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Abstract 

The dynamic model of a Four Control Moment Gyroscope (4-CMG) is traditionally obtained after computing the derivative of the angular 

momentum equation. Although this approach leads to a simple dynamic model, new models have been introduced due to terms not taken 

into account during the computation of the angular momentum equation. In this paper, a new dynamic model for a 4-CMG based on the 

Newton-Euler algorithm, which is well accepted in Robotics, was developed. This new approach produces a complete dynamic model. 
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Resumen 

El modelo dinámico de un sistema de control de par utilizando cuatro giróscopos (4-CMG) tradicionalmente se obtiene al calcular la 

derivada de la ecuación del momento angular total. Aunque este enfoque conduce a un modelo dinámico relativamente simple, 

recientemente se han introducido nuevos modelos debido a términos que no se han tenido en cuenta, o se desprecian, durante el cálculo de 

la ecuación del momento angular. En este artículo, se propone un nuevo modelo dinámico para un 4-CMG basado en el algoritmo de 

Newton-Euler, el cual es bien aceptado en robótica. Con este nuevo enfoque se logra obtener un modelo dinámico bastante completo. 

 

Palabras clave: dinámica; giróscopo; modelo; control. 

 

1.  Introduction 

 

A Four Control Moment Gyroscope (4-CMG) is an angular 

momentum exchange device used on satellites [1-3], submarines 

[4, 5], to control attitude. It is composed by four gyroscopes 

arranged in a pyramidal form, see Fig. 1, with the torque 

amplification property being its principal advantage [6]. 

Moreover, when used in satellites no fuel or gas propellant is 

required, because the motors use electricity to operate. 

The dynamic model of a 4-CMG is usually obtained by 

differentiation of the angular momentum equation [7]. This 

is done in [3, 4] and [8]. Probably the most exact dynamic 

model using this approach is the developed by Ford and Hall, 

[8]. 

The first comparison between a robot arm and a 4-CMG 

was performed by Bedrossian et al. [9]; in this work an 

analogy of velocities was considered to study the 

singularities on a 4-CMG. No further analogies with robot 

arms were stated. 

 

 

In this paper a kinematics comparison between a 4-CMG 

and a robotic arm is used to develop a new dynamic model. 

The advantages of this approach are: use of a widely accepted 

methodology to compute a dynamic model, and more precise 

equations. 

 

2.  Dynamic equations for A CMG 

 

Fig. 1 illustrates a CMG with four gyroscopes, each of 

them composed of a flywheel and a gimbal. A coordinate 

frame 𝐱i, 𝐲i, 𝐳i, is located at the center of the flywheel, which 

serves as a reference for the motion of gimbals and flywheels. 

The flywheels turn at a constant speed, while the gimbals can 

rotate around 𝐲i axis without any restriction. The angle of 

rotation of a 𝑖-th gimbal is represented by 𝜃𝑖, with the zero 

position being illustrated in the figure. The position of the 

four gyroscopes is denoted by the vector 𝛉 =
[𝜃1, 𝜃2, 𝜃3, 𝜃4]

𝑇. The angle β is the pyramid’s skew 

angle. 
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Figure 1. Control moment gyroscope with pyramidal array. 

 

Fig. 2 illustrates the equivalent open kinematics chain for 

a 4-CMG; there the circles represent rotational joints. 

To compute the dynamic model, two steps are performed, 

see Fig. 3. The first step is the Newton-Euler algorithm for 

each gyroscope, this led to the reaction forces and moments 

applied to the base body. The second step is the dynamic 

equation for the base body, where the reaction forces and 

moments exerted by each gyroscope, 𝐌𝑖  and 𝐅𝑖, are involved. 

The angular and linear velocity of the base body, 𝐯0 and 𝛚0 

respectively, plus the angular velocities of each joint, 𝛚𝑖,1 

and 𝛚𝑖,2 are required in the Newton-Euler algorithm to 

perform the direct kinematics of the gyroscopes [10, 11]. 

Computation of the Newton Euler Equations for a serial 

robot is also done using two steps, Tsai [12]. The first one is 

the kinematics calculus toward the extreme of the robot, as 

shown in Table 1. 

 

 
Figure 2. Equivalent kinematic chain of a 4-CMG. 

 

 
 

 

 
Figure 3. Gyroscope kinematics and Base body dynamics. 

 
Table 1. 
Recursive Newton-Euler formulation. Forward kinematics.  

Forward kinematics 

Angular velocity propagation 

𝐑i i = [

cos(𝜃i) sin(𝜃i) 0

−cos(𝛼i) sin(𝜃i) cos(𝛼i) cos(𝜃i) sin(𝛼i)

sin(𝛼i) sin(𝜃i) −sin(𝛼i) cos(𝜃i) cos(𝛼i)
]  

𝐙i−1
i−1 = [0 0 1]𝑇 

Angular acceleration propagation 

𝛚̇i = 𝛚̇i−1 + 𝐳i−1𝜃̈i + 𝛚i−1 + 𝐳i−1θ̇i 

𝛚̇i
i = 𝑹i−1

i ( 𝛚̇i−1
i−1 + 𝐳i−1

i−1𝜃̈i + 𝛚i−1  i−1 + 𝐳i−1
i−1θ̇i)  

Linear velocity propagation 

𝐯i = 𝐯i−1 + 𝛚i × 𝐫i 

𝐯i i = 𝑹i−1
i 𝐯i−1

i−1 + 𝛚i i × 𝐫i i 

𝐫i i = [ai di sin(𝛼i) di cos(𝛼i)]
𝑇 

Linear acceleration propagation 

𝐯̇i = 𝐯̇i−1 + 𝛚̇i × 𝐫i + 𝛚i × (𝛚i × 𝐫i) 
𝐯̇i i = 𝑹i−1

i 𝐯̇i−1
i−1 + 𝛚̇i i × 𝐫i i + 𝛚i i × ( 𝛚i i × 𝐫i i) 

Linear acceleration of the center of mass 

𝐯̇ci = 𝐯̇i + 𝛚̇i + 𝛚̇i × 𝐫ci + 𝛚i × (𝛚i × 𝐫ci) 

𝐯̇i ci = 𝐯̇i i + 𝛚̇i i + 𝛚̇i i × 𝐫i ci + 𝛚i i × ( 𝛚i i × 𝐫i ci) 

Acceleration of gravity 

𝐠i = 𝐑i−1 𝐠i−1i  

 

The second step is the dynamic calculus of backward 

computation, as can be seen in Table 2. Note, only rotational 

joints are considered in both tables. 

 
Table 2. 

Recursive newton-euler formulation. Backward dynamics.  

Backward dynamics 

Inertial forces and moments 

𝐟i
∗ = −𝑚i𝐯̇ci 

𝐧i
∗ = −𝐈i𝛚̇i − 𝛚i × (𝐈i𝛚i) 

Force and torque balance equations about the center of mass 

𝐟i,i−1 = 𝐟i+1,i − 𝑚i𝐠 − 𝐟i
∗ 

𝐧i,i−1 = 𝐧i+1,i + (𝐫i + 𝐫ci) × 𝐟i,i−1 − 𝐫ci × 𝐟i+1,i − 𝐧i
∗ 

Torque in rotational joint 

𝛕i = 𝐧i,i−1
𝑇i−1 𝒛i−1

i−1  
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The following assumptions have been made to simplify 

the equations of the Newton-Euler methodology: 

• Mass and inertia of the gimbals are approximately zero 

or negligible. 

• The center of mass of the Flywheel is aligned with the 

gimbal axis. 

• Velocity and acceleration of the base body are not equal 

to zero. 

The mass and inertia of the gimbal frame is neglected 

because the flywheel has the major contribution in the mass 

and inertia of the gyroscopes. 

 

2.1.  Data of the links 

 

For the Newton-Euler approach, one gyroscope is 

composed of three links: base body, gimbal and flywheel. 

Each of these links is joined by a rotational joint, Fig. 3.  

Before computing the forward kinematics and backward 

dynamics, each link must have a coordinate frame. Fig. 4 

illustrates the frames and vectors defined for each link. A new 

frame, [𝐱0,𝑖 𝐲0,𝑖 𝐳0,𝑖], is used to express the forces and 

moment exerted by the gyroscopes. This frame is fixed in the 

base body. The other two frames are [𝐱1,𝑖 𝐲1,𝑖 𝐳1,𝑖]  and 
[𝐱2,𝑖 𝐲2,𝑖 𝐳2,𝑖] , with the former being the frame of the 

gimbals link and the latter being the frame of the flywheel 

link. These two frames are located at the same point, the 

center of the flywheel. The homogeneous matrix between the 

frames fixed in the base body, [𝐱0 𝐲0 𝐳0] and 
[𝐱0,𝑖 𝐲0,𝑖 𝐳0,𝑖], is, 

 

 
Figure 4. Frames used in the Newton-Euler algorithm. 

 

 

𝐀0,𝑖
𝑏 = [

𝑐𝑎𝑖 −𝑠𝑎𝑖𝑐𝛽 −𝑠𝑎𝑖𝑠𝛽 −𝑠𝑎𝑖𝑟

𝑠𝑎𝑖 𝑐𝑎𝑖𝑐𝛽 𝑐𝑎𝑖𝑠𝛽 𝑐𝑎𝑖𝑟

0
0

−𝑠𝛽
0

𝑐𝛽
0

      0
      1

] (1) 

 

Where 𝑠𝑎𝑖 , 𝑐𝑎𝑖 , 𝑠𝛽, and 𝑐𝛽 stands for 𝑠𝑖𝑛(𝑎𝑖), cos (𝑎𝑖), 

sin (𝛽), and cos (𝛽) respectively; 𝑟 is the radius of the circle 

where the gyroscopes are located; 𝑎𝑖 is the angle of the turn 

around axis 𝐳0 to align 𝐲0 with 𝐲𝑖, and it has any of the values 

of  {0, 𝜋/2,   𝜋,   2𝜋/3} radians. 

The Denavit-Hantemberg parameters for one gyroscope 

according to Fig. 4, are shown in Table 3. In this table 𝐿 =

‖𝐫𝟏,𝒊‖, where 𝐫𝟏,𝒊 is the vector from frame {0, 𝑖} to frame 

{1, 𝑖}. 
 

Table 3. 
Denavit - Hartemberg parameters. 

Joint - i 𝛼i 𝑎i 𝑑i 𝜃i 

1 𝜋/2 0 L 𝜃i

− 𝜋/2 
2 0 0 0 𝜃i,2 

 

1) Homogeneous Transformation Matrices: The DH 

transformation matrices for each link can be also computed, 

these are: 

 

𝐀1,𝑖
0,𝑖 = [

sin(𝜃𝑖) 0 −cos(𝜃𝑖) 0

−cos(𝜃𝑖) 0 − sin(𝜃𝑖) 0
0
0

1
0

        
0
0

       𝐿
      1

] (2) 

 

𝐀2,𝑖
1,𝑖 =

[
 
 
 
cos(𝜃𝑖,2) − sin(𝜃𝑖,2) 0 0

sin(𝜃𝑖,2) cos(𝜃𝑖,2) 0 0

0
0

0
0

1
0

0
1]
 
 
 

 (3) 

 

2) Position Vectors: The position of the frame {1, 𝑖} with 

respect to {0, 𝑖} isdefined by vector 𝐫𝑐0,𝑖
0,𝑖

. The vector 𝐫2,𝑖
2,𝑖

 

defines the position of  {2, 𝑖} related to {1, 𝑖}. The mass centre 

of each link is defined by vectors 𝐫𝑐0,𝑖
0,𝑖

 and 𝐫𝑐1,𝑖
1,𝑖

. These 

vectors have the following values, 

 

𝐫1,𝑖
1,𝑖 = [0 0 𝐿]𝑇 (4) 

𝐫2,𝑖
2,𝑖 = [0 0 0]𝑇 (5) 

𝐫𝑐0,𝑖
0,𝑖 = [0 0 0]𝑇 (6) 

𝐫𝑐1,𝑖
1,𝑖 = [0 0 0]𝑇 (7) 

 

𝐫𝑐0,𝑖
0,𝑖

 is zero because the mass and inertia of the gimbals 

are neglected. 

 

3) Inertia and mass for links: For both links the values of 

mass and inertia are, 

 
𝑚1,𝑖 = 0 (8) 

𝑚2,𝑖 = 𝑚2 (9) 

𝐈1,𝑖
1,𝑖 = 𝟎 (10) 

𝐈2,𝑖
2,𝑖 = 𝑑𝑖𝑎𝑔([𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧]) (11) 
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4) Base Body conditions: Different to a typical robot, the 

base body of a 4-CMG is in motion, which allows it to have 

an angular and linear velocity as well as non-zero 

acceleration. 

𝛚0,𝑖
0,𝑖

, 𝛚̇0,𝑖
0,𝑖

, 𝐯0,𝑖
0,𝑖

, 𝐯̇0,𝑖
0,𝑖

, not equal to zero. 

 

2.2.  Forward Kinematics 

 

The following equations are derived after using the 

forward kinematics, table 1. 

 

1) First link - gimbal axis: The first link has the following 

velocity and acceleration. 

 

Angular Velocity 

 

𝛚1,𝑖 = 𝛚0,𝑖 + 𝒛0,𝑖𝜃̇𝑖 (12) 

 

Angular Acceleration 

 

𝛚̇1,𝑖 = 𝛚̇0,𝑖 + 𝒛0,𝑖𝜃̈𝑖 + 𝛚0,𝑖 × 𝒛0,𝑖𝜃̇𝑖  (13) 

 

Linear Velocity 

 
𝐯1,𝑖 = 𝐯0,𝑖 + 𝛚0,𝑖 × 𝒓1,𝑖 (14) 

 

Because 𝒛0,𝑖 and 𝒓1,𝑖 are parallel. 

Linear Acceleration 

 
𝐯̇1,𝑖 = 𝐯̇0,𝑖 + 𝛚̇0,𝑖 × 𝒓1,𝑖 + 𝛚̇0,𝑖 × 𝛚̇0,𝑖 × 𝒓1,𝑖 (15) 

 

Acceleration of the center of mass 

 
𝐯̇𝑐1,𝑖 = 𝐯̇1,𝑖 (16) 

 

2) Second Link - flywheel axis: Preforming the same 

steps, as the first link, the results are,  

 

Angular Velocity 

 

𝛚2,𝑖 = 𝛚0,𝑖 + 𝒛0,𝑖𝜃̇𝑖 + 𝒛1,𝑖𝜃̇2,𝑖 (17) 

 

Angular Acceleration 

 

𝛚̇2,𝑖 = 𝛚̇0,𝑖 + 𝒛0,𝑖𝜃̈𝑖 + 𝛚0,𝑖 × 𝒛0,𝑖𝜃̇𝑖 + 𝛚0,𝑖 × 𝒛1,𝑖𝜃̇2,𝑖

+ 𝜃̇𝑖𝜃̇2,𝑖𝐱1,𝑖 
(18) 

 

Linear Velocity 
𝐯2,𝑖 = 𝐯0,𝑖 + 𝛚0,𝑖 × 𝒓1,𝑖 (19) 

 

Linear Acceleration 
𝐯̇2,𝑖 = 𝐯̇0,𝑖 + 𝛚̇0,𝑖 × 𝒓1,𝑖 + 𝛚̇0,𝑖 × 𝛚̇0,𝑖 × 𝒓1,𝑖 (20) 

 

Acceleration of the center of mass 
𝐯̇𝑐2,𝑖 = 𝐯̇2,𝑖 (21) 

 

 

2.3.  Backward Dynamics 

 

The following dynamics equations for one gyroscope are 

obtained after applying the equations in table 2. 

1) Second Body: By using backward dynamics, the torque 

required by the flywheel motor can be computed as the 

Inertial Forces and Moments 

 
𝐟2,𝑖
∗ = −𝑚2𝐯̇0,𝑖 − 𝑚2𝛚̇0,𝑖 × 𝒓1,𝑖 − 𝑚2𝛚0,𝑖 × 𝛚0,𝑖 × 𝐫1,𝑖  (22) 

 

𝐧2,𝑖
∗ = −𝐈2,𝑖𝛚̇0,𝑖 − 𝛚0,𝑖 × 𝐈2,𝑖𝛚0,𝑖 − 𝜃̇𝑖I𝑦𝑦𝛚0,𝑖 × 𝒚1,𝑖

− 𝜃̇2,𝑖I𝑧𝑧𝛚0,𝑖 × 𝒛1,𝑖 − 𝜃̈𝑖I𝑦𝑦𝒚1,𝑖

− 𝜃̇𝑖𝜃̇2,𝑖I𝑧𝑧𝒙1,𝑖 

(23) 

 

Where the following relations were used, 

 
𝐈2,𝑖𝐳0,𝑖 = 𝐼𝑦𝑦𝐲1,𝑖 (24) 
𝐈2,𝑖𝐳1,𝑖 = 𝐼𝑧𝑧𝐳1,𝑖  (25) 
𝐈2,𝑖𝐱1,𝑖 = 𝐼𝑥𝑥𝐱1,𝑖 (26) 

 

Forces and Moments in the center of mass 

 
𝐟21,𝑖 = −𝑚2𝐠 + 𝑚2𝐯̇0,𝑖 + 𝑚2𝛚̇0,𝑖 × 𝒓1,𝑖                   

+  𝑚2𝛚0,𝑖 × 𝛚0,𝑖 × 𝐫1,𝑖 
(27) 

𝐧2,𝑖 = 𝐈2,𝑖𝛚̇0,𝑖 + 𝛚0,𝑖 × 𝐈2,𝑖𝛚0,𝑖 + 𝜃̇𝑖I𝑦𝑦𝛚0,𝑖 × 𝒚1,𝑖

+ 𝜃̇2,𝑖I𝑧𝑧𝛚0,𝑖 × 𝒛1,𝑖 + 𝜃̈𝑖I𝑦𝑦𝒚1,𝑖

+ 𝜃̇𝑖𝜃̇2,𝑖I𝑧𝑧𝒙1,𝑖 

(28) 

 

Torque in joint 

 

𝛕2,𝑖 = 𝐳1,𝑖
𝑇 𝐈2,𝑖𝛚̇0,𝑖 + 𝐳1,𝑖

𝑇 𝛚0,𝑖 × 𝐈2,𝑖𝛚0,𝑖            

+ 𝜃̇𝑖I𝑦𝑦𝐳1,𝑖
𝑇 𝛚0,𝑖 × 𝒚1,𝑖 

(29) 

 

2) First Body: In these steps the torque required by gimbal 

motor and the reaction moments and forces in the base body 

are computed. Inertial Forces and Moments 

 
𝐟1
∗ = 0 (30) 

𝐧1
∗ = 0 (31) 

 

Forces and Moments in the center of mass 

 
𝐟10,𝑖 = −𝑚2𝐠 + 𝑚2𝐯̇0,𝑖 + 𝑚2𝛚̇0,𝑖 × 𝒓1,𝑖                   

+  𝑚2𝛚0,𝑖 × 𝛚0,𝑖 × 𝐫1,𝑖 
(32) 

 

𝐧10,𝑖 = 𝐈2,𝑖𝛚̇0,𝑖 + 𝛚0,𝑖 × 𝐈2,𝑖𝛚0,𝑖 + 𝜃̇𝑖I𝑦𝑦𝛚0,𝑖 × 𝒚1,𝑖

+ 𝜃̇2,𝑖I𝑧𝑧𝛚0,𝑖 × 𝒛1,𝑖 + 𝜃̈𝑖I𝑦𝑦𝒚1,𝑖

+ 𝜃̇𝑖𝜃̇2,𝑖I𝑧𝑧𝒙1,𝑖 − 𝑚2𝒓1,𝑖 × 𝒈     
+ 𝑚2𝒓1,𝑖 × 𝐯̇0,𝑖 + 𝑚2𝒓1,𝑖 × 𝛚̇0,𝑖

× 𝒓1,𝑖 + 𝑚2𝒓1,𝑖 × 𝛚0,𝑖 × 𝛚0,𝑖 × 𝒓1,𝑖 

(33) 

 

Torque in Joint 

 
𝛕1,𝑖 = 𝐳0,𝑖

𝑇 𝐈2,𝑖𝛚̇0,𝑖 + 𝐳0,𝑖
𝑇 𝛚0,𝑖 × 𝐈2,𝑖𝛚0,𝑖              

+ 𝜃̇2I𝑧𝑧𝐳0
𝑇𝛚0,𝑖 × 𝒛1,𝑖 + 𝜃̈𝑖I𝑦𝑦 

(34) 
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2.4.  Dynamic Equation for Base Body 

 

The total force and moment exerted on the base body, is 

the sum of the force and torque for each gyroscope’s 

equation, (32) and (33). 

 

𝐅𝑒𝑥𝑡 + 𝑚0𝒈 = 𝑚0𝐯̇𝑏 + ∑𝐟10,𝑖

4

𝑖=1

 (35) 

𝛕𝑒𝑥𝑡 = 𝐈𝑏𝛚̇𝑏 + 𝛚𝑏 × 𝐈𝑏𝛚𝑏 + ∑(𝐧10,𝑖 + 𝐫𝑖 × 𝐟10,𝑖)

4

𝑖=1

 (36) 

 

If 𝐫𝑖, 𝐯0,𝑖, 𝐯̇0,𝑖, 𝛚0,𝑖 and 𝛚̇0,𝑖 are defined by the following 

expressions, 
𝐫1 = [0, 𝑟, 0]𝑇 (37) 

   𝐫𝟐 = [−𝑟, 0, 0]𝑇 (38) 
    𝐫3 = [0, −𝑟, 0]𝑇 (39) 

 𝐫4 = [𝑟, 0, 0]𝑇 (40) 
𝝎0 = 𝝎𝑏 (41) 
𝝎̇0 = 𝝎̇𝑏 (42) 

𝐯0,𝑖 = 𝐯𝑏 + 𝝎𝑏 × 𝐫𝑖 (43) 
𝐯̇0,𝑖 = 𝐯̇𝑏 + 𝝎̇𝑏 × 𝐫𝑖 + 𝝎𝑏 × 𝝎𝑏 × 𝐫𝑖 (44) 

 

Then eq. (32)-(33) are expressed in terms of base body 

variables, 

 
𝐟10,𝑖 = −𝑚2𝐠 + 𝑚2𝐯̇𝑏 + 𝑚2𝛚̇𝑏 × 𝒓𝑖                           

+  𝑚2𝛚𝑏 × 𝛚𝑏 × 𝐫𝑖 + 𝑚2𝛚̇𝑏 × 𝐫1,𝑖

+ 𝑚2𝛚𝑏 × 𝛚𝑏 × 𝐫1,𝑖 

(45) 

𝐧10,𝑖 = 𝐈2,𝑖𝛚̇𝑏 + 𝛚𝑏 × 𝐈2,𝑖𝛚𝑏 + 𝜃̇𝑖I𝑦𝑦𝛚𝑏 × 𝒚1,𝑖

+ 𝜃̇2,𝑖I𝑧𝑧𝛚𝑏 × 𝒛1,𝑖 + 𝜃̈𝑖I𝑦𝑦𝒚1,𝑖

+ 𝜃̇𝑖𝜃̇2,𝑖I𝑧𝑧𝒙1,𝑖 − 𝑚2𝒓1,𝑖 × 𝒈     
+ 𝑚2𝒓1,𝑖 × 𝐯̇𝑏 + 𝑚2𝒓1,𝑖 × 𝛚̇𝑏 × 𝒓𝑖

+ 𝑚2𝒓1,𝑖 × 𝛚𝑏 × 𝛚𝑏 × 𝒓𝑖          

+ 𝑚2𝒓1,𝑖 × 𝛚̇𝑏 × 𝒓1,𝑖                     

+ 𝑚2𝒓1,𝑖 × 𝛚𝑏 × 𝛚𝑏 × 𝒓1,𝑖 

(46) 

 

The equation of forces is obtained after replacing (45) in 

(35). This preliminary result is simplified if the relationship 

for 𝒓𝑖 is used in conjunction with the fact that for a 

symmetrical 4-CMG the vectors 𝒓1,𝑖 are, 

 
𝐫1,0 = −𝐫1,2 (47) 
𝐫1,1 = −𝐫1,3 (48) 

 

The final equation is, 
𝐅𝑒𝑥𝑡 = (𝑚0 + 4𝑚2)𝐯̇𝑏 − (𝑚0 + 4𝑚2)𝒈 (49) 

 

Before computing the dynamic equation for moments, the 

expression 𝑛10,𝑖 + 𝐫𝒊 × 𝐟10,𝑖 is simplified by using the 

following relations, 

 
𝐫𝑖

′ = 𝒓𝑖 + 𝒓1,𝑖 (50) 

∑𝑚2𝐫𝑖
′ × 𝒈

𝟒

𝒊=𝟎

= 0 (51) 

∑𝑚2𝐫𝑖
′ × 𝐯̇𝑏

𝟒

𝒊=𝟎

= 0 (52) 

𝒂 × 𝒃 × 𝒃 × 𝒂 = −𝒃 × 𝒂 × 𝒂 × 𝒃 (53) 

 

The obtained result is, 

∑(𝑛10,𝑖 + 𝐫𝒊 × 𝐟10,𝑖)

𝟒

𝒊=𝟎

= ∑(𝐈2,𝑖𝝎̇𝑏 − 𝑚2𝐫𝑖
′ × 𝐫𝑖

′ × 𝝎̇𝑏  

𝟒

𝒊=𝟎

+ 𝝎𝑏 × 𝐈2,𝑖𝝎𝑏 − 𝑚2𝝎𝑏 × 𝐫𝑖
′ × 𝐫𝑖

′

× 𝝎𝑏 + 𝜃̇𝑖I𝑦𝑦𝝎𝑏 × 𝒚1,𝑖 + 𝜃̇2,𝑖I𝑧𝑧𝝎𝑏

× 𝒛1,𝑖 + 𝜃̈𝑖I𝑦𝑦𝒚1,𝑖 + 𝜃̇𝑖𝜃̇2,𝑖I𝑧𝑧𝒙1,𝑖) 

(54) 

 

It is a common practice to represent the torque’s equation 

in the base body coordinate frame. In this frame, the 

following matrices are defined, 

 

𝐗𝑏
1 = [ 𝑥1,1

𝑏 … 𝑥1,4
𝑏 ] (55) 

𝐘𝑏
1 = [ 𝑦1,1

𝑏 … 𝑦1,4
𝑏 ] (56) 

𝜽̇ = [𝜃̇1 … 𝜃̇4]
𝑇 (57) 

𝜽̈ = [𝜃̈1 … 𝜃̈4]
𝑇 (58) 

𝐈𝑡
𝑏 = 𝐈𝑏

𝑏 + ∑( 𝐑𝑖
𝑏 𝐈𝑖

𝒊 𝐑𝑖
𝑇𝑏  

− 𝑚2 𝐫̃𝑖
′𝑏 𝐫̃𝑖

′𝑏  
)

𝟒

𝒊=𝟎

 (59) 

𝐃𝑖
𝑏 = ∑( 𝐑𝑖

𝑏 𝐈𝑖
𝒊 𝐑𝑖

𝑇𝑏  
− 𝑚2 𝐫̃𝑖

′𝑏 𝐫̃𝑖
′𝑏  
)

𝟒

𝒊=𝟎

 (60) 

𝐈𝑡
𝑏 = 𝐈𝑏

𝑏 + 𝐃𝑖
𝑏  (61) 

 

Where 𝐚̃ is the matrix equivalent of the cross product, 𝐚 × 

𝐚̃ = [

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0
] (62) 

 

Therefore, the torque equation over the base body is then 

expressed as, 

 

𝛕𝑏
𝑒𝑥𝑡 = 𝐈𝑏

𝑏 𝛚̇𝑏
𝑏 + 𝛚̃𝑏

𝑏 𝐈𝑏
𝑏 𝛚𝑏

𝑏 + 𝐼𝑦𝑦 𝐘𝑏
1𝜃̈

+ 𝜃̇2𝐼𝑧𝑧 𝐗𝑏
1𝜃̇ + 𝐼𝑦𝑦 𝛚̃𝑏

𝑏 𝐘𝑏
1𝜃̇

+ 𝜃̇2𝐼𝑧𝑧 𝛚̃𝑏
𝑏 ∑ 𝐳𝑏

1,𝑖

4

𝑖=1

 

(63) 

 

Where 𝐗𝑏
1, 𝐘𝑏

1, 𝐳𝑏
1,𝑖 and 𝐑𝑖

𝑏  are, 

 

𝐗1
𝑏 = [

𝑠𝜃1 𝑐𝛽𝑐𝜃2 −𝑠𝜃3 −𝑐𝛽𝑐𝜃4

−𝑐𝛽𝑐𝜃1 𝑠𝜃2 𝑐𝛽𝑐𝜃3 −𝑠𝜃4

𝑠𝛽𝑐𝜃1 𝑠𝛽𝑐𝜃2 𝑠𝛽𝑐𝜃3 𝑠𝛽𝑐𝜃4

] (64) 

 

𝐘1
𝑏 = [

0 −𝑠𝛽       0 𝑠𝛽

𝑠𝛽 0 −𝑠𝛽     0

𝑐𝛽 𝑐𝛽 𝑐𝛽 𝑐𝛽
] (65) 

 

𝐳1,1
𝑏 = [−𝑐𝜃1 𝑐𝛽𝑠𝜃1 𝑠𝛽𝑠𝜃1]

𝑇 (66) 

 

𝐳1,2
𝑏 = [𝑐𝛽𝑠𝜃2 𝑐𝜃2 𝑠𝛽𝑠𝜃2]

𝑇  (67) 
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𝐳1,3
𝑏 = [𝑐𝜃3 𝑐𝛽𝑠𝜃3 𝑠𝛽𝑠𝜃3]

𝑇  (68) 

 

𝐳1,4
𝑏 = [𝑐𝛽𝑠𝜃4 −𝑐𝜃4 𝑠𝛽𝑠𝜃4]

𝑇 (69) 

 

𝐑1
𝑏 = [

𝑠𝜃1 0 −𝑐𝜃1

−𝑐𝛽𝑐𝜃1 𝑠𝛽 −𝑐𝛽𝑠𝜃1

𝑠𝛽𝑐𝜃1 𝑐𝛽 𝑠𝛽𝑠𝜃1

] (70) 

 

𝐑2
𝑏 = [

𝑐𝛽𝑠𝜃2 −𝑠𝛽 𝑐𝛽𝑠𝜃2

𝑠𝜃2 0 𝑐𝜃2

𝑠𝛽𝑐𝜃2 𝑐𝛽 𝑠𝛽𝑠𝜃2

] (71) 

 

𝐑3
𝑏 = [

−𝑠𝜃3 0 𝑐𝜃3

𝑐𝛽𝑐𝜃3 −𝑠𝛽 𝑐𝛽𝑠𝜃3

𝑠𝛽𝑐𝜃3 𝑐𝛽 𝑠𝛽𝑠𝜃3

] (71) 

 

𝐑4
𝑏 = [

−𝑐𝛽𝑠𝜃4 𝑠𝛽 −𝑐𝛽𝑠𝜃4

−𝑠𝜃4 0 −𝑐𝜃4

𝑠𝛽𝑐𝜃4 𝑐𝛽 𝑠𝛽𝑠𝜃4

] (71) 

 

Finally, the torque eq. (34) and (29), can be rearranged 

and expressed in base body coordinates as, 

 

𝛕2,𝑖     = 𝐳𝑏
1,𝑖
𝑇 𝐑𝑏

𝑖 𝐈𝑖 𝑖 𝐑𝑖
𝑇𝑏 𝛚̇𝒃

𝑏

+ 𝐳𝑏
1,𝑖
𝑇 𝛚̃𝑏

𝑏 𝐑𝑏
𝑖 𝐈𝑖 𝑖 𝐑𝑖

𝑇𝑏 𝛚𝒃
𝑏

+ 𝜃̇𝑖I𝑦𝑦 𝐳𝑏
1,𝑖
𝑇 𝛚̃𝑏

𝑏 𝒚𝑏
1,𝑖 

(74) 

 

𝛕1,𝑖     = 𝐲𝑏
1,𝑖
𝑇 𝐑𝑏

𝑖 𝐈𝑖 𝑖 𝐑𝑖
𝑇𝑏 𝛚̇𝒃

𝑏

+ 𝐲𝑏
1,𝑖
𝑇 𝛚̃𝑏

𝑏 𝐑𝑏
𝑖 𝐈𝑖 𝑖 𝐑𝑖

𝑇𝑏 𝛚𝒃
𝑏

+ 𝜃̇2,𝑖I𝑧𝑧 𝐲𝑏
1,𝑖
𝑇 𝛚̃𝑏

𝑏 𝒛𝑏
1,𝑖 + 𝜃̈𝑖I𝑦𝑦 

(75) 

 

These equations are useful to select the motors for each 

actuated joint [13]. 

 

3.  Numerical example 

 

The eq. (74) and (75) are useful for computing the motor 

requirements, while equation (63) is used to create a steering 

control law for the 4-CMG as is done in [14]. In the case of a 

flywheel motor, eq. (74), only the last term is traditionally 

taken into account to compute the required torque, but a 

numerical simulation can show how the proposed equations 

are better than the traditional approach. 

 

  
Figure 5. Effect of body motion in flywheel torque. 

 

Let us assume a flywheel with inertia of 0.16 in x and y axis 

and a value of 0.308 in z axis, which is rotating at a speed of 

10000 rpm. If the body has an angular velocity and 

acceleration, it is clear in eq. (74) than the first two terms 

contribute to the total torque. Fig. 5 illustrates the results 

obtained for a unit angular velocity and acceleration. The 

continuous line represents the torque computed with eq. (74), 

while the dotted line is the torque computed using the 

traditional approach. 

 

4.  CONCLUSIONS  

 

A new dynamic model for a 4-CMG was derived using 

the Newton-Euler algorithm, a methodology commonly used 

in Robotics. Although some simplifications were done, the 

dynamic model is useful to study the behavior of a 4-CMG. 

The obtained dynamic model can also be used for computing 

a control law for a 4-CMG. Torque equations for the 

rotational joints were also found. A simulation was 

performed to illustrate the benefit of the proposed equations. 

These equations are also useful to compute and help in 

selecting the proper motors that will drive the joints.  
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