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Abstract. The power flow in electrical system permits analyzing and studying the steady-
state behavior of any grid. Additionally, the power flow helps with the proper planning and
management of the system. Therefore, it is increasingly necessary to propose power flows with
fast convergence and high efficiency in their results. For this reason, this paper presents an
alternative power flow approach for direct current networks with constant power loads based
on a truncated Taylor-based approximation. This approach is based on a first-order linear
approximation reformulated as a recursive, iterative method. It works with a slope variable
concept based on derivatives, which allow few iterations and low processing times. Numerical
simulations permit identifying the best power flow approaches reported in the specialized
literature for radial and mesh dc grids, including the proposed approach. All the simulations
were conducted in MATLAB 2015a.

1. Introduction
Power flow analysis is an essential tool for electrical systems [1, 2], since it allows determining
the steady-state variables related with is operation given a particular load condition [3,4]. Due
to the nonlinear non-convexity of the power flow equations caused by the hyperbolic relation
between voltage and power consumption [5–8], are required numerical methods for addressing
its solution.

In specialized literature has been proposed multiple power flow approaches for power flow
analysis to know: a Gauss-Seidel approach was proposed in [9], where its convergence was
proved through the fixed point theorem in the Banach’s space; in [5] was proposed and improved
version of the Gauss-Seidel approach named successive approximation method that works with
the admittance nodal matrix for being it speeder in terms of required iterations and processing
times. Author of [2] presents the conventional Newton-Raphson approach applied on dc grids by
demonstrating its convergence based on Kantarovich’s theorem. In [5] was also offered a Taylor-
based iterative method as an improvement of the linear version previously reported in [1]. In [10]
is presented a triangular based approach for dc grids, its main problem is that it only works
with the radial structure and only one slack node.

In the case of linear approximations, in [1] is presented a Taylor-based approach only solved for
a first iteration; this approach was improved by the straight equation reported in [7]. Recently,
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a modification of the logarithmic transformation of voltage magnitudes for ac grids developed
in [11] was adapted for dc networks with the best numerical results when compared with previous
linear approaches [12].

Based on the aforementioned state-of-the-art, in this paper, we propose an iterative procedure
based on Taylor series expansion, which is truncated at the first linear term and corrected by
modifying the linearizing point. The proposed approach is an extension of the convex optimal
power flow approach reported in [12] for selecting the best candidate nodes for optimal location
of distributed generators. The main contribution of our research lies in the possibility of having
an alternative power flow approach faster than classical Gauss-Seidel and Newton-Raphson
methods, even comparable with Taylor-based and Successive approximation methods recently
reported in [5]

The remainder of this paper is ordered as follows: Section 2 presents the conventional power
flow formulation for dc networks by highlighting its nonlinearities and non-convexities. Section
3 presents general concepts of Taylor series expansion for multivariable functions as well as
the derivation of the proposed truncated Taylor-based method. Section 4 shows the main
characteristics of the test systems employed in the numerical validation studied in section 5.
Finally, section 6 presents the main conclusions derived from this work.

2. Mathematical model
The problem of power flow in dc networks is a common nonlinear problem of feasibility that
models the relation between voltage profiles and loads in electrical systems. Its formulation is
reached by using the classical nodal voltage method on conjunction with the first Tellegen’s
theorem, which determines the power balance in all nodes of the network as shown in Equation
(1).

pgi − p
d
i = vi

n∑
j=1

Gijvj , ∀i ∈ N , (1)

where pgi is the power generation at node i and pdi is its power demand, vi and vj are the
voltage values at nodes i and j, respectively. Gij is the component of the conductance matrix
that relates nodes i and j. Note that n is the cardinality of the set N that contains all the
nodes.

Note that a compact formulation of Equation (1) can be obtained if we rearrange all the slack
nodes and the demand nodes, as shown in Equation (2) and Equation (3).

ps = diag(vs) [Gssvs +Gsdvd] , (2)

−pd = diag(vd) [Gdsvs +Gddvd] , (3)

where ps ∈ Rs×1 is the vector that contains all the power generated in the slack nodes;
pd ∈ R(n−g)×1 is the vector that contains all the constant power consumptions; vs ∈ Rg×1

and vd ∈ R(n−g)×1 are the vector that contain all the voltages in slack and demand nodes,
respectively. Gss, Gsd, Gds and Gdd are matrices with appropriate dimensions that define the
conductance relations between slack nodes and demand ones. diag(vs) and diag(vd) are diagonal
matrices composed by vectors vs and vd in their diagonals. Observe that g is the number of
slack generators.

Note that Equation (2) is linear since voltage in the slack nodes vs are perfectly known, which
implies that the variables are vd and ps are related linearly, being later a free set of variables
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that absorb the variations caused by vd. Then, the power flow problem concentrates on the
solution of Equation (3), next section is shown.

3. Truncated Taylor-based approximation
This section presents a Taylor-based series expansion truncated to the first-order approximation.

3.1. Linear approximation
Suppose that there exist a bi-dimensional function g (vi, vj), such that is desired to be linearized
around (v0i , v

0
j ), then, its result is presented in Equation (4).

g (vi, vj) = g
(
v0i , v

0
j

)
+ gvi

(
v0i , v

0
j

) (
vi − v0i

)
+ gvj

(
v0i , v

0
j

) (
vj − v0j

)
+O

(
vi, vj , v

0
i , v

0
j

)
, (4)

where gvi() and gvj () are the derivative function of the functions of g() respect to vi and vj ,
respectively, and O() represents the high-order terms of the approximation. Here, we neglect
those terms due to in power flow analysis they tend to zero speedily as demonstrating in [1].

Observing Equation (1), g () is Equation (5).

g (vi, vj) = vivj , (5)

then, by applying Equation (4) on Equation (5), the following result yields, Equation (6).

g (vi, vj) ≈ v0i vj + viv
0
j − v0i v0j , (6)

Finally, if we extend Equation (6) to Equation (3), for a compact linear representation, then,
we obtain Equation (7).

−pd = diag(vd)Gdsvs + diag(v0d)Gddvd + diag(vd)Gddv
0
d − diag(v0d)Gddv

0
d, (7)

Observe that if Equation (7) is solved for vd, then, a linear approximation for power flow
analysis be reached.

3.2. Iterative procedure
To achieve a recursive solution for power flow analysis based on a truncated Taylor-based method,
let us used the properties of diagonal matrices and vectors as follows, being diag (x) a matrix
and y a vector with appropriate dimensions, as shown in Equation (8).

diag (x) y = diag (y)x, (8)

If we apply Equation (8) on Equation (7), and solving for vd, we reach rearrange the result
for vd, then, the following results is achieved, Equation (9).

vd =
[
diag(Gdsvs +Gddv

0
d) + diag(v0d)Gdd

]−1 [
diag(v0d)Gddv

0
d − pd

]
. (9)

Note that Equation (9) is a linear approximation for power flow analysis being an alternative
of the linear approach reported in [1]. To get an iterative procedure for solving the power flow
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problem with exactness, just as Newton-Raphson or successive approximation methods [2,5], we
change the linearizing point v0d by using an iterative counter t as described in Equation (10).

vt+1
d =

[
diag(Gdsvs +Gddv

t
d) + diag(vtd)Gdd

]−1 [
diag(vtd)Gddv

t
d − pd

]
. (10)

Note that the iterative counter is increased from 0 to tmax, until results be achieved with a
minimum convergence error ε by doing max

(∣∣vt+1
d

∣∣− ∣∣vtd∣∣) ≤ ε. Note that ε is typically selected
in the specialized literature as 1× 10−10 [5].

Finally, the main contribution of this work is the iterative formula (see Equation (10)) that
helps solve power flow problems in dc grids with radial mesh grids with one, or multiple voltages
controlled nodes as an alternative approach for classical power flow approaches. Here, this
method is called truncated Taylor-based power flow (TTBPF) approach.

4. Test systems
Two test system are employed to validate the proposed power flow in this paper. The test
are system are multi-terminal high-voltage direct current (HVDC) and 69-node systems. The
schemes of the test systems and their parameters can be found in [12]. For multi-terminal
HVDC system, a per-unit representation of this test system is employed by considering 400 kV
and 1000 MVA as voltage and power bases, respectively. Additionally, we suppose that node 1
corresponds to the slack bus with a voltage of 1.02 p.u. While, for 69-node test feeder, we use
12.66 kV and 100 kW as voltage and power bases. In addition, the reactance component in all
branches and reactive power consumption in all nodes are neglected.

5. Computational validation
Here, we present the numerical validation of the proposed TTBPF method for mesh and radial
grids. The computational analysis was made in a personal computer with an AMD A10-8700P
Radeon R6, 10 Compute Cores 4C + 6G (1.8 GHz) and 8 GB of RAM, running a 64-bit Windows
10 Home Single Language operating system in conjunction with the programming environment
MATLAB 2015a.

For comparison purposes, only methods that work with radial or mesh networks by using
an iterative procedure. These methods are: Gauss-Seidel power flow (GSPF) [9], Successive
approximation power flow (SAPF) and Taylor-based power flow (TBPF) methods [5], and
Newton-Raphson power flow (NRPF) approach [2]. The convergence error for all the methods
was defined as ε = 1×10−10. In addition, to obtain the averaged solution times, all the methods
are evaluated 100000 consecutive times.

5.1. Multi-terminal high-voltage direct current
Table 1 reports the numerical performance of the comparison methods as well as the proposed
method for power flow analysis. From these results, we can observe that the GSPF method is
the slowest method in terms of convergence times, and also it takes the most significant number
of iterations. When voltage profiles are observed, we can conclude that the first nine decimals
are identical for all the power flow methodologies, which implies that in practical terms for the
HVDC systems the voltage error between different methodologies will be in the order of tens
of microvolts; which of course is negligible for any possible application in power systems. In
the case of power loss estimation, we can affirm that the maximum difference between all the
methods of some watts, which of course it is negligible, since power loss in the order of the tens
of megawatts.
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Table 1. Numerical performance of the power flow approaches on a mesh grid.

Method Power loss (p.u) Minimum voltage (p.u) Average time (ms) Iterations

GSPF [9] 0.254371646504838 0.968323258208860 0.664619691289139 47
SAPF [5] 0.254371647133838 0.968323258180689 0.319181127395381 8
TBPF [5] 0.254371647361616 0.968323258154582 0.314827622566145 4
NRPF [2] 0.254371647331213 0.968323258154582 0.828623248953276 4
TTBPF 0.254371647331215 0.968323258158700 0.339978176392202 4

Note that, even if the proposed approach is not faster, it can be comparable in terms of
the number of iterations with any Taylor descendant approach, i.e., Taylor-based and Newton-
Raphson power flow methods, since, they work with a variable slope for approximating voltage
profiles, which reduces the required iterations to converge. In terms of processing times, from
results of Table 1, we can affirm that for the multi-terminal HVDC systems, the proposed
TTBPF approach is located at the third place, behind SAPF and TBPF, by moving the classical
NRPF approach to the fourth place.

5.2. 69-node test feeder
Table 2 reports the numerical performance of the comparison methods as well as the proposed
method for power flow analysis. Note that the number of iterations required by the GSPF
approach is exaggerated large in contrast with the remainder methods. When the minimum
voltage profiles are observed, then, we can conclude the first six decimals are equals, which
implies that in practical terms that all the methods differ for this test systems in the order of
milivolts, which is negligible for any practical application of radial distribution test systems.

Table 2. Numerical performance of the power flow approaches on a radial grid.

Method Power loss (p.u) Minimum voltage (p.u) Average time (ms) Iterations

GSPF [9] 1.538463553417373 0.927438796087894 3851.183057265740 46264
SAPF [5] 1.538475557921633 0.927438417525577 1.449723001478468 9
TBPF [5] 1.538475558217508 0.927438417489573 2.264500074664201 4
NRPF [2] 1.538475559117886 0.927438417488560 7.870733282341290 5
TTBPF 1.538475559083016 0.927438417489480 3.253316515837363 5

In the case of the processing times, the proposed approach remains located at the third
position behind the SAPF, and TBPF approaches. In the case of power loss estimation, the
maximum error between all the methods is about 2 W, which is minimum in comparison with
power losses in distribution systems that are in hundreds of kilowatts. On the other hand, when
the number of iterations is observed, the same tendency showed by the HVDC systems holds in
this radial test system, i.e., the minimum number of iterations is reached by all the Taylor-based
approaches.

6. Conclusions
This papers explored a new alternative methodology for power flow analysis in dc grids with
radial or mesh structures, by using a truncated Taylor-based approach. This methodology was
efficient in terms of voltage profile estimation, power loss calculation, number of iterations and
processing time requirements when compared with classical numerical methods such as Gauss-
Seidel, successive approximation, Taylor-based approach, and Newton-Raphson methods.
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Numerical results confirms that all the numerical methods that use variable slope calculation
(derivative information) converge in lower number of iterations; notwithstanding, they also
confirm that Gauss-Seidel is th worst method for power flow analysis in terms of processing
times, while the successive approximation is the most efficient method reported in the specialized
literature, followed by the Taylor- and truncated Taylor-based power flow approaches, in
descendant order.
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[10] Montoya O D, Grisales-Noreña L F, and Gil-González W 2019 Triangular matrix formulation for power flow

analysis in radial DC resistive grids with CPLs IEEE Trans. Circuits Syst. II Early Access 1
[11] Li Z, Yu J, and Wu Q H 2018 Approximate linear power flow using logarithmic transform of voltage

magnitudes with reactive power and transmission loss consideration IEEE Trans. Power Syst. 33(4) 4593
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