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Abstract. This paper presents the application of the backward/forward sweep iterative
method for solving the power flow problem in direct current networks with radial structure,
considering resistive and constant power loads. The validation of the effectiveness and robustness
of the proposed method is made by using six comparative methods proposed in literature for
power flow analysis in radial direct current networks: Gauss-Jacobi, Gauss-Seidel, Newton-
Raphson, linear approximation based on Taylor series, successive approximations, and the
triangular matrix formulation. Those methods are evaluated using four test systems formed
by 10, 21, 33 and 69 nodes. Simulation results, obtained in MATLAB, show that the proposed
approach is efficient for radial direct current grids in terms of solution quality and processing
time, increasing the efficiency for larger number of nodes increases.

1. Introduction
In the last years the microgrids (MGs) have been used to integrate distributed generators
based on renewable energy sources and energy storage systems, which are operated by energy
management strategies in order to improve the technical aspects of the grid and to reduce
the environmental pollution [1, 2]. Direct current (DC) MGs are the most used solution due
to its advantages in terms of efficiency, lower mathematical complexity and implementation
simplicity [3]. An essential tool for analysing DC networks is the formulation and solution of
the power flow (PF) Equations, which enable to define the operative characteristics of the grid
such as voltages profiles and power losses [4].

To solve the PF problem in DC grids, different solutions have been proposed: for example,
the work presented in [5] used the Gauss-Jacobian (GJ) and Gauss-Seidel (GS) methods, where
both methods provide similar solution quality, but the Gauss-Seidel method was the fastest one.
Similarly, in [4] was used the Newton-Raphson method (NR) for solving the PF problem in DC
networks, it using the Kantarovich theorem to demonstrate convergence. In addition, in [3] was
presented a linear approximation via Taylor series expansion as solution method, it requiring
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shorter processing times in comparison with the GJ, GS and NR methods. In [6] was proposed
two iterative approaches for solving the PF problem in DC grids: an iterative approach of the
linear approximation (TBM) and an iterative process based on a successive approximation (SA);
both methods provide accurate solutions and acceptable processing times in comparison with the
other solution methods. In addition, in [7] was proposed a triangular matrix (TM) formulation
for power flow analysis in DC resistive grid with constant power loads.

In AC grids, multiple authors have proposed solution methods focusing in electrical systems
with radial structure, achieving to reduce the complexity and processing times required. These
type of solution methods are known as sweep iterative power flow methods [8,9], which are based
on a simple mathematical formulation and iterative processes. In these methods, the most used
is the Back Forward sweep iterative (BF) [10], due to allow obtaining excellent results with
processing times reduced [11]. This method employs an ordering stage, the Kirchhoff laws and a
simple iterative process for solving the power flow problem; presenting as main advantage that
not required matrix inversions. Is important highlight that to the best knowledge of the authors,
the BF has not been applied for solving the power flow problem in DC microgrids.

This paper proposes the application of the back/forward sweep iterative method (BF) to solve
the power flow problem in DC MGs with radial structure, it considering resistive and constant
power loads. This method is easy to implement by calculating currents in the backward stage
and recovering voltages in the forward stage using an iterative procedure. To demonstrate the
effectiveness and robustness of the backward/forward method, four test systems of 10, 21, 33
and 69 nodes are used; it providing comparative simulations with other six approaches proposed
in specialized literature as: GJ, GS, NR, TBM, SA and TM. The selection of these methods is
based on the excellent results reported by the authors in terms of solution and processing time
required. The simulations results obtained in this work, show the effectiveness and robustness
of the solution method proposed.

2. Back/forward sweep method
The backward/forward power flow method is a well-known strategy for solving power flow
problems in AC grids with radial structure. Its mathematical foundation is supported by graph
theory applied to grids with tree structure [10]. To apply the BF method in DC networks,
it is necessary to make the following assumption: the DC electrical network must have radial
structure, i.e., the number of lines l and nodes n fulfills that l = n− 1; in addition, the grid has
only one voltage controlled node that behaves as an ideal power source. A general formulation
of the BF method is based on the relation between nodal and branch currents (voltages). Here,
is presents an brief description of the BF method for DC grids.

Assuming that H ∈ Rl×l is a reduced node-to-branch incidence matrix (the row related with
the slack node is eliminated), which produces an square invertible matrix that relates nodal
injected currents I with branch currents J . In addition, considering that Z ∈ Rl×l is a square
matrix (also invertible) that contains in its diagonal all the resistive effects of each line, then
the Equation (1) and the Equation (2) are reached, where U represents the vector of branch
voltages.

J = H−1I, (1)

U = ZJ, (2)

To perform the PF analysis in DC grids, it is proposed an iterative procedure based
on the previous relations [5]: assuming that the voltages in all the nodes are defined as
V k = [vk1 , ..., v

k
f−1, v

k
f+1, ..., v

k
n]T , where k is the iterative counter. Then, condition k = 0

corresponds to the initial solution V 0 (typically plane voltages in per-unit representation). The
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slack node f was removed from this vector since its voltage vf is known. Finally, starting from
the initial solution (i.e. V 0 = 1→ vector filled by ones with dimensions l× 1), the Algorithm 1
enables to implement the BF approach for PF solutions in DC grids.

Algorithm 1 presents a compact formulation for power flow analysis that was initially
proposed in [12] for AC grids; nevertheless, in this paper it is implement for DC grids. The
algorithm starts by reading the parameters that define the test system and making the nodal
ordering. Then, are assigned the convergence error (ε) and the maximum number of iterations
kmax. Subsequently, the iterative process is carry out, calculating the nodal currents in busses of
the electrical system associated to the resistive and constants power load. Then, are calculated
the branch currents and voltages, and the nodal voltages by using the Equations (1) and (2),
respectively. Finally, if the stopping criterion is reached (max

(∣∣Vk+1 −Vk
∣∣) ≤ ε), the power

losses are calculated and the iterative process stops; otherwise a new iteration of the algorithm
is executed.The calculation of power losses was made with the aim to compare the quality of
the solution obtained with comparison methods used.

Algorithm 1. Backward/forward power flow method.

Data: Define the test system and make the nodal ordering
Data: Define the convergence error (ε) and the maximum number of iterations kmax

for k = 0 : kmax do

Calculate the nodal currents as: Ik =

[
p1
vk1
, ...,

pf−1

vkf−1

,
pf+1

vkf+1

, ..., , pn
vkn

]T
;

Determine the branch currents by applying (1) as: Jk = H−1Ik →backward sweep;

Calculate all the branch voltages by using (2) as: Uk = ZJk;

Determine the nodal voltages as: V k+1 = 1vf +H−TUk →forward sweep;

if max
(∣∣Vk+1 −Vk

∣∣) ≤ ε then
Solution reached;

Calculate power losses as: ploss =
(
Jk+1

)T ZJk+1;
break;

end

end

Result: Return Vk+1 and ploss.

3. Numerical validation
To verify the effectiveness and robustness of the proposed method, four test system were used:
10, 21, 33 and 69 nodes. The test systems with 10 and 21 nodes were taken from [3,5,13]. Test
systems with 33 and 69 nodes are modifies versions of test systems used in AC networks [14,15];
the complete information for both DC equivalent systems are reported in [16]. In addition,
to validate the performance of the BF in terms of solution quality and processing time, six
comparison methods reported in literature are used: Gauss-Jacobi (GJ) [17], Gauss-Seidel [3],
Newton-Raphson (NR) [4], triangular method (TM) [7], Taylor-based method (TBM) and
successive approximations (SA) [6].

The simulations were carried out on a Dell Precision T7600 Workstation with 32 GB of RAM
memory and with an Intel(R) Xeon(R) CPU ES-2670 at 2.50 GHz, using the software MATLAB.
To ensure a fair comparison between all the solution methods, it is considered a convergence
error equal to 1 × 10−10 and 104 consecutive executions for each one. Finally, the NR method
was selected as base case for analyzing the power losses error and processing times; this method
was selected since in [4] it was demonstrated the method converge to the power flow solution
in DC grids [4]. In this paper it is selected the power losses error as indicator of the quality of
the PF solution, which depends on the square form of the voltage profiles. Table 1 presents the
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numerical results for the proposed and the comparative methods; from left to right: the method,
the total power losses and the averaged processing time.

Table 1. Results obtained for the different test systems.
Method ploss (p.u) Time (s) Method ploss (p.u) Time (s)

10 nodes test system 21 nodes test system
NR 0.064475001 4.98× 10−4 NR 0.026527688 8.31× 10−4

GJ 0.064474982 9.63× 10−3 GJ 0.026527688 1.70× 10−2

GS 0.064474986 5.02× 0−3 GS 0.026527688 8.18× 10−3

TBM 0.064475001 4.00× 10−4 TBM 0.026527688 4.91× 10−4

SA 0.064475001 1.47× 10−4 SA 0.026527688 1.81× 10−4

TM 0.064475001 7.27× 10−5 TM 0.026527688 7.85× 10−5

BF 0.064475001 8.06× 10−5 BF 0.026527688 9.61× 10−5

33 nodes test system 69 nodes test system
NR 1.352509249 1.48× 10−3 NR 1.538475559 3.23× 10−3

GJ 1.352508282 1.47× 10−1 GJ 1.538454359 4.83
GS 1.352508749 8.13× 10−2 GS 1.538463557 3.99
TBM 1.352509249 9.90× 10−4 TBM 1.538475559 3.94× 10−3

SA 1.352509247 2.29× 10−4 SA 1.538475557 6.72× 10−4

TM 1.352509249 7.35× 10−4 TM 1.538475559 1.75× 10−3

BF 1.352509249 1.45× 10−4 BF 1.538475559 2.50× 10−4

Calculating the power losses error for the different methods, with respect to the NR method,
the maximum and minimum errors were obtained by GJ

(
2.12× 10−5

)
and BF

(
1.77× 10−12

)
,

respectively. In addition, the average power losses errors obtained with each method are:
5.59× 10−6 (GJ), 3.28× 10−6 (GS), 2.47× 10−10 (TBM), 1.52× 10−8 (AS), 1.39× 10−9 (TM)
and 1.32× 10−9 (BF)

Figure 1 presents on the horizontal axis the test systems used for the validation of the
proposed method, and on the vertical axis the processing time required by each method with
respect to the NR method, i.e. the time required by the NR method corresponds to 100 %. For
the 10 and 21 nodes test systems, the BF requires only 1.58% and 2.58% more time than the
best solution (TM), but it is faster than the other methods (NR, GJ, GS, TBM, and SA). In the
case of 33 and 69 nodes test systems, the BF provides the best solution in terms of processing
time, with an average reduction of 91.22% (NR), 95.60% (GJ), 95.59 % (GS), 90.72 % (TBM),
51.66 % (SA) and 83.14 % (TM). In general terms, the BF provides the best results with an
average reduction in processing time of 79.38 % when it is compared with the other methods:
86.67% (NR), 94.26% (GJ), 94.18% (GS), 86.21% (TBM), 48.30 %(SA) and 64.66 % (TM).

10 nodes 21 nodes 33 nodes 69 nodes
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Figure 1. Processing time performance for all solution methods with respect to the base case
(NR).
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4. Conclusions
This paper proposed the application of the traditional backward/forward sweep iterative method
to the power flow problem in DC networks with radial structure. By using different comparison
methods and four test systems, the effectiveness and robustness of the proposed solution was
verified. The simulation results demonstrated that, due to the power losses error of the methods
can be neglected, any method considered in this work can be used for solving the power flow
problem in DC grids. However, the processing times required by the methods show that, as the
size of the DC network increases, the BF method provides the best performance. Therefore, the
BF method corresponds to the best option for solving power flow problem in DC microgrids with
radial structure, specially for large systems. As future work, the BF method could be integrated
with a planing and energy management system for DC networks with radial structure, which will
enable to reduce the processing times, hence improving the exploration space and the quality of
the solutions.
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[13] A Garcés, J Herrera, W Gil-González, O Montoya 2018 Small-signal stability in low-voltage DC-grids IEEE

ANDESCON (Santiago de Cali: IEEE)
[14] M H Moradi and M Abendini 2012 International Journal of Electrical Power & Energy Systems 34(1) 66
[15] Luis Fernando Grisales-Noreña, Daniel Gonzalez Montoya and Carlos Andres Ramos-Paja 2018 Energies

11(4) 1
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