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Abstract: This paper deals with a classical problem in power system analysis regarding the optimal
location and sizing of distributed generators (DGs) in direct current (DC) distribution networks using the
mathematical optimization. This optimization problem is divided into two sub-problems as follows: the
optimal location of DGs is a problem, with those with a binary structure being the first sub-problem; and
the optimal sizing of DGs with a nonlinear programming (NLP) structure is the second sub-problem.
These problems originate from a general mixed-integer nonlinear programming model (MINLP), which
corresponds to an NP-hard optimization problem. It is not possible to provide the global optimum
with conventional programming methods. A mixed-integer semidefinite programming (MI-SDP) model
is proposed to address this problem, where the binary part is solved via the branch and bound (B&B)
methods and the NLP part is solved via convex optimization (i.e., SDP). The main advantage of the
proposed MI-SDP model is the possibility of guaranteeing a global optimum solution if each of the nodes
in the B&B search is convex, as is ensured by the SDP method. Numerical validations in two test feeders
composed of 21 and 69 nodes demonstrate that in all of these problems, the optimal global solution is
reached by the MI-SDP approach, compared to the classical metaheuristic and hybrid programming
models reported in the literature. All the simulations have been carried out using the MATLAB software
with the CVX tool and the Mosek solver.

Keywords: branch and bound method; convex optimization; distributed generation; mixed-integer
semidefinite programming; power losses minimization

1. Introduction

Electrical distribution networks are responsible for transporting energy from power systems to
end-users in medium- and low-voltage levels [1]. These are typically fed by substations that keep voltage
and frequency variables as constant as possible, in the case of alternative current (AC) networks, or voltage
magnitude, as in the case of a direct current (DC) distribution network [2]. Due to the use of voltage levels
in distribution networks and their lengths (also its radial configurations), these networks have higher
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power losses as percentages when compared to transmission networks [1,3]. Multiple methodologies have
been reported to improve the performance of electrical distribution networks in terms of power losses and
voltage profiles; some of the classical ones are the following:

X The optimal location and sizing of capacitor banks [4–6].
X The optimal location and sizing of distributed generators [7,8]
X The optimal grid reconfiguration [9–11].
X The optimal location of voltage regulators and series capacitor banks [12–14].

Note that in the case of DC networks, the most extended approach is the optimal location and sizing
of distributed generators. This is the most reported approach in recent scientific literature where DC
technologies are gaining more relevance in distribution scenarios [15]. Some of the main characteristics of
the rapid advances in DC distribution are the following: (i) lower power losses and better voltage profiles
due to the nonexistence of reactances in distribution lines, and (ii) easy controllability as the concept
of frequency does not exist, which implies that controls are only focused on constant voltage support.
In addition, multiple distributed energy resources, such as batteries and photovoltaic generators, are
typically operated under the DC paradigm, which implies that they are easily integrated into these kinds
of grids in contrast to AC networks. This is because a lower power electronic interface is needed to connect
them in DC networks, which can reduce costs compared to conventional AC networks [15].

Based on these advantages of DC grids over AC grids, in this study, we focus on the problem of the
optimal locations and sizes of distributed generators in DC distribution networks. This problem has been
largely studied with regard to AC distribution networks [16]. In the case of DC networks, few approaches
have been reported in the literature. The authors of [17] proposed a hybrid approach for the optimal
location and sizing of dispatchable distributed generators in DC grids. They combined a semidefinite
programming model for an optimal power flow analysis with the hyperplane search method, which relaxes
the binary variables. A similar approach based on a sequential quadratic optimal power flow was proposed
in [18]. Both optimization models reached the optimal global solution for this problem system with 21 and
69 node test feeders. However, the complexity in their implementations lies in the number of hyperplanes
that were needed to be evaluated, as these depend on the number of candidate nodes provided by the
relaxed optima power flow (OPF) model that can significantly increase the total processing time required
for the solution of the problem. In [19], a tutorial was provided on the optimal location and sizing of
distributed generators (DGs) in DC grids using the general algebraic modeling system (GAMS), while in
[20], the same software was used for the optimal sizing of photovoltaic sources in DC grids while keeping
in consideration a day-ahead environmental dispatch. Both approaches present the main advantages of
implementing optimization models in GAMS; however, due to the nonlinear, non-convex mixed-integer
structure of the studied problem, these approaches do not ensure the optimum global finding. The authors
of [21] presented multiple metaheuristic approaches for the optimal location and sizing of DGs in DC grids.
For the location, the stage was used as a classical genetic algorithm to define the nodes where all the DGs
would be be located, and for the sizing, the stage used constituted the continuous metaheuristics named
the continuous genetic algorithm, particle swarm, and black-hole optimizers. Even if these algorithms
were easily implementable using sequential programming, the main complication was that multiple tuning
parameters and statistical tests were required to measure their efficiency, as there was no guarantee that a
global solution would be achieved. The authors of [22] presented a methodology for optimal dimensioning
of wind turbines, photovoltaic sources, and batteries in hybrid AC/DC grids by proposing an optimization
model that minimizes the life cycle cost of the system while keeping in consideration the life span of
renewable energy resources. However, the model employed in the grid modeling is a linear simplification
of the grid, which means that it is not possible to ensure that an optimal solution of the linear model is the
optimal solution of the exact grid representation.
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Based on the review mentioned of the state-of-the-art, we established that specialized literature has not
reported an optimization method to address the problem of the optimal location and sizing of distributed
generators in DC networks. In this sense, the main contributions of this research are summarized below:

X The reformulation of the mixed-integer nonlinear programming (MINLP) model that represents the
exact optimization problem in a mixed-integer semidefinite programming model (MI-SDP).

X A global and optimal solution found using the combination of the branch and bound and interior
point methods to solve the proposed MI-SDP model.

Note that the scope of this research focuses on the optimal sizing and location of DGs in DC
distribution networks in medium- and low-voltage levels. We considered that DGs are fully dispatchable,
i.e., they are constant power sources. In the case of renewable energy resources such as photovoltaic or
wind turbines, we assumed that these would be connected in parallel with battery packages that controlled
power output at a constant value at the node where the DG is located.

The remainder of this study is organized as follows: Section 2 presents the classical MINLP model for
the problem of the optimal location and sizing of distributed generators in DC grids, which considers the
minimization of total grid losses as its objective function. Section 3 presents the MI-SDP programming
reformulation of the original MINLP model by focusing on power flow equations and the product of
voltage variables and their restructuring via semidefinite programming. Section 4 presents the main aspects
of the solution methodology via the branch and bound method. Section 5 offers the main characteristics
of the 21- and 69-node test feeders. In Section 6, we report the numerical validation of our proposed
MI-SDP approach and compare it with nonlinear and metaheuristic optimization methods. Finally, Section
7 presents the main conclusions derived from this research and some recommendations for future studies.

2. Minlp Formulation

The problem of optimal location and sizing of distributed generation in DC power grids is represented
as a mixed-integer nonlinear programming model due to the following facts: (i) The problem of the optimal
location of DGs is a binary optimization problem, as there exists a variable yi that takes the value of 1 if a
node i is located at one DG, or 0 if this node does not have assigned any DG. (ii) The problem of sizing DGs
is indeed an optimal power flow problem due to the presence of power balance constraints that generate
hyperbolic relations between voltages and powers at each node. The optimization model that represents
this problem is presented below in full.

2.1. Objective Function

The objective function in this problem, as presented in [20], is typically a technical index related to
the minimization of power losses in all the distribution conductors, as presented in Equation (1).

min ploss = ∑
i∈N

∑
j∈N

Gijvivj, (1)

where ploss represents the objective function value, Gij represents the component of the conductance matrix
that relates nodes i and j, and vi and vj are the voltage values at nodes i and j, respectively. Note that N is
the set that contains all the nodes of the network.

Remark 1. The objective function (1) is convex, as it is the sum of square variables regarding the voltage profiles
between pairs of nodes. The convexity of this function is ensured by the fact that the conductance matrix G is a
positive semidefinite function [17].
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2.2. Set of Constraints

The set of constraints on the optimal location and sizing of power sources in DC distribution networks
are as follows: power balance at each node, voltage regulation bounds, and device and element capacities.
Each one of these constraints is described below:

ps
i + pdg

i − pd
i = vi ∑

j∈N
Gijvivj, ∀i ∈ N (2)

pkm = gkmvk (vk − vm) , ∀km ∈ L (3)

pmin
km ≤ pkm ≤ pmax

km , ∀km ∈ L (4)

vmin ≤ vi ≤ vmax, ∀i ∈ N (5)

∑
i∈N

yi ≤ Nmax
gd , (6)

0 ≤ pdg
i ≤ yi pmax

i , ∀i ∈ N (7)

0 ≤ ps
i ≤ ps,max

i , ∀i ∈ N (8)

yi ∈ {0, 1} , ∀i ∈ N (9)

where ps
i represents the power injected by the slack node connected at node i, pdg

i represents the amount
of power generated by the distributed source connected at node i, and pd

i represents the total power
consumption at the same node. pkm represents the total power flow on the line that connects nodes k and
m, which has a conductive parameter gkm. pmax

km and pmin
km represent the maximum and minimum power

flow bounds allowed in the line that connects nodes k and m, respectively. vmin and vmax represent the
minimum and maximum voltage bounds allowed for the voltage variables in all the nodes. yi stands for
the binary variable that defines whether a DG is located (yi = 1) or not (yi = 0) at node i. Nmax

gd represents
the total number of DGs available for installation in the DC network. pmax

i and ps,max
i represent the

maximum capabilities of power injection of the DG and the slack source connected at node i, respectively.
The complete mathematical formulation presented from (1) to (9) is completely described below:

Equation (1) defines the objective function value that corresponds to a technical measure related to the
minimization of grid power losses. Equation (2) defines the power balance equilibrium at each node of
the network. In Equation (3), the power flow at each line of the network is calculated as a function of the
voltage difference between the sending and receiving nodes of the line and its conductance. Equations (4)
and (5) are box-type constraints that bound the power flows of all the lines and voltage profiles in all the
nodes. The inequality constraint (6) determines the availability of distributed generators inside the DC
grid. Equation (7) determines the power generation capabilities of a DG connected at node i; the inequality
constraint (8) defines the lower and upper bounds of the power injection in a slack source, and Equation
(9) presents the binary nature of the decision variable regarding the location (or not) of a DG in the DC
network.

Remark 2. The optimal location and sizing of distributed generators in DC networks is indeed a nonlinear,
non-convex optimization problem due to the following: (i) the presence of binary variables associated with the location
problem, and (ii) the power balance and line power flow constraints that contain products between voltages, i.e.,
nonlinear quadratic equality constraints.

Due to the binary and nonlinear constraints of the model (1)–(9), this model corresponds with an
MINLP formulation, with the main characteristics presented in Figure 1.
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Convex Equations
(1) and (4)–(8)

yi ∈ {0, 1}
Binary

Non-convex
(2) and (3)

MINLP

Figure 1. Characterization of the mathematical model associated with the optimal location and sizing of
DGsin DC grids.

Note that from the mathematical structure depicted in Figure 1, the main complication of the
model is given by the power balance and power flow constraints (2) and (3), as these are nonlinear
equality constraints; however, as these only contain products among variables, it is possible to make them
into a convex formulation via semidefinite programming. This implies that the MINLP model can be
reformulated as a mixed-integer semidefinite programming (MI-SDP) model, with the main advantage
being that it is efficiently solvable with the branch and bound method, in conjunction with interior points,
thereby ensuring the optimum global finding due to the convex structure of the SDP formulation. In the
next section, the proposed MI-SDP approach for locating and sizing DGs in DC networks is widely
explained.

3. Mi-Sdp Reformulation

The MI-SDP reformulation of the problem of the optimal location and sizing of DGs in DC distribution
networks is based on the possibility of reformulating the nonlinear non-convex power balance and
power flow constraints into convex restrictions via semidefinite matrices [17]. This is possible since the
nonlinearities regarding continuous variables, i.e., voltages, powers, and currents, are products, which
makes them easily treatable with semidefinite programming, as described in [23].

Remark 3. The main property of an MI-SDP model is the possibility of guaranteeing the global optimum if the
binary part is addressed with a modified version of the B&B method where each explored node can be represented
with a convex optimization model [24,25].

3.1. Sdp Model for Power Flow Equations

To obtain a convex equivalent of the constraints (2) and (3), let us introduce the matrix of variables X
as follows:

X = VVT , (10)
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where

V =


v1

v2
...

vn

 , X =


v2

1 v1v2 · · · v1vn

v2v1 v2
2 · · · v2vn

...
...

. . .
...

vnv1 vnv2 · · · v2
n

 .

Note that each column of the matrix X contains all the products between the voltage variables of each
node. In addition, this matrix exhibits asymmetric behavior; i.e., X = XT .

Now if we remember that the conductance matrix G is a positive semidefinite matrix (also symmetric)
with the structure presented below:

G =


G11 G12 · · · G1n
G21 G22 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · Gnn

 ,

and that with the vectors of the power in slack nodes, power generation in distributed sources and power
demands can be rewritten as the following:

Ps =


ps

1
ps

2
...

ps
n

 , Pgd =


pgd

1

pgd
2
...

pgd
n

 , Pd =


pd

1
pd

2
...

pd
n

 ;

then, the power balance constraint (2) can be expressed using a vector structure as follows:

Ps + Pgd − Pd = diag (GX) , (11)

where diag (·) is an operation that takes the diagonal of a matrix with dimensions n× n and translates it
into a vector with dimensions n× 1. Note that the power flow constraint defined in Equation (11) is now
an affine constraint with the form Ax = b, which has allowed the rewriting of the optimal power flow
problem for optimal dimensioning of DGs in DC grids as a convex constraint.

In the case of power flow in lines, this expression is easily written by observing in the definition of
the matrix X that Xkm = vkvm and Xkk = v2

k , which implies that (3) takes the following form:

pkm = gkm (Xkk − Xkm) , ∀km ∈ L (12)

Remark 4. It is important to highlight that in the case of semidefinite programming, for the X matrix, a nonlinear
constraint associated with the rank of this matrix appears. This implies that for recovering exactly all the voltage
variables V, it is mandatory that rank (X) = 1. However, these conditions are a non-convex constraint that we can
relax as recommended in [26] to obtain a complete convex reformulation of the optimal power flow model associated
with the problem of the optimal dimensioning of DGs in DC networks.

3.2. Objective Function Representation

Even if the objective function (1) is a convex function due to the properties of the conductance matrix,
we need to rewrite it as a function of the new variables Xij. For doing so, let us to take the right-hand part
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of the power balance constraint (11) by using the property name trace, which is applicable to matrices and
has the function of adding all the components of the diagonal to produce a scalar function [26]. Based on
this function, Equation (1) takes the following form:

min ploss = trace (GX) , (13)

3.3. Voltage Bounds and Solution Recovering

In the case of the voltage regulation bounds reported by Equation (5), it is necessary to obtain an
equivalent box-type constraint as a function of the new variables X. For doing so, let us to represent it as
follows: (

vmin
)2
≤ v2

i ≤ (vmax)2 . ∀i ∈ N (14)

Now, if we define a matrix filled by ones with dimensions n× n as 1n×n, then the Equation (14) takes
the following structure:

1n×n

(
vmin

)2
≤ X ≤ 1n×n (vmax)2 . (15)

Note that to recover the voltage variables from the SDP approximation of the power flow equations,
we can easily take the square root of each component of the diagonal of the matrix X, i.e., vi =

√
Xii. This

is possible, as in the matrix X, there is only one eigenvalue that is different from zero, while the other ones
are quite near zero, as demonstrated in [26], which implies that X can be adequately reconstructed by
using this eigenvalue and its corresponding eigenvectors.

3.4. Complete Mi-Sdp Model and Characterization

Based on the SDP formulation presented in previous subsections, the MINLP model is transformed
into an MI-SDP model with the structure presented below:
Objective function:

min ploss = trace (GX) , (16)

Set of constraints:
Ps + Pgd − Pd = diag (GX) , (17)

pkm = gkm (Xkk − Xkm) , ∀km ∈ L (18)

pmin
km ≤ pkm ≤ pmax

km , ∀km ∈ L (19)

1n×n

(
vmin

)2
≤ X ≤ 1n×n (vmax)2 , (20)

1T
n×1Y ≤ Nmax

gd , (21)

0n×1 ≤ Pgd ≤ Y⊗ Pgd,max, (22)

0n×1 ≤ Ps ≤ Ps,max, (23)

Y ∈ {0, 1} , (24)

where ⊗ is the Hadamard product between vectors [27]. Note that the classification of the mathematical
model (16)–(24) is presented in Figure 2.
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Convex Equations
(16)–(23)

Y ∈ {0, 1}
Equation (24) binary

MI-SDP

Figure 2. Equivalent MI-SDP model for the problem of the optimal location and sizing of distributed
generators in DC distribution networks.

4. Solution Methodology

To address the optimal solution of the problem of the optimal location and dimensioning of distributed
generators in direct current networks, the classical B&B method is combined with the SDP relaxation of
the power flow problem as depicted in Figure 2. Note that an MI-SDP problem has the following general
structure:

sup bTy,

s.t. C−
m

∑
i=1

Aiyi, (25)

li ≤ yi ≤ ui, ∀i ∈ [m]

yi ∈ Z, ∀i ∈ I

where C ∈ Sn, b ∈ Rm, and Ai ∈ Sn, li ∈ R ∪ {−∞}, ui ∈ R ∪ {∞} for all i ∈ [m]. The set of indices of
integer variables is given by I ⊆ [m]. Note that Sn is the space where symmetric semidefinite matrices are
defined.

MI-SDPs with the mathematical form (25) can be solved with a straightforward branch and bound
algorithm. Branch and bound was first proposed for integer linear programs by Land and Doig [28].
In 1965, Dakin [29] realized that the problems do not have to be linear, but that the same technique can
also be applied to general problems with integrality restrictions, as long as the sub-problems obtained
by relaxing the integrality conditions and possibly adding variable bounds can be solved optimally [24].
Figure 3 presents a small example of the evolution of an MI-SDP approach through a solution space with
two variables.
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N0

N1 N2

N3 N4

y
1 =

1y 1
=

0

y
2 =

1y 2
=

0

Relaxed SDP problem

SDP1 SDP2

SDP3 SDP4

Figure 3. Schematic representation of the B&B method for addressing MI-SDP problems.

Complete details about the implementation of the SDP-based branch and bound algorithm can be
found in [25].

5. Test Systems

Two radial DC distribution test feeders composed of 21 and 69 nodes were used to validate our
proposed MI-SDP. They have been employed in specialized literature to validate methodologies regarding
the optimal location and sizing of distributed generation. The complete information of each one of these
test feeders is presented below.

5.1. 21-Node Test Feeder

This DC distribution network is composed of 21 nodes and 20 branches (i.e., radial configuration),
where the slack source is connected at node 1, and it supports a constant voltage output of 1.0 pu [17].
The configuration of this test feeder, and the information regarding its loads and branches, are reported in
Figure 4 and Table 1, respectively.

1
2

3

45

6

7

8

9

10
11

12

13

14

15
16

17

18

19

20

21

ac
dc slack (v)

Figure 4. Schematic connection among nodes for the 21-node test feeder.
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Table 1. Parametric information of the 21-node test system.

Node i Node j Rij [pu] Pj [pu] From To Rij [pu] Pj [pu]

1 2 0.0053 0.70 11 12 0.0079 0.68
1 3 0.0054 0.00 11 13 0.0078 0.10
3 4 0.0054 0.36 10 14 0.0083 0.00
4 5 0.0063 0.04 14 15 0.0065 0.22
4 6 0.0051 0.36 15 16 0.0064 0.23
3 7 0.0037 0.00 16 17 0.0074 0.43
7 8 0.0079 0.32 16 18 0.0081 0.34
7 9 0.0072 0.80 14 19 0.0078 0.09
3 10 0.0053 0.00 19 20 0.0084 0.21

10 11 0.0038 0.45 19 21 0.0082 0.21

It is worth mentioning that all of the values in Table 1 were calculated considering 1 kV and 100 kW
as the voltage and power bases, respectively.

5.2. 69-Node Test Feeder

The 69-node test feeder is a classical AC distribution network employed for power loss minimization
studies in the literature [7]. However, in this study, we used its DC adaptation, as reported in [17]. Figure
5 presents the 69-node test feeder configuration, and Table 2 reports the branch parameters and load
information. Furthermore, for simulation purposes, 12.66 kV and 100 kVA were used as the voltage and
power bases for this test system.

slack

- +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51
52

28 29 30 31 32 33 34 35

Figure 5. Schematic connection among nodes for the 69-node test feeder.
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Table 2. Parametric information of the 69-node test system.

Node i Node j Rij [Ω] Pj [kW] From To Rij [Ω] Pj [kW]

1 2 0.0005 0 3 36 0.0044 26
2 3 0.0005 0 36 37 0.0640 26
3 4 0.0015 0 37 38 0.1053 0
4 5 0.0215 0 38 39 0.0304 24
5 6 0.3660 2.6 39 40 0.0018 24
6 7 0.3810 40.4 40 41 0.7283 102
7 8 0.0922 75 41 42 0.3100 0
8 9 0.0493 30 42 43 0.0410 6
9 10 0.8190 28 43 44 0.0092 0

10 11 0.1872 145 44 45 0.1089 39.22
11 12 0.7114 145 45 46 0.0009 39.22
12 13 1.0300 8 4 47 0.0034 0
13 14 1.0440 8 47 48 0.0851 79
14 15 1.0580 0 48 49 0.2898 384.7
15 16 0.1966 45 49 50 0.0822 384.7
16 17 0.3744 60 8 51 0.0928 40.5
17 18 0.0047 60 51 52 0.3319 3.6
18 19 0.3276 0 9 53 0.1740 4.35
19 20 0.2106 1 53 54 0.2030 26.4
20 21 0.3416 114 54 55 0.2842 24
21 22 0.0140 5 55 56 0.2813 0
22 23 0.1591 0 56 57 1.5900 0
23 24 0.3463 28 57 58 0.7837 0
24 25 0.7488 0 58 59 0.3042 100
25 26 0.3089 14 59 60 0.3861 0
26 27 0.1732 14 60 61 0.5075 1244
3 28 0.0044 26 61 62 0.0974 32

28 29 0.0640 26 62 63 0.1450 0
29 30 0.3978 0 63 64 0.7105 227
30 31 0.0702 0 64 65 1.0410 59
31 32 0.3510 0 65 66 0.2012 18
32 33 0.8390 10 66 67 0.0047 18
33 34 1.7080 14 67 68 0.7394 28
34 35 1.4740 4 68 69 0.0047 28

6. Numerical Validation

The proposed MI-SDP model was implemented in the MATLAB software version 2019b using
the CVX and the branch and bound method on a desktop computer with an INTEL(R) Core(TM)
i7-7700 2.8-GHz processor and 16.0 GB of RAM running on a 64-bit version of Microsoft Windows
10 Home. To validate the effectiveness and robustness of our mixed-integer convex reformulation of
the optimal location and dimensioning of DGs in DC networks, we compared this with heuristic and
metaheuristic approaches reported in recent literature. The comparative approaches are combinations
of the discrete genetic algorithm (GA) with continuous methods, such as GA black hole optimizer
(GA-BHO), GA continuous genetic algorithm (GA-CGA), and GA particle swarm optimization (GA-PSO)
[18]. In addition, we compared our results with hyperplanes combined with semidefinite and sequential
quadratic programming methods, i.e., HSDP and HSQP, respectively [17].

For both test feeders, we followed the simulating conditions reported in [18], where

X The maximum power penetration in the DC test feeder was 60% of the total power consumption in
the 21-node test feeder and 40% in the case of the 69-node test system.
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X There were three distributed generators available for installation on the DC test feeder, where in the
case of the 21-node test system their maximum individual allowed size was 1.5 pu, and in the case of
the 69-node test feeder, this bound was 12 pu.

6.1. 21-Node Test Feeder

For this test system, the initial power losses without distributed generation were about 0.2760 pu.
When the MI-SDP method was applied to the 21-node test feeder, we found that the distributed generators
must be located at nodes 9, 12, and 16 with power injections of 0.8350, 1.0258, and 1.4632 pu, respectively;
these produce final power losses of about 0.0306 pu. This implies a total reduction of 88.91% in the
power losses with respect to the best case. For comparative purposes, we used the general algebraic
modeling system (GAMS) with different MINLP solvers to verify the efficiency of our MI-SDP approach.
The numerical results are summarized in Table 3.

Table 3. Comparison of the MI-SDP with the MINLP model solved in GAMS for the 21-node test feeder.

Solver Nodes Sizes [pu] ploss [pu]

BARON {9, 12, 16} {0.8441, 1.0254, 1.4544} 0.0306
BONMINH {9, 12, 16} {0.8441, 1.0254, 1.4544} 0.0306
DICOPT {9, 12, 16} {0.8441, 1.0254, 1.4544} 0.0306
KNITRO {9, 12, 17} {0.9297, 1.1491, 1.2452} 0.0356
LINDO {9, 12, 17} {0.9297, 1.1491, 1.2452} 0.0356
SBB {9, 12, 16} {0.8441, 1.0254, 1.4544} 0.0306

From Table 3, we can observe that due to the strong non-convexities of the power flow problem being
added to the binary nature of the problem of installations of DGs in DC current, all the solvers available
in GAMS have the ability to find the global optimal solution of the studied problem. In addition, we
can observe that in the case of the local solutions, i.e., KNITRO and LINDO solvers, they got stuck in a
sub-optimal solution wherein node 17 was selected in the final report instead of node 16. This is important,
as in the case of large-scale distribution networks, the local solutions can be far from optimal. On the other
hand, to verify this in the 21-node test feeder, we exhaustively evaluated all the possible solution points,
i.e., 1140 options in the MATLAB software using nested-loops, where we found that the solution reported
by the proposed MI-SDP is indeed the global optimum.

Regarding the comparison with metaheuristics in Figure 6, the best results reported for the 21-node
test feeder in the literature are presented in comparison with our proposed MI-SDP model.
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Figure 6. Final power losses when heuristics and metaheuristics are compared to the MI-SDP approach.
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Note that results in Figure 6 show that some metaheuristics can find the global optimal solution of
the problem. However, as mentioned in [18], at each simulation, the optimal solution has little changes,
which implies that these present standard deviations different from zero. At the same time, the standard
deviations of the HSDP, the HSQP, and the proposed approach are zero. This is because they work with
convex solution spaces regarding the optimal power flow, which does not happen in the metaheuristic
cases.

To present in a graphical manner the proposed MI-SDP approach that has the ability to find the
global optimal solution in the 21-node test feeder, we plotted the information obtained after the exhaustive
evaluation of the solution space, i.e., 1140 possible locations for the constant power sources, in Figure 7.
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0.0918
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p l
os

s
[p

u]

Figure 7. Solutions reached by the exhaustive evaluation in the 21-node test feeder.

Note that information plotted in Figure 7 confirms that the global optimal solution in the case of
the 21-node test feeder is about 0.0306 pu of power loss, which is evidenced as no one solution is lower
than the dashed line (see upper and lower peaks in the shaded figure). It is important to mention that the
exhaustive evaluation took about 1150 s, whereas the GAMS and the proposed MI-SDP approach did not
take more than 10 s, which confirms the efficiency of the optimization models in contrast with heuristic
approaches.

6.2. 69-Node Test Feeder

In the 69-node test feeder case, the base case without distributed generation produces total power
losses of about 1.5385 pu. When the MI-SDP model is implemented, the optimal nodes to locate GDs
are 21, 61, and 64 with power generations of 1.4140, 10.2627, and 3.8803 pu, respectively. These power
injections produce final power losses of 0.1573 pu, which implies that these generators allow the reduction
of total grid power losses by about 89.78%, which corresponds with the results reported in [17,18] using
the HSDP and HSQP approaches, respectively. It is worth mentioning that the solution determined by
the proposed MI-SDP approach is indeed the optimum global, as it was verified by implementing an
exhaustive approach that evaluates all the possibles node combinations for locating DGs, i.e., 50,116
options for this test feeder.

Table 4 reports the numerical results obtained by different solvers in the GAMS package.
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Table 4. Comparison of the MI-SDP with the MINLP model solved in GAMS for the 69-node test feeder.

Solver Nodes Sizes [pu] ploss [pu]

DICOPT {24, 61, 66} {1.4969, 11.6024, 2.4577} 0.1577
CONOPT {21, 61, 66} {1.4969, 11.6024, 2.4577} 0.1577
MINOS {24, 61, 64} {1.4552, 10.2855, 3.8163} 0.1574
SNOPT {26, 61, 68} {1.3981, 12.0000, 2.1589} 0.1599
SBB {22, 61, 64} {1.4961, 10.2446, 3.8163} 0.1573
BONMINH {21, 61, 64} {1.4973, 10.2434, 3.8163} 0.1573

From Table 4, we can observe that only two solvers in the GAMS determined the global optimum
regarding final power losses (see BONMINH and SBB solvers). However, the BONMINH solver identified
the same nodes of the proposed MI-SDP approach, with some variations in the total power injections,
while the SBB changed node 21 for the node 22, with similar results regarding power generation when
compared with the BONMINH and the MI-SDP approaches. These variations may be attributed to the
higher connectivity between nodes 21 and 22, as observed by the small resistance value of 0.014 pu
(hence, higher connection) between nodes as shown in Table 4. This means that there are multiples power
injections that can achieve the same objective function value, as shown in [17].

Remark 5. Despite some GAMS’s solvers reaching the global optimum of the problem, this cannot always be
guaranteed. Furthermore, as the solution space grows, these solvers may fall to local optima, whereas the proposed
technique will continue to reach the global optimum.

Regarding the comparison with metaheuristics, Figure 8 reports the final power losses between the
MI-SDP and the comparative approaches.
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Figure 8. Final power losses when heuristics and metaheuristics are compared to the MI-SDP approach in
the 69-node test feeder.

Based on the results reported in Figure 8, we can confirm that when the solution space increases for the
metaheuristic approaches, it is difficult to achieve the global optimum, as it gets stuck in a local optimum. This
occurs due to not having a sense-solve optimal power flow problem with continuous metaheuristics, as in the
literature, this problem can be solved precisely with convex formulations.

Remark 6. Note that HSDP and HSQP methods also achieve the global optimum of the problem. However, when
presenting these results, it cannot be ensured their solutions are the global optimum, whereas the proposed method
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can ensure it. This indicates that the HSDP and HSQP methods may take out optimal nodes depending on the size of
the test systems.

To demonstrate that the proposed MI-SDP approach can find the global optimum in the 69-node test
feeder, at the same time, the GAMS solvers were stuck in locally optimal solutions; we present a simulation
case where four distributed generators were available for installation considering 40% of thte distributed
generation penetration, as reported in Table 5.

Table 5. Comparison of the MI-SDP with the MINLP model solved in GAMS for the 69-node test feeder
with four distributed generators.

Solver Nodes Sizes [pu] ploss [pu] Proc. Times [s]

DICOPT {21, 61, 64, 69} {1.4985, 10.2452, 2.7200, 1.0931} 0.1557 12.4270
CONOPT {21, 61, 64, 69} {1.4985, 10.2452, 2.7200, 1.0931} 0.1557 3.0360
MINOS {21, 27, 61, 66} {1.1471, 0.3497, 11.6025, 2.4577} 0.1575 4.8520
SBB {21, 22, 61, 64} {0.8870, 0.6103, 10.2434, 3.8163} 0.1573 5.4250
BONMINH {21, 61, 64, 65} {1.4985, 10.2452, 2.3027, 1.5105} 0.1557 4.5550

MI-SDP {21, 61, 64, 67} {1.4986, 10.2452, 2.4010, 1.4122} 0.1556 14.4688

From Table 5, we can observe that all tested solvers in GAMS were stuck in locally optimal solutions,
while the proposed MI-SDP approach dealt with the global optimal one by selecting nodes 21, 61, 64,
and 67. It is worth mentioning that none of the GAMS solvers identified node 67 in the optimal solution,
as GAMS solvers identified node 69 as the best solution, reported with an objective function value of
0.1557 pu (see CONOPT and DICOPT). These solutions are suboptimal, as the global optimum found by
the MI-SDP approach was 0.1556 pu.

Regarding the processing times required by the different tested approaches, it was observed that all
of them took less than 15 s, which can be considered very efficient for problems related to the optimal
location and sizing of distributed generators (planning problems). These times are irrelevant, as the main
interest is to guarantee the global optimum. In addition, the procedure of installing these power sources
can take weeks or months. This means that the times in the order of seconds in the planning stage are
negligible for any practical purpose.

6.3. Isolated Operation Scenario

One of the most important applications of distributed generation is the possibility of providing
electrical service to remote (i.e., rural areas), where conventional power systems are non-existent [30].
To demonstrate the ability of the proposed MI-SDP model to be applicable to isolated DC
distribution networks, we considered the following: (i) the slack source was removed from the 69-node
test feeder, (ii) the operative voltage bounds were assigned between 0.90 and 1.00 pu, (iii) three distributed
generators could be located in the DC network, and iv) the capability of each distributed generator was
20 pu.

Once that simulation scenario was evaluated, the proposed MI-SDP approach found that the best
locations of these distributed generators were nodes 19, 50, and 61, with power injections of about 5.1695,
15.0132, and 18.7636 pu, respectively. The final power loss in this isolated operation scenario was about
0.0538 pu, while the low-voltage profile was about 0.9952 pu at node 11. These results confirm the
possibility of extending the proposed MI-SDP model to rural applications, especially for providing service
to non-interconnected zones.
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7. Conclusions and Future Works

This paper presents a new mathematical formulation for the problem of optimal location and sizing
of distributed generators in DC networks with interconnected or isolated operative conditions. This
new formulation transforms the classical MINLP model into the MI-SDP to find the global optimum by
using the classical branch and bound method, as each node explored is convex, based on the semidefinite
programming reformulation of the power flow model. Numerical results demonstrated that the MI-SDP
approach reached the best solution reported in the literature for both test feeders (global optimum), which
was not possible with some MINLP solvers available in GAMS and the classical metaheuristic approaches.
Based on the results reported in this research, it was possible to affirm that the proposed MI-SDP approach
solved the problem of the optimal location and sizing of DGs in DC networks, as this approach guarantees
the determination of the global optimum in a formal mathematical manner.

As for future works, it would be beneficial to work on the following topics: (i) the extension of the
MI-SDP approaches to the problem of the optimal location of DGs and capacitor banks in AC distribution
networks; (ii) the reformulation of the problem of the optimal operation of battery energy storage systems
in DC networks using convex models instead of combinatorial approaches, and (iii) exploration of the
convexification of the problem of the optimal reconfiguration of DC networks.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronyms
AC Alternating Current
B&B Branch and Bound
DC Direct Current
DG Distributed Generator
NLP Nonlinear Programming
MINLP Mixed-Integer NLP
CVX Matlab Software for Disciplined Convex Programming
GAMS General Algebraic Modeling System
OPF Optimal Power Flow
SDP Semidefinite Programming

Sets and subscripts
L Set of lines
N Set of nodes
d Demand
gd Distributed source
s Slack node
i or j Node
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Parameters
G Conductance matrix
Gij Component of the conductance matrix that relates nodes i and j
gkm Conductance between nodes k and m
pd Power demanded by loads
ps Power generated by generators
pgd Power generated by distributed source

Variables
vi Voltage profile at node i
V Voltage profile vector
X Matrix of cross-product of voltage i with voltage j
Wij cross-product of voltage i with voltage j

Control variables
ps Power generated by conventional generator
pgd Power generated by renewable energies
pkm Power flow between nodes k and m
yi Binary variable for location of DG
Ps Power generated vector by conventional generator
Pgd Power generated vector by renewable energies

Limits
Nmax

gd Maximum number of DG

vmin, vmax Minimum and maximum voltage profile
Vmin, Vmax Minimum and maximum voltage profile squared
ps,min, ps,max Minimum and maximum by conventional generator
pgd,min, pgd,max Minimum and maximum by generated source
pmin

km , pmax
km Minimum and maximum power flow between nodes k and m
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