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A B S T R A C T

A mathematical optimization approach for the optimal operation focused on the economic dispatch for dc mi-
crogrid with high penetration of distributed generators and energy storage systems (ESS) via semidefinite
programming (SDP) is proposed in this paper. The SDP allows transforming the nonlinear and non-convex
characteristics of the economic dispatch problem into a convex approximation which is easy for implementation
in specialized software, i.e., CVX. The proposed mathematical approach contemplates the efficient operation of a
dc microgrid over a period of time with variable energy purchase prices, which makes it a practical methodology
to apply in real-time operating conditions. A nonlinear autoregressive exogenous (NARX) model is employed for
training an artificial neural network (ANN) for forecasting solar radiation and wind speed for renewable gen-
eration integration and dispatch considering periods of prediction of 0.5 h. Four scenarios are proposed to
analyze the inclusion of ESS in a dc microgrid for economic dispatch studies. Additionally, the results are
compared with GAMS commercial optimization package, which allows validating the accuracy and quality of the
proposed optimizing methodology.

1. Introduction

Electric power generation has employed mainly hydro-power and
thermo-power plants, and nowadays distributed generation resources,
such as wind and solar power [1], appears as the third most important
generation technology. However, despite having numerous hydro-
power plants (e.g., Colombia) to supply the energy demand, hydro-
electric generation is highly dependent on weather conditions, which
makes it necessary to use thermo-power plants and thus, contribute the
increase greenhouse emissions continuously. This has motivated, in
recent decades, to research for effective methods to reduce the different
environmental impacts and expand the use of distributed generators
and energy storage systems (ESS) for supporting power demand incre-
ments in a sustainable form [2–4].

Electrical power distribution systems with high penetration of dis-
tributed generators are called microgrids and can be classified into two
groups: ac microgrids and dc microgrids, as shown in Fig. 1 for the dc
case [5].

Notice that the integration of renewable energy resources or ESS in

microgrids, requires power electronic converters/inverters [6]. In the
case of microgrids operating under dc paradigm, main ac grids and
interfacing to the dc network via voltage source converters are depicted
in Fig. 1 [7]. In case of ESS and photovoltaic generators, it is usual to
employ dc-dc converters based on buck-boost technologies [8,9];
nevertheless, in case of wind generation an ac-dc inverter based on
voltage source technology is needed [10]. The inclusion of power
electronic converters on the grid modeling is particularly important
from the dynamical analysis point of view (control design) to manage
the energy interchange between different grid elements [7]. However,
in specialized literature for optimal dispatch problems, ideal elements
are assumed [11,12], which implies that, the distributed energy re-
sources can be considered as direct inputs/outputs (generators and
demands) connected to the dc system [13].

From the regulation point of view, governments worldwide have
proposed and implemented regulatory and economic policies to en-
courage network operators using renewable energy resources, whose
objective is to reduce the emission of greenhouse gases with the pur-
pose of minimizing the harmful consequences of climate change
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[14–16].
On the other hand, the use of these distributed generators can

generate technical and operational problems if they are integrated into
the grid in an uncoordinated form [3]. Some of the most important
problems that can be introduced to the electrical power distribution
systems are deterioration of the voltage profile and congestion in the
transmission lines [3]. Also, a reduction in the operational efficiency of
the wind and/or solar generators and ESS can be originated. This is due
to that the peaks of generation do not match to the peaks in the demand
curve, since it is essential to use devices that store energy in high
generation hours and low demand, to be supplied to the system in low
generation hours and high demand, and thus improve the efficiency in
the operation of the electrical power systems [17,18,11].

The introduction of distributed generators (solar power) can be-
come the users of the distribution, active entities since they can deliver
energy to the network. This participation can fundamentally transform,
the behavior and classic model of the electrical system [19–21].

It is important to empathize those classic methods for optimal op-
eration in power systems, adapting the economic dispatch in the dc
microgrids [22]. Also, their mathematical models are still non-linear
non-convex problems, just like the ac power systems [20]. The non-
convex problems have many local minimums, making them difficult to
implement with optimization techniques. One solution to this type of
inconvenience is to use convex optimization formulations which allows
finding the global optimum [23]. Convex optimization formulations
contain linear programming, quadratic optimization with linear con-
straints, and semidefinite optimization (SDP) [24].

Several investigations have proposed formulations for optimal op-
eration of power grids. In [25], an optimal power flow for microgrids is
proposed, based on genetic algorithm considering dc distribution net-
work. In [26], an on-line optimal power flow of a networked dc mi-
crogrid is employed based on Lagrange multiplier to quantify the range
of networked microgrids that can be accommodated by new control
schemes. In [27], a primal-dual interior point method is developed for
the generation and transmission loss problem minimization in dc power
system considering power reservation constraints in a subset of gen-
erating units. However, none of these works consider ESS. In [16] and
[28], ESS for minimizing energy losses in power grids have been de-
veloped with formulations of genetic algorithms and optimal pro-
gramming, respectively. Furthermore, when exploring the problem of
optimal operation in dc microgrid with ESS, it has not been presented a
work that proposes a solution by applying SDP. The works presented in
[29] and [30] have proposed formulations for optimal operation using
SDP, but none of these consider GDs and ESS. The authors of [11] and
[12] have proposed stochastic approaches to solve the problem of op-
timal operation of DGs based on solar and wind power in conjunction
with ESS for reduction of the operating costs. These approaches are
interesting in terms of the possibility to include the uncertainties as-
sociated to the primary energy resources as wind speed and solar ra-
diation for wind and solar generation; notwithstanding, the mathema-
tical model that represents these problems remains nonlinear, which

the optimal global solution cannot be guaranteed. Additionally, sto-
chastic approaches have been proposed in [31,32] and [33] for ana-
lyzing the impact of the uncertainties in renewable generation over the
power grid, nevertheless, they use approximated linear models based
on conventional dc power flow for ac grids and their applications are
concentrated in large-scale ac power systems.

Unlike other investigations, in this paper an SDP model to solve the
problem of economic dispatch in a dc microgrid with ESS is proposed,
using a convex approximation where the results obtained are compar-
able with the exact mathematical model. Average generation values for
DGs are considered in this paper to compare the performance of the
proposed convex model with the conventional nonlinear non-convex
formulation, since they are the most likely generating conditions for
tropical countries like Colombia [34,35]. Notice that uncertainties of
renewable generation based on wind or solar photovoltaic technologies
are addressed in this paper via artificial neural networks (ANN) by
applying the nonlinear autoregressive exogenous (NARX) model
[11,36], in conjunction to Bayesian regularization as training algo-
rithm. This methodology allows predicting solar radiation and wind
speed considering as inputs of the ANN the following parameters: time,
temperature, humidity and pressure; whit higher precision and low
computational requirements; in addition, the main objective of this
research is to reformulate the economic-dispatch problem in dc mi-
crogrids as linear problem guaranteeing the global optimum of the
problem; which is identified in the paper as an opportunity of research
that this paper tries to fulfill. Four scenarios are proposed to analyze the
inclusion of energy storage in a dc microgrid for an economic dispatch
in real-time to decrease the operating costs of the network. Ad-
ditionally, the results obtained are compared with GAMS commercial
optimization package to evaluate the performance of the proposed
methodology.

The remain of this paper is organized as follows: Section 2 presents
economic dispatch model for a dc microgrid with ESS. Section 3 shows
SDP model and its application for economic dispatch model. Later,
Section 5 presents the test system and the simulation scenarios. In
Section 6 the general results are shown. Finally, Section 7 draws the
conclusions followed by the list of references.

2. Economic dispatch model

An economic dispatch model of non-linear non-convex program-
ming for a dc microgrid is presented in (1). The objective of this model
is to minimize the purchase costs of energy in the stock market of
conventional generators (generators based on the use of fossil fuels) in a
dc microgrid, considering variable costs in the study period. Notice that
this model corresponds to a dc grid adaptation of the mathematical
model proposed by [16,37].

∑ ∑=
∈ ∈

z C i t p i t tmin ( , ) ( , )Δ ,
t iΩ Ω

CG
T N (1)

where C(i, t) and pCG(i, t) represent the purchase costs of energy and
power generation of a conventional generator (CG) connected to node i
for each period t, respectively. ΩN and ΩT denote sets that contain all
nodes and operating horizons of the dc microgrid, respectively. Δt is
delta of the time period. Besides, the characteristics of the electrical
networks, i.e., operational and technical constraints are considered:

Load-generation balance:

+ + +

= ∑

∀ ∈ ∪ ∀ ∈

∈

p i t p i t p i t p i t
g i j v i t v j t

i t

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ),

Ω Ω ,

L

j

N T

CG DG ESS

ΩN

(2)

where (i, t) are the indices associated with with the node i in the period
t; pDG, pESS, and pL are the distributed generators (DGs), energy storage
systems (ESS) and demands powers, respectively. The parameter g(i, j)
is the conductance value extracted from the admittance matrix, and v

Fig. 1. Electrical configuration of the low-voltage dc power grid.
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corresponds to the variable associated with the voltage profile.
Battery state of charge (SoC):

= − −

∀ ∈ ∪ ∀ ∈

i t i t ϕ i p i t
i t

SoC( , ) SoC( , 1) ( ) ( , )
Ω ΩN T

ESS

(3)

= =i t iSoC( , 1) SoC ( )o (4)

= =i t iSoC( , 24) SoC ( ),f (5)

where SoC is the state of charge for each ESS; ϕ is the charging effi-
ciency of ESS, SoCo and SoCf are initial and final state of charge of the
ESS.

Eq. (3) represents the load/discharge power ratio of each ESS and its
state of charge, Eqs. (4) and (5) control the condition initial and final
state of charge of each ESS.

Minimum and maximum capacity:
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CG CG
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min

DG DG
max

ESS
min

ESS ESS
max

(6)

where superscripts min and max represent minimum and maximum
capacity of the generator i, respectively.

Voltage limits:

≤ ≤ ∀ ∈ ∪ ∀ ∈v v i t v i t( , ) , Ω Ω ,N T
min max (7)

where vmin and vmax represent the upper and lower operating limits of
the voltage in each node i.

Power flow limits:

− ≤ ≤ ∀ ∈f f f , ij Ω ,i j i j t i j N( , )
max

( , )( ) ( , )
max

(8)

where f(i,j)(t) represent the power flow through line ij and f(i,j)(t)max is its
maximum power flow. Ingeneral, f(i,j)(t)≠ f(j,i)(t), with

= −f v v v g i j( ) ( , )i j i i j( , ) (9)

SoC limits:

≤ ≤ ∀ ∈ ∪ ∀ ∈i t i t0 Soc( , ) 1, Ω Ω ,N T (10)

The above constraint represents capacity limits of stored energy for
each ESS, which is between 0 to 100%. Additionally, it is important to
mention that the battery life can be increased by varying the lower
storage limits according to the IEEE 1561-2007 standard [38].

Observe that this problem is basically a non-linear non-convex
model, due to (2), which is a non-affine equality constraint. Therefore,
conventional optimization techniques cannot guarantee global op-
timum. In addition, a fast and reliable algorithm to be implemented in
real-time operation for dc microgrids is required.

3. Semidefinite programming

Semidefinite programming (SDP) is part of the mathematical opti-
mization, which is a field that has taken a great interest in recent years
due to its theoretical and practical implications (control systems,
communication and power systems) [39,13]. The SDP is a reformula-
tion for nonlinear problems with aspects similar to linear programming
in the sense that both have a solid mathematical basis and are effective
using the interior point methods [40,41].

In some problems it is possible to affirm that SDP can reach to global
optimum. However, this cannot be generalized for all problems. Even
so, the solutions found are of good quality and can be implemented as
initial points of non-linear optimization algorithms, improving the
convergence times of these algorithms. Finally, in regards with non-
linear problems, the SDP presents a formulation with greater ease of
implementation, regardless of the number of variables associated with
the model [42].

An SDP model corresponds to an optimization problem which can

be described as:

=

= =

⪰

z
s t

A X B i n
X

min Trace(CX)
. .

, 1, 2, ...,
0

i i

(11)

where X, C∈ Rn×n represent decision variables and cost function i.e.,
losses, profits, according to the objective of the problem), respectively.
Ai∈ Rn×n and Bi∈ Rn×n are matrices that represent operating con-
straints of the system and ⪰ denotes positive semi-definiteness. Note
that this model is similar to the formulation for linear programming
problems (or some quadratic programming problems). Actually, linear
programming problems are special cases of the SDP [23,24]. The dif-
ference of linear programming (and quadratic programming) and SPD
comes from the decision variable which is a matrix for SDP instead of a
vector.

3.1. Economic dispatch model as an SDP

A matrix formulation given in (12), is necessary to transform eco-
nomic dispatch model for dc microgrids presented by (1)-(10) to the
canonical formulation of the SDP defined in (11).

= ∀ ∈X t V t V t t( ) ( ) ( ) , ΩT
T (12)

where V(t)∈ Rn is a column vector that contains the voltages of each
node i in the study time period t. This definition allows to transform
economic dispatch model described by (1)-(10) into an SDP model as
follows,
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2
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2 (18)

− ≤ ≤F F t F( )max max (19)

≤ ≤t0 Soc( ) 1 (20)

=X t( ) 11,1 (21)

⪰X 0 (22)

=X tRank( ( )) 1 (23)

where PCG(t), PDG(t), PESS(t), and F(t) are column vectors with entries
=P t p i t[ ( )] ( , )CG CG , =P t p i t[ ( )] ( , )DG DG , =P t p i t[ ( )] ( , )ESS ESS , and

=F t f t[ ( )] (ij, ), respectively. JN∈ Rn×n is an all-ones matrix, and Diag(·)
and Rank(·) denote the main diagonal and rank of the corresponding
matrix. G represents the conductance matrix of the system.

At this point, both models for economic dispatch are equivalent, i.e.,
both are non-convex. Notice that the only non-convex constraint is
given by (23). When this constraint is relaxed, an SDP problem is
achieved. This problem can be efficiently solved by the interior point
method [30]. Although SDP model increases the number of variables,
this does not imply that a larger number of variables can increase the
computational cost [30].

It can be observed that the result of the SDP is a rank N matrix,
which represents a problem. Therefore, it is necessary to employ a
general decomposition to recover the vector V(t) from matrix X(t). To
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achieve this, it uses the decomposition method by means of eigenvalues
and eigenvectors [13,42], as follows:

∑= ∀ ∈
=

X t λ t W t W t t( ) ( ) ( ) ( ) , Ω
k

n

k k k
T

T
1 (24)

where λk(t) and Wk(t) represent eigenvalues and its corresponding ei-
genvectors in each time period, respectively. If the representation for
problem as an SDP is good enough, N− 1 eigenvalues close to zero are
expected. Therefore, rank of X(t) is approximation to one and can be
achieved as:

≈ ∀ ∈X t λ t W t W t t( ) ( ) ( ) ( ), Ωm m m T (25)

where λm(t) represents the maximum eigenvalue (i.e other eigenvalues
are close to zero) in each time period. According to this approximation,
it is possible to recover the vector V(t) as

≈ ∀ ∈V t λ t W t t( ) ( ) ( ) , Ωm m
T

T (26)

The main advantage of this methodology is its efficiency and pre-
cision [13,42].

4. Receding horizon control

Receding horizon control (RHC) is a general-purpose control
scheme that involves repeatedly resolving a restricted optimization
problem, using predictions of some variables (i.e., wind speed or solar
radiation) and restrictions on a moving time horizon. This idea of
control is also well-known as a predictive control model. Fig. 2 depicts
the main concept of RHC.

The RHC is used to minimize the forecasting errors with the fol-
lowing methodology:

• The predictions of wind speed and solar radiation by periods p based
on a nonlinear autoregressive exogenous model (NARX) are de-
termined. p represents prediction horizon.

• The economic dispatch is calculated from period t to period t+p as
presented in Section 3.1, using the predictions of wind speed and
solar radiation.

• In period t+1 the predictions of wind speed and solar radiation are
recalculated by periods p with measured of them in period t.

4.1. Nonlinear autoregressive exogenous

The nonlinear autoregressive network with exogenous inputs is a
recurrent dynamic network, with feedback connections enclosing sev-
eral layers of the network, that helps to predict stochastic variables by
using historic [11]. These data are used for training an ANN following
the next nonlinear learning rule:

= − − − −y t f y t y t n x t x t n( ) ( ( 1), ..., ( ), ( 1), ..., ( ))y x (27)

where x corresponds to the set of exogenous inputs, while y is the de-
sired output, which depends on the last ny values of the variable under

prediction. Table 1 presents the set of inputs for predicting solar ra-
diation and wind speed for photovoltaic and wind generation applica-
tions.

The training process for the NARX for predicting solar radiation and
wind speed are implemented in MATLAB software via ntstool con-
sidering 2 inputs, 6 delays and 18 hidden neurons for the photovoltaic
case, and 4 inputs, 4 delays and 12 neurons for the wind generation
case. Fig. 3 shows the schematic implementation of the NARX for the
photovoltaic case.

For both NARX, we use as training data 70% of the total data and
15% for adjusting and validation. Finally, Fig. 4 depicts historic solar
radiation and wind speed used during ANN training process.

Notice that the solar radiation and wind speed presented in Fig. 4
cover a wide range of possibilities of generation during a normal day,
which implies that the ANN has the possibility to have enough in-
formation to achieve a successful training process, in order to predict
with low error (less than 3%) the power output in a typical day, as will
be presented in results’ section. Finally, for simplicity and readability,
input components presented in Table 1 can be consulted to the authors.

Fig. 2. RHC concept.

Table 1
Input parameters and desired outputs for wind and solar generation applica-
tions.

Photovoltaic Wind

Inputs Output Inputs Output

Temperature Solar Radiation Temperature Wind speed
Humidity

Time Pressure
Time

Fig. 3. NARX for solar radiation prediction.

Fig. 4. Historic data for the NARX training process: a) solar radiation, and b)
wind speed.
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5. Test system and scenarios

5.1. The system under analysis

The proposed mathematical model is tested in a dc microgrid as
presented in Fig 5 , which is an adaptation of the 21-node test system
presented in [5]. The test system contains a radial topology of 21 nodes,
11 loads, a conventional generator, a wind power source and a solar
power source connected to nodes 1, 12 and 21, respectively. Ad-
ditionally, it has three energy storage systems connected to nodes 7, 10,
and 15, respectively. Table 2 lists the resistance and load values.

Table 3 shows the costs to buy energy from the conventional gen-
erator for each time period t. These costs are considered in the context
of prices in real time, which indicate that they are variable during the
course of the day. In addition, the demand variation in each period t is
also shown. For simplicity, the variation of each of the demands is
considered equal.

Parameters of ESS are shown in Table 4, which have a storage ca-
pacity of 0.25 pu (node 7), 0.2 pu (node 10), and 0.2 pu (node 15) with
charge times of 5 hours and discharge periods of 4 hours under nominal
rates.

The first column of Table 4 indicates the node where the ESSs are
connected. Pcharging

max and Pdischarging
max are the maximum powers of charging

and discharging of each ESS along a period of time, respectively.

5.2. Simulation scenarios

Four simulation scenarios to examine the impact of the ESS in
economic dispatch of a dc microgrid are proposed.

• First scenario (S1): This is the baseline scenario in which the en-
ergy storage in the economic dispatch is not considered.

• Second scenario (S2): It proposes to analyze the operation of en-
ergy storage considering a state of charge of 0% (ESS totally dis-
charged) at the beginning and at the end of the dayily operation.

• Third scenario (S3): The operation of energy storage is analyzed
considering a state of charge of 50% of its nominal capacity at the
beginning and at the end of the dayily operation. However, during
the period of operation, energy storage can take values between 0
and 100% of its capacity.

• Fourth scenario (S4): The recommendation of Standard IEEE 1561-
2007 is considered in this scenario, where the standard defines that
in order to increase the useful life for any energy storage connected
to an electrical network, it should not have a stored energy lower
than 50% of its nominal capacity [38].

The generation available of the wind and solar power source for
four simulation scenarios is illustrates in Fig. 6.

Fig. 5. Test system of the 21-node.

Table 2
Parameters for the 21-nodes test system.

From To Rline [pu] Load [pu] From To Rline [pu] Load [pu]

1 2 0.0053 0.25 11 12 0.0079 -
1 3 0.0054 - 11 13 0.0078 0.31
3 4 0.0054 - 10 14 0.0083 -
4 5 0.0063 0.04 14 15 0.0065 -
4 6 0.0051 0.14 15 16 0.0064 -
3 7 0.0037 - 16 17 0.0074 0.17
7 8 0.0079 0.13 16 18 0.0081 0.13
7 9 0.0072 0.32 14 19 0.0078 0.04
3 10 0.0053 - 19 20 0.0084 0.1
10 11 0.0038 0.17 19 21 0.0082 -

All parameters are in per unit. SBase=1 MW, VBase=13.2 kV.

Table 3
Test system data.

t [h] C [$/kWh] Demand variation
[%]

t [h] C [$/kWh] Demand variation
[%]

0 0.77 0.17 12 0.9 0.47
0.5 0.74 0.14 12.5 0.9 0.47
1 0.71 0.11 13 0.895 0.45
1.5 0.7 0.11 13.5 0.89 0.42
2 0.69 0.11 14 0.895 0.43
2.5 0.695 0.10 14.5 0.9 0.45
3 0.7 0.09 15 0.9 0.45
3.5 0.71 0.09 15.5 0.9 0.45
4 0.72 0.09 16 0.925 0.45
4.5 0.76 0.10 16.5 0.95 0.45
5 0.8 0.11 17 0.945 0.45
5.5 0.835 0.13 17.5 0.94 0.45
6 0.87 0.14 18 0.925 0.43
6.5 0.89 0.17 18.5 0.91 0.42
7 0.91 0.20 19 0.905 0.46
7.5 0.895 0.25 19.5 0.9 0.50
8 0.88 0.31 20 0.875 0.49
8.5 0.895 0.34 20.5 0.85 0.47
9 0.91 0.36 21 0.825 0.45
9.5 0.91 0.39 21.5 0.8 0.42
10 0.91 0.42 22 0.755 0.38
10.5 0.91 0.43 22.5 0.71 0.34
11 0.91 0.45 23 0.685 0.29
11.5 0.905 0.46 23.5 0.66 0.25

Table 4
ESS parameters.

ESS Pcharging
max [pu] Pdischarging

max [pu] ϕ [%]

Node 7 0.008 0.013 40
Node 10 0.010 0.010 60
Node 15 0.010 0.010 60

Fig. 6. Generation available for wind and solar power.
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6. Results

The SDP model proposed for a dc microgrid with ESS is solved using
CVX programming software [43] on MATLAB environment [44]. Ad-
ditionally, the SDP model is compared with GAMS commercial opti-
mization package to evaluate the accuracy and efficiency of the pro-
posed methodology [16].

All simulations were carried-out in a desk-computer INTEL(R) Core
(TM) i7− 7700, 3.60 GHz, 8 GB RAM with 64 bits Windows 10 Pro by
using MATLAB 2017b.

6.1. Comparison between mathematical models

This part shows the results obtained with the SDP model and the
model implemented in GAMS for the four proposed scenarios. Table 5
presents the results of objective function for each one of the proposed
scenarios of the SDP model and the non-convex model in GAMS. In
addition, the absolute error of SDP model for each scenario is also
shown.

Notice in Table 5 that the SDP model presents a very good approach
to solve the economic dispatch problem of a dc microgrid with energy
storage since the absolute errors are less than 6.48 · 10−5. The two first
maximum average eigenvalues during the study period for each pro-
posed scenario are shown in Table 6. Note that results of the eigenva-
lues confirm that the linear approximation used for the SDP model,
matches the non-linear response of the economic dispatch problem of a
dc microgrid with ESS, as defined in (26).

It is important to mention that in this part does not consider the
forecast errors since the objective is analyzed the performance the SDP
model regarding GAMS model.

6.2. Scenarios analysis

In this part, we analyze the inclusion of ESS in a dc microgrid for an
economic dispatch in real-time to decrease the operating costs of the
network. However, the forecast of the wind speed and solar radiation
are not considered since the objective in this part is to show the effect
that has the ESS in the operation of dc microgrid.

As can be seen in Table 5, the worst scenario of operation is S1. This
is because the total power consumption need to be supported by a
combination of the distributed generators and the conventional gen-
erator. Since ESS are not connected to the grid, the CG needs to provide
the remaining power to guarantee the power balance independent of
the energy price (including support for power oscillations), which in-
crements significantly the total operating grids costs per day.

In scenario S2, it is possible to observe that the inclusion of ESS in
the system operation is more efficient than presented in scenario S1
since it is feasible to store energy when there is greater distributed
generation than demand in the system. The inclusion of ESS provides a

reduction of 690.0 US$ on objective function, i.e., a saving of 8.27% in
daily operating costs.

In scenario S3, a slight increase in operating costs can be observed
in regards with the scenario S2 (a saving of 4.89% in daily operating
costs with respect to scenario S1). This is because at the end of the
period, the ESS need to have a stored energy of 50%, which coincides
with the hours where there is less generation availability (photovoltaic
generation is zero).

Scenario S4 shows an increase of the 9.37% in operating costs in
relation with the scenario S2. This situation is expected, since the ESS
are limited to maintaining a minimum load of 50% at any period of
time, for this reason, the energy that can be injected into the network is
significantly reduced in contrast with scenarios S2 and S3. However,
this operation restriction in the ESS have the advantage of increasing
the useful life of the batteries (Standard IEEE 1561-2007).

On the other hand, Figs. 7 and 8 illustrate results for the best sce-
nario of proposed operation, i.e., scenario S2.

Fig. 7 depicts generated power of the conventional generator, wind
and solar power for each period of time. State of charge and transferred
power for each ESS are shown in Fig. 8.

Notice in Fig. 7 that conventional generator is only required at
hours where demand is greater than the availability of distributed
generators (time periods from 18:00 to 5:00, and at 16:00). This si-
tuation also occurs when ESS do not have enough stored energy or they
are in process of charging (see Fig. 8a)).

Note in Fig. 8(a) that ESS are charged in the periods where the
energy costs have on average the lowest prices (period from 00:00 to

Table 5
Comparison between SDP and GAMS models for economic dispatch.

Model S1 [$] S2 [$] S3 [$] S4 [$]

SDP 7364.02 6755.18 6972,40 7058,6
GAMS 7364.02 6755.18 6972,40 7058,6
Error 8.62×10−6 9.17× 10−5 6.48×10−5 3.51× 10−6

Table 6
Eigenvalues averaged.

λm S1 S2 S3 S4

λm
1 21.05 21.06 21.06 21.06

λm
2 1.1×10−3 1.3× 10−3 1.4× 10−3 1.4× 10−3

Fig. 7. Generated power by conventional generator, solar and wind power.

Fig. 8. Stored energy and transferred power by ESS.
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04:00, see Table 3) or when the distributed generators are at their
maximum values (period between 08:00 to 17:00, see Fig. 7).

Consequently, the discharge periods occur when the energy costs
are much more expensive and/or when it is not enough with the dis-
tributed generators to attend the demanded power (periods between
04:00 and 08:00 and after 17:00). The other proposed scenarios are not
shown graphically, because their analysis is similar to that presented for
scenario S2.

Note in Fig. 8(b) that each one of ESS fulfills the charging and
discharging power limits established in Table 4.

6.3. Stochastic optimization

In this part, we include the forecast of the wind speed and solar
radiation where its effect is diminished with the RHC and NARX de-
scribed in Section 4.

The NARX has been trained with 7776 data which were registered
every 30 minutes for a total of 162 days (see Fig. 4). The prediction of
the wind speed employs characteristics such as time, temperature-
relative humidity, and pressure, while the temperature and time are
used for the prediction of solar radiation (see Table 1). All data were
taken of solar radiation data in [45]. Fig. 9 depicts the speed wind and
solar radiation for an any day. Additionally, their predictions are also
shown which are determined by the RHC.

Observe in Fig. 9 that the prediction for the wind speed and solar
radiation by the RHC is suitable with a mean squared error of 1.83 10−5

and 5.44 10−4 for the wind speed and solar radiation, respectively. This
demonstrates that the RHC is a suitable methodology to minimize the
forecast errors. Table 7 presents the results of objective function when
there is no error in the forecast (Real) as well as the RHC is im-
plemented.

Observe in Table 7 that the operating costs of the network are not
affected when the economic dispatch is programmed by the RHC. This
entails the operation of ESS continues being appropriate for the grid. It

is important to notice that the RCH can be extended for the time periods
shorter than the used in this paper.

7. Conclusions

A mathematical approach for the optimal operation focused on the
economic dispatch of a dc microgrid with ESS, through a mathematical
model of SDP was proposed. This formulation allowed transforming the
non-linearity and non-convexity of the economic dispatch into a convex
approach that is easy to implement in specialized software, such as the
CVX. The proposed mathematical approach contemplated the efficient
operation of the dc microgrid over a period of time with variable energy
purchase price, which makes it a practical methodology to apply in
real-time, because the results obtained clearly showed that the solutions
found by the SDP were very close to those presented by the exact model
implemented in GAMS. For this reason, the SDP model is an efficient
methodology that can be applied to problems of planning and operation
of dc microgrid with a good level of precision, reducing the computa-
tional effort in solving the problem.

It was proved that installing ESS in dc microgrids reduce operating
costs. However, it is necessary to have an efficient operation strategy
that allows maximizing the use of the ESS, since the inadequate pro-
gramming of the ESS affects their useful life. Additionally, several op-
erational strategies can be obtained according to the objectives set by
the network operator (e.g., loss minimization, investment costs, oper-
ating costs, etc.).

It was proposed a methodology based on a RHC to reduce the
forecasting errors of the wind speed and solar radiation. The predictions
for the RHC were determined using a NARX. Methodology demon-
strated to be suitable to minimize the forecast errors and the operation
of ESS continues being appropriate for economic dispatch.

As future works, it would be possible to extend the proposed model
to a dc-ac microgrid and also include active power losses on the power
electronic converters.
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