentate N,N-bis(bphenylcinnamaldehyde)-1,2-diiminoethane Schiff base: synthesis and structures, Polyhedron 21 (2002) 2733-2742.https://doi.org/10.1016/S0277- 5387(02)01277-9spa
dcterms.bibliographicCitationJ. Scepaniak, T. Harris, C. Vogel, J. Sutter, K. Meyer, J. Smith, Spin crossover in a four-coordinate iron(II) complex, J. Am. Chem. Soc. 133 (2011) 3824–3827, https://doi.org/10.1021/ja2003473.spa
dcterms.bibliographicCitationW. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev. 7 (1971) 81– 122, https://doi.org/10.1016/S0010-8545(00)80009-0.spa
dcterms.bibliographicCitationL. Michaelis, M. Menten, R. Goody, K. Johnson, Die kinetik der invertinwirkung (translated: The kinetics of invertase action), Biochemistry 50 (39) (2011) 8264–8269, https://doi.org/10.1021/bi201284u.spa
dcterms.bibliographicCitationR. Roskoski, B. Ridge, H. Shoe, Michaelis-Menten Kinetics, Elsevier Inc., 2015. https://doi.org/10.1016/B978-0-12-801238-3.05143-6spa
dcterms.bibliographicCitationH. Lineweaver, D. Burk, B.H. Lineweaver, D. Burk, The determination of Enzyme Dissociation Constants, J. Am. Chem. Soc 56 (1934) 658–666, https://doi.org/ 10.1021/ja01318a036.spa
dcterms.bibliographicCitationA. Ghosh, C. Purohit, R. Ghosh, Synthesis and structural characterization of a cobalt(III) complex with an (N, S, O) donor Schiff base ligand: Catechol oxidase and phenoxazinone synthase activities, Polyhedron 155 (2018) 194–201, https://doi.org/10.1016/j.poly.2018.08.021.spa
dcterms.bibliographicCitationI. Ali, B. Mandal, R. Saha, R. Ghosh, M. Chandra Majee, D. Mondal, P. Mitra, D. Mandal, Mono and tri-nuclear cobalt(III) complexes with sterically constrained phenol based N2O2 ligand: Synthesis, structure and catechol oxidase activity, Polyhedron 180 (2020), https://doi.org/10.1016/j. poly.2020.114429 114429.spa
dcterms.bibliographicCitationF. Ferre, J. Resende, J. Schultz, A. Mangrich, R. Faria, A. Rocha, M. Scarpellini, Catalytic promiscuity of mononuclear copper(II) complexes in mild conditions: Catechol and cyclohexane oxidations, Polyhedron 123 (2017) 293–304, https://doi.org/10.1016/j.poly.2016.11.045.spa
dcterms.bibliographicCitationT. Camargo, F. Maia, C. Chaves, B. De Souza, A. Bortoluzzi, N. Castilho, T. Bortolotto, H. Terenzi, E.E. Castellano, W. Haase, Z. Tomkowicz, R. Peralta, A. Neves, Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity, J. Inorg. Biochem. 146 (2015) 77–88,spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.poly.2021.115232
dc.subject.keywordsCatecholspa
dc.subject.keywordsQuinonespa
dc.subject.keywords2,2′-(1,2-phenylene)bis(1H-benzimidazole)spa
dc.subject.keywordsTransition metal complexesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.format.size7 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.