Mostrar el registro sencillo del ítem

dc.contributor.authorAvila Becerril, Sofia
dc.contributor.authorEspinosa Pérez, Gerardo
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGarcés, Alejandro
dc.date.accessioned2021-07-29T19:01:15Z
dc.date.available2021-07-29T19:01:15Z
dc.date.issued2020-10-12
dc.date.submitted2021-07-28
dc.identifier.citationSofía Avila-Becerril, Gerardo Espinosa-Pérez, Oscar Danilo Montoya, Alejandro Garces, Passivity-based control of islanded microgrids with unknown power loads, IMA Journal of Mathematical Control and Information, Volume 37, Issue 4, December 2020, Pages 1548–1573, https://doi.org/10.1093/imamci/dnaa025spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10332
dc.description.abstractIn this paper, the control problem of microgrids (MGs)operating in islanded mode is approached from a passivity-based control perspective. A control scheme is proposed that, relying only on local measurements for the power converters included in the network representation, achieves both voltage regulation and power balance in the network through the generation of grid-forming and grid-following nodes. From the mathematical perspective, the importance of the contribution lies in the feature that, exploiting a port-controlled Hamiltonian representation of the MG, the closed-loop system’s stability properties are formally proved using arguments from the theory of non-linear dynamical systems. Fundamental for this achievement is the decomposition of the system into subsystems that require a control law and another whose variables can evolve in a free way. From the practical viewpoint, the advantage of the proposed controller lies in the feature that the power demanded by the loads is satisfied without neither computing its specific value nor solving the non-linear algebraic equations given by the power flow, avoiding the computational burden associated with this task. The usefulness of the scheme is illustrated via a numerical simulation that includes practical considerations.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent25 páginas
dc.format.mediumRecurso en línea / Electrónico
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceIMA Journal of Mathematical Control and Information, Volume 37, Issue 4, December 2020spa
dc.titlePassivity-based control of islanded microgrids with unknown power loadsspa
dcterms.bibliographicCitationArani, A. K., Karami, H., Gharehpetian, G. B. & Hejazi, M. S. A. (2017) Review of flywheel energy storage systems structures and applications in power systems and microgrids. Renew. Sust. Energ. Rev., 69, 9–18.spa
dcterms.bibliographicCitationAgundis-Tinajero, G., Segundo-Ramirez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M. & Barocio, E. (2019) Power flow modeling of islanded AC microgrids with hierarchical control. Int. J. Electr. Power Energy Syst., 105, 28–36.spa
dcterms.bibliographicCitationAvila-Becerril, S. & Espinosa-Pérez, G. (2020) Control of islanded microgrids considering power converter dynamics. Int. J. Control., 1–11. https://doi.org/10.1080/00207179.2020.1713402spa
dcterms.bibliographicCitationAvila-Becerril, S., Espinosa-Pérez, G. & Machado, J. E. (2019) On the dynamic solution of power flow equations for microgrids control. 2019 58th IEEE Conference on Decision and Control (CDC). Nice, France, pp. 8423–8428.spa
dcterms.bibliographicCitationAvila-Becerril, S., Montoya, O. D., Espinosa-Pérez, G. & Garcés, A. (2018) Control of a detailed model of microgrids from a Hamiltonian approach. IFAC-PapersOnLine, 51, 187–192spa
dcterms.bibliographicCitationAvila-Becerril, S., Espinosa-Pérez, G. & Fernandez, P. (2016) Dynamic characterization of typical electrical circuits via structural properties. Math. Probl. Eng., 2016. https://doi.org/10.1155/2016/7870462.spa
dcterms.bibliographicCitationBidram, A., Nasirian, V., Davoudi, A. & Lewis, F. L. (2017) Cooperative Synchronization in Distributed Microgrid Control. Springer International Publishing.spa
dcterms.bibliographicCitationBollobás, B. (1998) Modern Graph Theory, vol. 184. Springer Science & Business Media.spa
dcterms.bibliographicCitationBouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P. & Benghanem, M. (2015) A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sust. Energ. Rev., 44, 751–766.spa
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G. & Molinas, M. (2015) Global tracking passivitybased PI control of bilinear systems: application to the interleaved boost and modular multilevel converters. Control. Eng. Pract., 43, 109–119.spa
dcterms.bibliographicCitationGu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W. & Wu, Z. (2014) Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: a review. Int. J. Electr. Power Energy Syst., 54, 26–37.spa
dcterms.bibliographicCitationHan, H., Hou, X., Yang, J., Wu, J., Su, M. & Guerrero, J. M. (2015) Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans. Smart Grid, 7, 200–215.spa
dcterms.bibliographicCitationJayachandran, M. & Ravi, G. (2019) Decentralized model predictive hierarchical control strategy for islanded AC microgrids. Electr. Power Syst. Res., 170, 92–100.spa
dcterms.bibliographicCitationKonstantopoulos, G., Zhong, Q. C., Ren, B. & Krstic, M. (2015) Bounded droop controller for parallel operation of inverters. Automatica, 53, 320–328.spa
dcterms.bibliographicCitationPogaku, N., Prodanovic, M. & Green, T. C. (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron., 22, 613–625.spa
dcterms.bibliographicCitationRojas, A. & Rousan, T. (2017) Microgrid control strategy: derived from stakeholder requirements analysis. IEEE Power Energy Mag., 15, 72–79.spa
dcterms.bibliographicCitationSchiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. (2014) Conditions for stability of droop-controlled inverter-based microgrids. Automatica, 50, 2457–2469spa
dcterms.bibliographicCitationSepulchre, R., Jankovic, M. & Kokotovic, P. V. (2012) Constructive Nonlinear Control. Springer Science & Business Media.spa
dcterms.bibliographicCitationShuai, Z., Sun, Y., Shen, Z. J., Tian, W., Tu, C., Li, Y. & Yin, X. (2016) Microgrid stability: classification and a review. Renew. Sust. Energ. Rev., 58, 167–179.spa
dcterms.bibliographicCitationSimpson-Porco, J. W., Dörfler, F. & Bullo, F. (2013) Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica, 49, 2603–2611.spa
dcterms.bibliographicCitationStegink, T., De Persis, C. & van der Schaft, A. (2016) A unifying energy-based approach to stability of power grids with market dynamics. IEEE Trans. Autom. Control, 62, 2612–2622.spa
dcterms.bibliographicCitationTuffner, F. K., Schneider, K. P., Hansen, J. & Elizondo, M. A. (2018) Modeling load dynamics to support resiliency-based operations in low-inertia microgrids. IEEE Trans. Smart Grid, 10, 2726–2737.spa
dcterms.bibliographicCitationvan der Schaft, A. J. & Maschke, B. M. (2013) Port-Hamiltonian systems on graphs. SIAM J. Control. Optim., 51, 906–937.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.subject.keywordsHamiltonian systemsspa
dc.subject.keywordsMicrogridsspa
dc.subject.keywordsIslanded operation modespa
dc.subject.keywordsPassivity-based controlspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Eléctricaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.