REDISEÑO DE LAS INSTALACIONES ELÉCTRICAS DE LA INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NÚÑEZ SEDE PRINCIPAL

PIEDY DEL MAR AGAMEZ ARIAS CRISTIAN ANDRÉS MORALES VÁSQUEZ

UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR

FACULTAD DE INGENIERÍAS - PROGRAMA DE INGENIERÍA ELÉCTRICA E
INGENIERÍA ELECTRÓNICA
CARTAGENA DE INDIAS D.T. Y C.
2010

REDISEÑO DE LAS INSTALACIONES ELÉCTRICAS DE LA INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NÚÑEZ SEDE PRINCIPAL

PIEDY DEL MAR AGAMEZ ARIAS CRISTIAN ANDRÉS MORALES VÁSQUEZ

Trabajo de grado presentado como requisito para optar por el título de Ingenieros Electrónicos

Director MSc. MARIO ARRIETA PATERNINA Ingeniero Electricista

UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR

FACULTAD DE INGENIERÍAS - PROGRAMA DE INGENIERÍA ELÉCTRICA E
INGENIERÍA ELECTRÓNICA

CARTAGENA DE INDIAS D.T. Y C.

2010

AUTORIZACIÓN

Nosotros, PIEDY DEL MAR AGAMEZ ARIAS y CRISTIAN ANDRÉS MORALES VÁSQUEZ, identificados con cedulas de ciudadanía 1.128.050.687 de Cartagena y 1.047.392.736 de Cartagena, respectivamente; autorizamos a la Universidad Tecnológica de Bolívar a hacer buen uso del trabajo de grado titulado "REDISEÑO DE LAS INSTALACIONES ELÉCTRICAS DE LA INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NÚÑEZ SEDE PRINCIPAL", y a publicarlo en el catalogo ONLINE de la Biblioteca.

PIEDY DEL MAR AGAMEZ ARIAS C.C.1.128.050.687 de Cartagena CRISTIAN ANDRÉS MORALES VÁSQUEZ C.C. 1.047.392.736 de Cartagena Cartagena de Indias D.T. y C., 18 de Enero de 2009

Señores:

UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR

ATN: COMITÉ EVALUACIÓN DE PROYECTOS

Ciudad

Cordial saludo,

Me permito presentar formalmente ante ustedes el trabajo titulado "REDISEÑO DE LAS INSTALACIONES ELÉCTRICAS DE LA INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NUÑEZ SEDE PRINCIPAL", desarrollados por los estudiantes PIEDY DEL MAR AGAMEZ ARIAS y CRISTIAN ANDRÉS MORALES VÁSQUEZ, como requisito para optar por el título de Ingenieros Electrónicos, y en el cual participé como Director.

Atentamente,

MSc. MARIO ARRIETA PATERNINA

DIRECTOR

4

Cartagena de Indias D.T. y C., 18 de Enero de 2009

Señores:

UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR ATN: COMITÉ EVALUACIÓN DE PROYECTOS

Ciudad

Cordial saludo,

Nos permitimos presentar formalmente ante ustedes el trabajo titulado "REDISEÑO DE LAS INSTALACIONES ELÉCTRICAS DE LA INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NÚÑEZ SEDE PRINCIPAL", el cual fue dirigido por el Ingeniero MARIO ARRIETA PATERNINA y desarrollado por nosotros, como requisito para optar al título de Ingenieros Electrónicos.

Atentamente,

PIEDY DEL MAR AGAMEZ ARIAS
C.C.1.128.050.687 de Cartagena

CRISTIAN ANDRÉS MORALES VÁSQUEZ C.C. 1.047.392.736 de Cartagena

Nota de aceptación	
Jurado	
04.400	
Jurado	

A Dios, a nuestros padres y hermanos
por su incondicional apoyo y acompañamiento durante el curso de esta important etapa de nuestras vidas
A nuestros amigos y profesores, por todos los momentos compartidos
7

AGRADECIMIENTOS

Primeramente agradecemos a Dios, por permitirnos fortalecer nuestra vida profesional y personal con esta importante experiencia, pues cada evento vivido durante esta etapa de la vida, logró satisfacer nuestra existencia.

A la Universidad Tecnológica de Bolívar -UTB-, por todos los esfuerzos realizados para ofrecernos un completo y competitivo desarrollo profesional, y a nuestros profesores, por todos los conocimientos trasmitidos.

Piedy Del Mar Agamez Arias agradece especialmente:

Al Programa de Becas Premio a la Excelencia y Talento Caribe y por supuesto a Argos, por darme la hermosa oportunidad de ingresar a la UTB, para cumplir con el sueño de formarme como profesional.

Al señor Álvaro Críales, por el apoyo brindado a través de cada una de sus palabras.

CONTENIDO

LISTA DE ABREVIATURAS LISTA DE FIGURAS LISTA DE TABLAS LISTA DE PLANOS LISTA DE ANEXOS RESUMEN

INTRODUCCIÓN

1.	OBJET	TIVOS	18
1.1	. OBJ	ETIVO GENERAL	18
1.2	OBJ	ETIVOS ESPECÍFICOS	18
2.	CONS	IDERACIONES GENERALES	19
2.1	GEN	ERALIDADES	19
2.2	EST	ADO ACTUAL DE LAS INSTALACIONES ELÉCTRICAS	21
	2.2.1	Acometida	22
	2.2.2	Medios de desconexión principal	27
	2.2.3	Circuitos ramales	30
	2.2.4	Puestas a tierra	31
3.	DIAGN	IÓSTICO DE LAS INSTALACIONES ELÉCTRICAS	32
3.1	ACO	METIDA	32
3.2	MED	IOS DE DESCONEXIÓN PRINCIPAL	35
3.3	CIRC	CUITOS RAMALES	37
3 4	PHE	STA A TIERRA	40

4.	REDISI	EÑO DE LAS INSTALACIONES ELÉCTRICAS	42
4.1	MEM	ORIAS DE CÁLCULO	42
	4.1.1	Cálculo de iluminación de espacios interiores	42
	4.1.2	Cálculo de los circuitos ramales	44
	4.1.3	Cálculo de los circuitos alimentadores, cuadros de carga y canalizacion	າes. 56
	4.1.4	Cálculo del alimentador de baja tensión y medio de desconexión	62
	4.1.5	Cálculo del transformador	63
4.2	DIAG	RAMAS UNIFILARES	64
4.3	PRES	SUPUESTO PARA IMPLEMENTAR EL PROYECTO	65
5.	DISEÑ	O DE SISTEMA DE PUESTA A TIERRA	73
6.	CONCL	LUSIONES	76
BIB	II IOGRA	AFÍA	79

LISTA DE ABREVIATURAS

A.A. Aire Acondicionado

A.T. Acondicionador de Tensión

AWG American Wire Gauge

Cto. Circuito

I.E. Institución EducativaF_d Factor de demanda

K Índice del local

Lámp. Lámpara

η Factor de utilización

NTC Norma Técnica Colombiana

ρ Coeficiente de reflexión

RETIE Reglamento Técnico de Instalaciones Eléctricas

SPT Sistema de Puesta a Tierra

TD Tablero de Distribución

TMBB1 Tablero Multibreaker Bloque 1
TMBB2 Tablero Multibreaker Bloque 2

TMBEAD1 Tablero Multibreaker Edificio Administrativo 1
TMBEAD2 Tablero Multibreaker Edificio Administrativo 2

TMBAC Tablero Multibreaker Áreas comunes

TGBT Tablero General Baja Tensión

THHN Thermoplastic Insulation, High Heat Resistant, Dry Locations Only,

Nylon Jacket

THW Thermoplastic Insulation, High Heat Resistant, Suitable For Wet

Locations.

UPS Uninterruptible Power System

UTB Universidad Tecnológica de Bolívar

Vent. Ventilador

LISTA DE FIGURAS

	Pa	ág.
Figura 1.	Vista aérea I.E. Soledad Román de Núñez sede principal	19
Figura 2.	Transformador de distribución residencial.	22
Figura 3.	Acometida principal 1	24
Figura 4.	Curva de carga horaria - Acometida 1	25
Figura 5.	Acometida principal 2	26
Figura 6.	Curva de carga horaria - Acometida 2.	27
Figura 7.	Inexistencia de medios de desconexión principal	28
Figura 8.	Empalmes irregulares en las acometidas.	33
Figura 9.	Medidor de energía 1	34
Figura 10.	Insuficiencia de espacio para maniobrabilidad en tableros	36
Figura 11.	Canalizaciones con tuberías inadecuadas	38
Figura 12.	Enclavamientos y utilización inadecuada de tomacorrientes	е
interruptore	es de pasillo	39
Figura 13.	Canalizaciones para los equipos de A.A	40
Figura 14.	Diagrama unifilar I.E. Soledad Román de Núñez sede principal	64
Figura 15.	Arreglo propuesto para la malla de tierra	74

LISTA DE TABLAS

	P	ág.
Tabla 1.	Datos característicos del transformador de distribución residencial	23
Tabla 2.	Datos característicos acometida 1.	24
Tabla 3.	Mediciones de carga demandada - Acometida 1	25
Tabla 4.	Datos característicos acometida 2.	26
Tabla 5.	Mediciones de carga demandada - Acometida 2	27
Tabla 6.	Tableros de distribución secundarios - Acometida 1	28
Tabla 7.	Tableros de distribución secundarios - Acometida 2	30
Tabla 8.	Requerimientos para el cálculo de la cantidad de luminarias	43
Tabla 9.	Elementos de circuito del Bloque 1 y cantidades de elementos	46
Tabla 10.	Cálculo de los circuitos ramales - Bloque 1 P1	47
Tabla 11.	Cálculo de los circuitos ramales - Bloque 1 P2	48
Tabla 12.	Cálculo de porcentajes de regulación de los conductores - B1	48
Tabla 13.	Elementos de circuito del Bloque 2 y cantidades de elementos	49
Tabla 14.	Cálculo de los circuitos ramales - Bloque 2 P1	50
Tabla 15.	Cálculo de los circuitos ramales - Bloque 2 P2	51
Tabla 16.	Cálculo de porcentajes de regulación de los conductores - B2	52
Tabla 17.	Elementos de circuito del Edificio Administrativo y cantidades	de
elementos	3	52
Tabla 18.	Cálculo de los circuitos ramales – Edificio administrativo P1	53
Tabla 19.	Cálculo de porcentajes de regulación de los conductores - EAD P1	53
Tabla 20.	Cálculo de los circuitos ramales – Edificio administrativo P2	54
Tabla 21.	Cálculo de porcentajes de regulación de los conductores - EAD P2	54
Tabla 22.	Elementos de circuito de áreas comunes y cantidades de elementos.	55
Tabla 23.	Cálculo de los circuitos ramales – Áreas comunes.	55

Tabla 24.	Cálculo de porcentajes de regulación de los conductores - Ál	reas
comunes		56
Tabla 25.	Cálculo de los conductores del circuito alimentador TMBB1	57
Tabla 26.	Cálculo de los conductores del circuito alimentador del TMBB2	58
Tabla 27.	Cálculo de los conductores del circuito alimentador del TMBEAD1	59
Tabla 28.	Cálculo de los conductores del circuito alimentador del TMBEAD2	60
Tabla 29.	Cálculo de los conductores del circuito alimentador del TMBAC	61
Tabla 30.	Cálculo de los conductores del circuito alimentador del TGBT	62
Tabla 31.	Presupuesto de ejecución de la obra.	66
Tabla 32.	Resistencia medida del suelo - Método de Wenner.	73

LISTA DE ANEXOS

Pág.

Anexo 1.	Dictamen de inspección y verificación de instalaciones eléctricas p	oara
uso final s	egún RETIE	. 82
Anexo 2.	Cuadro de carga TMBB1	83
Anexo 3.	Cuadro de carga TMBB2	. 84
Anexo 4.	Cuadro de carga TMBEAD1	85
Anexo 5.	Cuadro de carga TMBEAD2	. 86
Anexo 6.	Cuadro de carga TMBAC	87
Anexo 7.	Plano de planta I.E. Soledad Román de Núñez sede principal y	Red
externa ac	tual	. 88
Anexo 8.	Instalaciones Eléctricas Bloque 1	. 89
Anexo 9.	Instalaciones Eléctricas Bloque 2	. 90
Anexo 10.	Instalaciones Eléctricas Edificio Administrativo	91
Anexo 11.	Instalaciones Eléctricas Áreas Comunes	. 92
Anexo 12.	Tablero General de Baja Tensión y Distribución de Alimentadores.	. 93
Anexo 13.	Sistema de Puesta a Tierra	94

RESUMEN

La creciente necesidad en la cobertura educativa y la continua evolución de las tecnologías implementadas en las instituciones educativas de la ciudad de Cartagena para incrementar la calidad con la que se imparte la educación en las escuelas del sector oficial, han incrementado los requerimientos para acondicionar las diferentes infraestructuras para tales fines.

La mayoría de las infraestructuras cuentan con deficiencias en la parte eléctrica, por lo que a partir de ello y de la perspectiva de responsabilidad social que poseemos como futuros Ingenieros Electrónicos de la UTB, se realizara en la institución educativa Soledad Román de Núñez sede principal el rediseño de sus instalaciones eléctricas.

El rediseño de las instalaciones eléctricas se inicia con la evaluación del estado actual de las instalaciones, en donde se realiza el monitoreo de diversas variables y la verificación del cumplimiento de las normatividades y reglamentaciones vigentes. A partir de esta información y de los requerimientos expuestos en el RETIE, NTC 2050, IEEE Standard 80-2000, entre otros, se realiza el rediseño de la instalación eléctrica. Finalmente, se presentan las memorias de cálculo, presupuesto de la implementación del rediseño, planos del rediseño, y el diseño de una malla para el sistema de tierra para la institución educativa.

INTRODUCCIÓN

La progresiva inclusión de tecnologías y equipos de funcionamiento eléctrico para mejorar la calidad en el desarrollo de diversas actividades cotidianas, ha propiciado la necesidad de cumplir las distintas normatividades y reglamentaciones vigentes en el país, para así garantizar realmente la seguridad de las personas.

En Cartagena el sector educativo, para incrementar la calidad, ha incluido implementaciones tecnológicas dentro de sus ayudas educativas, tales como: los equipos de cómputo, equipos audiovisuales, equipos de sonido, entre otros; tal incremento sumado a la creciente necesidad de cobertura educativa, ha traído como consecuencia un déficit en la infraestructura de algunas de las instituciones públicas, especialmente las de mayor antigüedad. Este déficit, se ve representado en mayor proporción por la infraestructura eléctrica¹, la cual en la actualidad, se ha convertido en un impacto negativo sobre el desarrollo de las actividades cotidianas. En especial, en la I.E. Soledad Román de Núñez sede principal, se presentan aspectos como insuficiencia para alimentar simultáneamente la carga instalada, sobredimensionamiento de las protecciones en los TD, ausencia de canalizaciones, entre otras cosas.

Conjugando, estas perspectivas y la de responsabilidad social de los ingenieros electricistas y electrónicos de la UTB se obtiene que, apoyando este tipo de instituciones, se contribuye tanto a la adecuada utilización de la energía eléctrica como al desarrollo de la ciudad

SECRETARIA DE EDUCACIÓN DE CARTAGENA, Instituciones, Infraestructura – sicied, http://www.sedcartagena.gov.co/index.php?option=com_content&task=view&id=24 [consulta: 18 de noviembre de 2009].

1. OBJETIVOS

1.1. OBJETIVO GENERAL

Rediseñar la instalación eléctrica de la institución educativa Soledad Román de Núñez sede principal, propiciando la correcta implementación de las instalaciones eléctricas y estimulando el buen uso de la energía eléctrica, para dar cumplimiento de las normatividades y reglamentaciones vigentes, y al mismo tiempo brindarle apoyo a la sociedad cartagenera desde la perspectiva de responsabilidad social que imparte la UTB a sus futuros ingenieros electrónicos.

1.2 OBJETIVOS ESPECÍFICOS

- Diagnosticar el estado actual de las instalaciones eléctricas de la institución educativa Soledad Román de Núñez sede principal, en función del Reglamento Técnico de Instalaciones Eléctricas RETIE, la Norma Técnica Colombiana NTC 2050 y la IEEE Standard 80-2000.
- Evaluar la conformidad de las instalaciones eléctricas de la institución educativa Soledad Román de Núñez sede principal, con respecto a lo expuesto en el RETIE, y según pertinencia.
- Rediseñar las instalaciones eléctricas de uso final de la institución educativa Soledad Román de Núñez sede principal, en función de dar cumplimiento al RETIE, NTC 2050 y la IEEE Standard 80-2000.
- Seleccionar correctamente los elementos de protección y conducción de acuerdo a la capacidad de corriente, tensión de aislamiento, regulación temperatura y corriente de cortocircuito, según sea el caso.

2. CONSIDERACIONES GENERALES

2.1 GENERALIDADES

La I.E. Soledad Román de Núñez sede principal, es una institución de carácter público ubicada en Escallón Villa Cra 57 # 30D 47, que cuenta con 3 edificaciones de dos plantas conformadas por el edificio administrativo, el bloque 1 y el bloque 2, 1 edificación de uso múltiple y una zona de áreas comunes y recreativas, así como se presenta en anexo 7.

Figura 1. Vista aérea I.E. Soledad Román de Núñez sede principal.

Comprende un área total² de 3.439m² y un área construida de 2.175m² conformada por diversos ambientes³, así como se específica a continuación:

² SECRETARIA DE EDUCACIÓN DE CARTAGENA, *Sistema Interactivo de Consulta De Infraestructura Educativa*, Bogotá, Colombia: *Ministerio de Educación*, 2006. http://www.sedcartagena.gov.co/sisied/I.E.%20SOLEDAD%20ROMAN%20DE%20NUNEZ.pdf

³ SECRETARIA DE EDUCACIÓN DE CARTAGENA, *Instituciones, Infraestructura – sicied*, http://www.sedcartagena.gov.co/index.php?option=com_content&task=view&id=141&Itemid=149 [consulta: 18 de noviembre de 2009].

Ambientes tipo A:

Veintisiete (27) aulas de clase distribuidas en dos bloques, cada uno de dos pisos.

Ambientes tipo B:

- Una (1) biblioteca principal en el B2 P1.
- Un (1) biblioteca bibliobanco en el B1 P1.
- Una (1) sala de informática en el B1 P2.
- Una (1) sala de audiovisuales en el B1 P2.
- Una (1) sala de audiovisuales para niños sordos en el B2 P2.

Ambientes tipo C:

- Un (1) laboratorio de física en el B2 P2.
- Un (1) laboratorio de química en el B2 P2.

Ambientes tipo D:

Una (1) cancha múltiple.

• Ambientes tipo F:

Un (1) aula múltiple.

Ambientes administrativos:

- Cuatro (4) minitiendas.
- Dos (2) salas de profesores.
- Dos (2) baterías sanitarias.
- Dos (2) oficinas.
- Una (1) sala de rectoría.
- Una (1) secretaría general.
- Una (1) sala de coordinación académica.
- Una (1) sala de coordinación de disciplina.

Una (1) cocina.

Una (1) portería.

Una (1) estación de radio.

Esta institución educativa de carácter académico acoge cerca de 4700 estudiantes⁴ en 4 jornadas (mañana, tarde, noche y fin de semana), ofreciéndoles formación académica con énfasis en media técnica comercial, académica e industrial y formación especial a niños con problemas auditivos y con problemas de autismo.

2.2 ESTADO ACTUAL DE LAS INSTALACIONES ELÉCTRICAS

Para establecer la problemática que poseen las instalaciones eléctricas de la I.E. Soledad Román de Núñez sede principal, primeramente, se hace necesario realizar una descripción detallada del estado actual de las instalaciones eléctricas de la institución, el cual implica conocer la infraestructura eléctrica y monitorear variables eléctricas (tensión, corriente y temperatura) que evidencien el estado de la misma según los distintos tipos de carga, detectando así puntos vulnerables. Por lo anterior, la revisión de la instalación eléctrica en función de las variables temperatura, tensión y corriente fue necesaria; además, de verificar el estado de los conductores, presencia y pertinencia de tableros de distribución, medios de desconexión y protección, sistemas de puesta a tierra y aplicación de las normatividades correspondientes [1], [2].

Como primera medida, se intentó recurrir a los planos eléctricos de la institución educativa, pero en esta no cuentan con planos eléctricos de la instalaciones;

⁴MINISTERIO DE EDUCACIÓN NACIONAL, *Sistemas de Información*, http://www.mineducacion.gov.co/buscandocolegio/[consulta: 18 de noviembre de 2009].

tampoco cuentan con memorias de cálculo que permitan soportar y revisar las intervenciones que ha sufrido la instalación.

2.2.1 Acometida

El seguimiento realizado a las instalaciones eléctricas se inició desde la salida de baja tensión del transformador de distribución residencial, donde se encontró que este posee las características presentadas en la tabla 1, y que de allí se derivan dos acometidas principales para la institución educativa y varias acometidas para las diferentes viviendas aledañas al sector, ver anexo 7.

Figura 2. Transformador de distribución residencial.

Tabla 1. Datos característicos del transformador de distribución residencial.

Características Transformador de Distribución Residencial				
Potencia Nominal	50 KVA 1Ø 3hilos			
Relación de transformación	13200/240-120 V			
Corriente nominal	208 A			
%Z ⁵	1.2-6.4			
Frecuencia	60 Hz			
Tipo de refrigeración	En aceite			
Tipo de instalación	En poste			

La acometida 1 de la institución, es la que provee de energía a las aulas de clase y oficinas que se encuentran en el bloque 1, batería sanitaria, edificio administrativo y lámparas externas del bloque 1; cuenta con las características que se presentan en la tabla 2. Esta acometida presenta empalmes irregulares en el tramo comprendido entre la salida de baja tensión del transformador de distribución residencial y el medidor de energía 1 y ausencia de ductos o canalizaciones para los conductores.

La energía entregada por la empresa de energía a la institución a través de esta acometida, es medida por un contador SCHLUMBERGER 2 \emptyset , 3h y 2 elementos, de 25 A_{nom} , 100 A_{max} y K_d 138 8/9 rev/KW-h.

23

⁵ COOPER BUSSMANN, *Engineering Dependable Protection For An Electrical Distribution System Bulletin EDP-1*, http://www.bussmann.com/library/docs/Edp-1.pdf [consulta: 22 de noviembre de 2009].

Tabla 2. Datos característicos acometida 1.

Características Acometida 1				
Calibre del conductor fase R	Cu 1/0 AWG			
Aislamiento fase R	THW 75°C			
Calibre del conductor fase S	Cu 2 AWG			
Aislamiento fase S	THW 75°C			
Calibre del conductor de neutro	Cu 4 AWG			
Aislamiento de neutro	THW 75°C			

Figura 3. Acometida principal 1.

En la figura 4, se presenta la curva de carga horaria de la acometida 1, el cual se obtuvo a través de las mediciones realizadas con la pinza voltiamperimétrica a los conductores de la acometida, en cada una de las horas indicadas. En la tabla 3, se presenta la tabulación de esta información.



Figura 4. Curva de carga horaria - Acometida 1.

Tabla 3. Mediciones de carga demandada - Acometida 1.

Carga Demandada	4,27	4,29	4,26	4,23	4,25	4,26	22,41	29,69
Hora de medición	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00
Carga Demandada	31,72	36,56	44,79	44,67	23,39	40,39	44,69	44,62
Hora de medición	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00
Carga Demandada	34,56	31,98	28,62	27,89	27,37	25,98	4,29	4,26
Hora de medición	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00

La acometida 2 de la institución, es la que provee de energía a las aulas de clase, aula múltiple, oficinas, minitiendas, laboratorios, y batería sanitaria que se encuentran aledaños al bloque 2; posee las características que se presentan en la tabla 4.

La energía entregada por la empresa de energía a la institución a través de esta acometida, es medida por un contador ACTARIS SL1631 $1\emptyset$, 3h y 1 elemento, de $15A_{nom}$, $100A_{max}$ y K_d 277 7/9 rev/KW-h.

Figura 5. Acometida principal 2.

Tabla 4. Datos característicos acometida 2.

Características Acometida 2				
Calibre de los conductores	Cu 2 AWG			
Aislamiento	THW 75°C			
Calibre de neutro	Cu 4 AWG			
Aislamiento	THW 75°C			

En la figura 6, se presenta la curva de carga horaria de la acometida 2, el cual se obtuvo a través de las mediciones realizadas con la pinza voltiamperimétrica a los conductores de la acometida, en cada una de las horas indicadas. En la tabla 5, se presenta la tabulación de esta información.

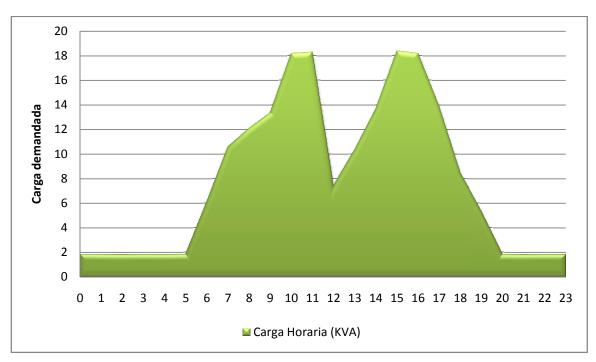


Figura 6. Curva de carga horaria - Acometida 2.

Tabla 5. Mediciones de carga demandada - Acometida 2.

Carga Demandada	1,86	1,85	1,83	1,85	1,84	1,86	6,13	10,59
Hora de medición	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00
Carga Demandada	12,09	13,36	18,2	18,3	7,46	10,35	13,67	18,4
Hora de medición	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00
Carga Demandada	18,2	13,86	8,48	5,34	1,85	1,83	1,85	1,84
Hora de medición	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00

2.2.2 Medios de desconexión principal

Durante la identificación de los gabinetes de desconexión principales se encontró que estos no existen y que por tal motivo las acometidas se encuentran derivadas

en varios grupos de conductores; por lo que se hizo necesario entonces ubicar los gabinetes o tableros de distribución secundarios.

- a) Extremo final acometida 1.
- b) Extremo final acometida 2.

Figura 7. Inexistencia de medios de desconexión principal.

Al realizar el seguimiento al grupo de conductores de la acometida 1 se encontraron 5 tableros de distribución secundarios que fueron denominados TP1, TP2, TP3, TUPS y TR1; de los cuales se logró adquirir la información que se presenta en la tabla 6.

Tabla 6. Tableros de distribución secundarios - Acometida 1.

	Ubicación	Características
TP1	Sala de audiovisuales FD. ADMIN.	4 circuitos a 240V, empotrado en pared. Barrajes de 125A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C.
	ED. ADIVIIIV.	Circuitos ramales no identificados.

		4 circuitos a 240V, empotrado en pared.
TP2	Sala de audiovisuales ED. ADMIN.	Barrajes de 125A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C.
		Circuitos ramales no identificados.
TP3	Sala de informática ED. ADMIN.	1 Circuito a 240V o 2 a 120V, empotrado en pared. Barrajes de 75A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C. Circuito ramal no identificado.
TUPS	Sala de informática ED. ADMIN.	1 Circuito a 240V o 2 a 120V, sobrepuesto en pared. Barrajes de 75A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C. Circuito ramal correspondiente a la alimentación de la UPS.
TR1	Sala de informática ED. ADMIN.	2 Circuitos a 240V o 4 120V, sobrepuesto en pared. Barrajes de 125A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C. Circuitos Ramales correspondientes a alimentación de switch, patch pannel y servidor.

Durante el seguimiento realizado al grupo de conductores de la acometida 2 se encontraron 2 tableros de distribución secundarios que fueron denominados TP4 y TP5; de los cuales se logró adquirir la información que se presenta en la tabla 7.

Tabla 7. Tableros de distribución secundarios - Acometida 2.

	Ubicación	Características
TP4	Sala de profesores B2 P1	12 circuitos a 240V, empotrado en pared. Barrajes de 125A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C. Circuitos ramales no identificados.
TP5	Aula de Clase B2 P2	12 circuitos a 240V, empotrado en pared. Barrajes de 125A para conductores no puestos a tierra, 1 barra de neutro y 1 barra de tierra. Conductores de alimentación de Cu 8 AWG THW 75°C. Circuitos ramales no identificados.

2.2.3 Circuitos ramales

Los circuitos ramales de la institución no se identificaron completamente, debido a que no se contaba con el equipo requerido para tal fin; por lo que fue necesario recorrer cada uno de las aulas de clase, oficinas, el auditorio y pasillos de la institución; encontrando, ausencia de canalizaciones, deterioro de canalizaciones existentes, canalizaciones que no corresponden a las requeridas por determinados tipos de circuitos, conexiones y derivaciones peligrosas, insuficiencia en la cantidad de tomacorrientes e interruptores hallados en las oficinas y aulas de clase, tomacorrientes e interruptores deteriorados y sin punto de conexión a tierra dentro de las aulas de clase, tomacorrientes de pasillos con encerramientos de

PVC y sin punto de conexión a tierra, iluminación insuficiente, luminarias en mal estado y con parte metálica sin conexión a tierra.

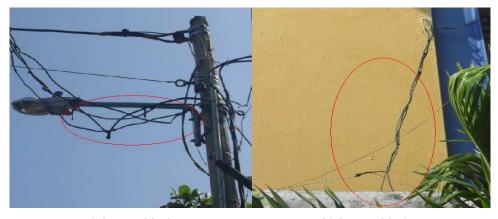
Durante este recorrido, se observo que la mayor deficiencia de la instalación eléctrica se encuentra concentrada en las aulas de clase y en los pasillos de la institución.

2.2.4 Puestas a tierra

La institución no cuenta con un sistema de puesta a tierra que permita proteger toda la instalación eléctrica, los equipos de computo, equipos de comunicaciones y por supuesto a las personas de las posibles tensiones de paso, de contacto o transferidas que se puedan presentar en caso de falla, así como se expone en el articulo 15 del RETIE [1]; aun así, durante el recorrido por la institución, se logro comprobar que si existe un punto de tierra, pero este, solo se encuentra protegiendo a los equipos de computo que se ubican en la sala de informática.

3. DIAGNÓSTICO DE LAS INSTALACIONES ELÉCTRICAS

Las visitas técnicas realizadas a la institución educativa Soledad Román de Núñez sede principal permitieron obtener información del estado actual de las instalaciones eléctricas de la institución, tanto por mediciones como por observación, ver anexo 1; el diagnostico obtenido a partir de esta información y de lo expuesto en las normatividades NTC 2050 y reglamentación RETIE, dejo ver con claridad los síntomas y signos que propician el incorrecto estado y utilización de la instalación eléctrica de la institución [4].


3.1 ACOMETIDA

El diagnostico, al igual que la determinación del estado actual de las instalaciones eléctricas se inició desde la salida de baja tensión del transformador de distribución residencial hasta cada una de las acometidas con las que cuenta la institución educativa.

Las acometidas 1 y 2 de la institución presentan algunas inconsistencias en relación con lo expuesto en la normatividad NTC 2050; dentro de tales inconsistencias se tiene:

• Existen dos acometidas a través de las cuales se provee de energía al mismo cliente. La NTC 2050 sección 230-2a expone que debe existir una, pero la excepción 4b del mismo artículo admite una segunda acometida cuando se supera el máximo de carga permitido por la comercializadora de energía para una acometida; aun así la máxima carga a alimentar puede ser de 18KVA [5] según las características del tipo de servicio; carga máxima que fue superada en 25KVA por la acometida 1.

- Sin presencia de identificación en cada acometida, en el cual se indique la existencia de la otra acometida en la misma infraestructura, así como lo expone en la sección 230-2b de la NTC 2050 [2].
- Empalmes irregulares en la red secundaria del tramo comprendido entre la salida de baja tensión del transformador de distribución residencial y el medidor de energía 1, y entre la salida de baja tensión del transformador de distribución residencial y el medidor de energía 2, los cuales se realizan sin la implementación de elementos que permitan asegurar este tipo de conexión; incumpliendo con esto, lo expuesto en la sección 230-46 de la NTC 2050 [2].

a) Acometida 1.

b) Acometida 2.

Figura 8. Empalmes irregulares en las acometidas.

- Ausencia de canalización que proteja la acometida contra daños físicos, así como lo expone la sección 230-50 de la NTC 2050; esta canalización debe realizarse con tubería EMT [2].
- Los conductores no puesto a tierra de la acometida 1 presentan calibres diferentes para el mismo tramo; además se encuentran conduciendo

corriente por encima del 87% de la capacidad expuesta en la tabla 310-17 de la NTC 2050, y aplicándole el factor de corrección por temperatura pertinente; por lo que se establece que, según la sección 220-10b, que estos se encuentran trabajando sobrecargados. De igual forma, estos conductores no puestos a tierra no poseen elementos de protección contra sobrecarga, según lo especifica la sección 230-90.

 Subdimensionamiento de los medidores de energía, en relación con la máxima corriente que puede medir correctamente el equipo y la corriente máxima demandada por la carga de la institución [6], [7].

Figura 9. Medidor de energía 1.

- Ausencia de punto de conexión a tierra y del conductor puesto a tierra en el tramo de acometida para proteger los elementos, circuitos y seres vivos, así como lo exponen las secciones 250-23, 250-32, 250-25 y 250-53 de la NTC 2050. Del mismo modo, no se presenta conexión equipotencial entre las partes metálicas no portadoras de corrientes de los equipos de acometida, así como lo expone la sección 250-71 de la NTC 2050 [2].
- La caída de tensión que se presenta en el tramo de acometida se en encuentra alrededor del 6%, superando el valor máximo permitido [8].

3.2 MEDIOS DE DESCONEXIÓN PRINCIPAL

Como se anotó en el capitulo anterior, durante el recorrido por la institución se verifico la inexistencia de un medio de desconexión principal, que permita desconectar desde un único tablero la alimentación eléctrica que llega a la institución educativa, a través de la acometida; lo que origina primeramente, el incumplimiento de las secciones 230-55 y 230-70 de la NTC 2050 [2], en donde se expone la necesidad de desconectar todos los conductores de la instalación eléctrica, a partir de los conductores de acometida.

En lo referente a los medios de desconexión secundarios, se puede anotar que en la institución educativa se presentan las siguientes inconsistencias:

- No se presentan los respectivos diagramas unifilares que permitan orientar acerca de los elementos que se energizan y protegen a través de él; según requerimiento expuesto en el RETIE en el artículo 17, sección 17.9.1h [1].
- Los conductores de entrada a los tableros se encuentran conduciendo corriente entre el 110% y el 85% por encima de la capacidad expuesta en la tabla 310-17 de la NTC 2050, y aplicándole el factor de corrección por temperatura correspondiente; por lo que se establece, según lo expuesto en la sección 220-10b de la NTC 2050, que los conductores se encuentran trabajando sobrecargados; además, no se presenta el equilibrio de las ramas de un mismos tablero, así como lo expone la sección 220-4d de la NTC 2050, lo que se refleja en el desbalance entre los conductores no puestos a tierra de las acometidas [2].
- Empalmes y conexiones irregulares dentro de los tableros de distribución, en los que no existe el uso o implementación de ningún elemento que

permita realizar empalmes seguros, y como lo expone la sección 110.14b de la NTC 2050 [2].

 El área disponible para el cableado dentro de los tableros se encuentra saturada por los conductores del alimentador y por los empalmes irregulares, lo que limita la maniobrabilidad de los conductores en el interior de los mismos; omitiendo con esto lo expuesto en la sección 373-3 de la NTC 2050 [2].

Figura 10. Insuficiencia de espacio para maniobrabilidad en tableros.

- Sobredimensionamiento de las protecciones que corresponde a cada uno de los circuitos ramales que se contemplan dentro de los tableros, lo que ocasiona que ni los elementos, ni los conductores de dichos circuitos ramales se encuentren protegidos; omitiendo lo expuesto en la sección 210-20 de la NTC 2050 [2].
- Incumplimiento del código de colores expuesto en el RETIE en el artículo 11, sección 11.4 y exigido para los tableros de distribución en el en el artículo 17, sección 17.9.1.2h, del presente reglamento [1].
- No se encuentran conectadas al punto de tierra, las partes metálicas de los tableros de distribución; según lo exige el RETIE en el artículo 17, sección 17.9.1.1e [1] y la sección 250-32 de la NTC 2050 [2]. Tampoco se presenta

conexión equipotencial entre el conductor puesto a tierra de la instalación y el punto de conexión a tierra que posee el tablero, así como lo sugiere la sección 250-114 de la NTC 2050 [2].

3.3 CIRCUITOS RAMALES

Los circuitos ramales de la institución presentan las siguientes inconsistencias:

- Incumplimiento del código de colores expuesto en el RETIE en el artículo
 11, sección 11.4 [1], para los conductores de los circuitos ramales.
- Ausencia o intermitencia de las canalizaciones en algunos tramos de los circuitos ramales que alimentan los ventiladores y/o lámparas de las aulas de clase, interrumpiendo la continuidad de la canalización, así como lo exponen las secciones 300-10 y 300-12 de la NTC 2050 [2].
- Se presentan empalmes y conexiones irregulares a lo largo del circuito ramal, en los que no se utiliza ningún elemento que permita realizar empalmes seguros [9], y como lo expone la sección 110.14b de la NTC 2050 [2].
- La tubería utilizada para la canalización no es la requerida por las condiciones a las que se encuentran expuestos los circuitos ramales que alimentan los elementos de los segundos pisos de toda la infraestructura de la institución; esta tubería es de PVC tanto para techo y paredes, y según lo expuesto en la secciones 347 y 348 de la NTC 2050, esta canalización debe ser de tubería EMT para el techo, debido a que en estos lugares no hay cielo raso [2].

a) Pasillo edificio administrativo.

b) Aula bloque 2 P2.

Figura 11. Canalizaciones con tuberías inadecuadas.

- En promedio existe 1 tomacorriente en las aulas de clase y 2 tomacorrientes en las oficinas; al verificar lo expuesto en la sección 210-52, se establece que existe insuficiencia de los mismos, en estos espacios.
 Además, en la mayoría de las aulas de clase, estos elementos se encuentran deteriorados.
- La mayor parte de los tomacorrientes instalados en aulas de clase y oficinas no cumplen con lo requerido en el articulo 17.5.1e del RETIE [1], lo que indica que el neutro no se ubica en la parte superior; Los tomacorrientes dispuestos para conectar cordones, no se encuentran conectados eficazmente a tierra, así como lo expone la NTC 250 en la sección 210-7 [2].
- Los tomacorrientes que se ubican en los pasillo o corredores de la institución no cuentan con los encerramientos adecuados para el ambiente al cual se encuentran expuestos; además a pesar de poseer el punto de conexión a tierra, realmente no se encuentran conectados a tierra, así como lo expone la NTC 250 en la sección 370-17 [2].

Figura 12. Enclavamientos y utilización inadecuada de tomacorrientes e interruptores de pasillo.

- En la cocina de la institución educativa se hallaron tomacorrientes sin protección especial a las personas, es decir sin protección por falla a tierra; incumpliendo lo expuesto en la sección 210-8 de la NTC 2050 [2]. Del mismo modo se verificó que tales tomacorrientes no cumplen con los requisitos de instalación expuestos en las secciones 210-52b y 210-52c.
- Los niveles de iluminancia que poseen, principalmente las aulas de clase, son insuficientes en comparación con los valores mínimos exigidos por el RETIE [1] en el articulo 16.2g; comportamiento que puede estar presentándose por el incorrecto funcionamiento o deterioro de las luminarias y lámparas.

- Las partes metálicas de las luminarias, tomacorrientes y cajas de conexiones no portadoras de corriente, no se encuentran conectadas a tierra, incumpliendo uno de los requerimientos expuestos en la sección 250-42 de la NTC 2050 [2].
- Las canalizaciones de los equipos de aire acondicionado se encuentran expuestas tanto a las condiciones ambientales como a los daños físicos; por tanto, según lo expuesto en las secciones 348 y 351 de la NTC 2050
 [2], esta no debe ser tubería no metálica flexible, sino tubería metálica rígida.

Figura 13. Canalizaciones para los equipos de A.A.

3.4 PUESTA A TIERRA

La institución educativa no cuenta con un sistema de puesta a tierra que le permita proteger la instalación eléctrica, los equipos de computo, equipos de

comunicaciones y por supuesto a las personas de las posibles tensiones de paso, de contacto o transferidas que se puedan presentar en caso de falla, así como se expone en el artículo 15 del RETIE [1] y la sección 250 de la NTC 2050 [2]; a pesar de esto, se comprobó que la institución, cuenta con un punto de tierra, que únicamente protege los equipos de computo que se ubican en la sala de informática.

La ausencia de un sistema de puesta a tierra ha conllevado a que en las instalaciones eléctricas de la institución educativa se presenten diversos tipos de inconsistencias, como por ejemplo, que en el tramo de acometida no exista la conexión a tierra que permita proteger a los elemento de circuito y seres vivos de cualquier posible falla a tierra, así como lo exponen las secciones 250-23, 250-32, 250-25 y 250-53 de la NTC 2050 [2]; que no existan conexión equipotencial entre las partes metálicas no portadoras de corrientes de los equipos de acometida, así como lo expone la sección 250-71 de la NTC 2050 [2]; que las partes metálicas de los tableros de distribución no se encuentren conectadas al punto de tierra, según lo exige el RETIE en el artículo 17, sección 17.9.1.1e [1] y la sección 250-32 de la NTC 2050 [2]; que no exista conexión equipotencial entre el conductor puesto a tierra de la instalación y el punto de conexión a tierra que posee el tablero, así como lo sugiere la sección 250-114 de la NTC 2050 [2]; que las partes metálicas de las luminarias, tomacorrientes y cajas de conexiones, no se encuentren conectadas a tierra, como lo exige la sección 250-42 de la NTC 2050 [2]; que no se equipotencialice con el punto de conexión a tierra las estructuras metálicas de la institución, según lo exige la sección 250-80 de la NTC 2050 [2].

4. REDISEÑO DE LAS INSTALACIONES ELÉCTRICAS

El rediseño de la instalación eléctrica de la institución educativa Soledad Román de Núñez sede principal se realiza para corregir las situaciones anómalas que se notaron durante las visitas a la misma; teniendo en consideración lo expuesto en las normatividades y reglamentaciones vigentes.

4.1 MEMORIAS DE CÁLCULO

4.1.1 Cálculo de iluminación de espacios interiores

El cálculo de la iluminación requerida para los espacios interiores tales como aulas de clase, laboratorio de física, laboratorio de química, oficinas, baterías de baño, entre otros; se realiza utilizando el método de los lúmenes [10], [11], [12]. Se debe considerar que la iluminación será una iluminación directa, que las lámparas son fluorescentes tubulares de sobreponer, excepto en el aula múltiple, en donde la iluminación se realizará a través de reflectores; y los ambientes sobre los cuales se trabajará cuentan con una limpieza periódica establecida por la institución.

Del mismo modo, se tendrá en cuenta los niveles de iluminancia requeridos para cada ambiente, según lo expuesto en la tabla 26 de RETIE [1]; en la siguiente tabla se presentan los datos requeridos para determinar la cantidad de luminarias para cada ambiente, como los resultados obtenidos.

Tabla 8. Requerimientos para el cálculo de la cantidad de luminarias.

Lugar	Área del lugar	lluminancia exigida (lx)	h al plano trabajo	Otros requerimientos	Lum. requeridas
Aulas de clase B1P1 y B2P1	35m ²	300	3m		2
Aulas de clase B1P2 y B2P2	35m²	300	3m		2
Laboratorio de física	50m ²	300	3,8m		5
Laboratorio de química	84m²	300	3,8m		6
Baterías sanitarias	56m ²	100	2,4m		1
Rectoría/ Salas de profesores	56m²	300	3m		4
Secretaría general	35m ²	300	3m		3
Biblioteca	48m²	300	3m		4
Otros espacios	24m²	300	3m		2
Aula múltiple	150m ²	300	5m		4

4.1.2 Cálculo de los circuitos ramales

El cálculo de los circuitos ramales de la instalación eléctrica, se encuentra sujeto a las especificaciones de carga de cada uno elementos del circuito y a los procedimientos establecidos en la NTC 2050 [2], que se expondrán a continuación.

4.1.2.1 Especificaciones de los elementos de circuito

Las especificaciones eléctricas de los elementos de circuito permitirán obtener un valor real de la carga que cada uno de ellos le supondrá al circuito ramal cuando se encuentre en funcionamiento, por lo que a continuación se presentaran las características de cada uno de ellos.

- Tomacorrientes dobles de 15A a 120V con polo a tierra, y carga mínima de 180VA según sección 220-3 de la NTC 2050 [2].
- Luminarias fluorescentes para empotrar, con lámparas 2x40W T12. Que representan una carga de 92W por luminaria, considerando la potencia requerida por el balasto electromagnético.
- Ventiladores de techo a 120V que representan una carga de 130W [13].
- Aires acondicionados Minisplit a 220V 1Ø, que representan una carga de 2970W o se 2230W, de acuerdo a las características de placa.
- Aires acondicionados Minisplit a 220V 1Ø, que representan una carga de 2230W, de acuerdo a las características de placa.

- Aire acondicionado central a 220V 1Ø, que representa una carga de 4300W.
- Acondicionador de tensión a 220V 1Ø, que representa una carga de 6000VA.
- Lámparas de iluminación exterior a 220V 1Ø, que representan una carga de 454W [14].

4.1.2.2 Cálculo de los conductores, regulación y protecciones de los circuitos ramales

Los circuitos ramales requeridos para alimentar las cargas o elementos de circuitos que se encuentran presentes en la institución educativa, se determinaran considerando lo expuesto en la NTC 2050, en las secciones: 210-3, en donde se especifica la capacidad nominal del circuito ramal; 210-8 y 210-52, en donde se especifica la necesidad de colocar tomacorrientes con protección por falla a tierra en lugares como cocinas y baños, y las condiciones de instalación de los mismos; 210-20, en donde se hace referencia a las protecciones por sobrecorriente; 210-70, en el que se especifica donde se deben instalar salidas de alumbrado; 220-3, en el cual se establecen las condiciones para determinar el mínimo calibre del conductor de los circuitos ramales; 220-4, en donde se especifican los circuitos ramales necesarios en una instalación eléctrica; 210-19a, en el cual se establece el porcentaje de regulación máximo permitido; 240-6, en el que se especifica la capacidad nominal de los fusibles; 250-95, en donde se hace referencia al calibre del conductor de tierra. Del mismo modo, se deben contemplar los factores de corrección que se le aplicarían a la capacidad mínima del conductor, debido a la temperatura a la que se encuentran expuestos, que en este caso es de 32°C en promedio (lo que corresponde a un factor de 0,96), y a la canalización de los mismos [16]. El cálculo de los circuitos ramales también se realiza teniendo en cuenta la previa distribución que plantea para los tableros de distribución secundarios, así como se presenta a continuación.

 Circuitos ramales Bloque 1: la carga que suponen los elementos instalados en esta infraestructura, se presenta en la tabla 9 y los circuitos ramales respectivos a este bloque, con sus capacidades de corriente, conductores de fase, neutro, tierra y protecciones seleccionadas, en las tablas 10 y 11; finalmente, en la tabla 12 se presenta el calculo del porcentaje de regulación de los conductores de estos circuitos ramales.

Tabla 9. Elementos de circuito del Bloque 1 y cantidades de elementos.

Lugar	Cant	Lámparas	Tomas	Ventiladores	A.A
Aulas de clase B1P1	7 aulas	2 en cada aula	2 en cada aula	2 en cada aula	0
Aulas de clase B1P2	10 aulas	2 en cada aula	2 en cada aula	2 (6/10) y 3 (4/10)	0
Estación de radio	1	1	2	0	0
Batería de baño	1	2	0	0	0
Coordinación 1	1	6	5	1	1
Coordinación 2	1	2	4	1	0
Oficina	1	1	2	0	1
Pasillos B1P1	1	6	3	0	0
Pasillos B1P2	1	6 Lámp y 2 Reflect.	3	0	0
Escaleras	1	1	1	0	0

Tabla 10. Cálculo de los circuitos ramales - Bloque 1 P1.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	I _{circuito}	I _{conductor}	Cto
Aulas de clase B1P1	Lámp.	110V	92VA	1288	11,71A	21,78A	
Estación de radio	Lámp.	110V	25VA	25	0,23A	0,42A	A AWG
Batería de baño	Lámp.	110V	92VA	184	1,67A	3,11A	Cto. #1: 30A Conductores 10AWG
Coordinación 1	Lámp.	110V	92VA	552	5,02A	9,33A	Cto.
Coordinación 2	Lámp.	110V	92VA	184	1,67A	3,11A	Con
Oficina	Lámp.	110V	92VA	92	0,84A	1,56A	
	TOTA	L		2325	21,1A	39,32A	
Aulas de clase B1P1	Vent.	110V	130VA	1820	16,55A	30,8A	ტ
Estación de radio / Batería de baño / Oficina	Vent.	110V	130VA	0	0A	0A	Cto. #2 : 20A Conductores 12AWG
Coordinación 1	Vent.	110V	130VA	130	1,18A	2,19A	Cto
Coordinación 2	Vent.	110V	130VA	130	1,18A	2,19A	ပိ
	TOTA	L		2080	18,2A	35,17A	
Aulas de clase B1P1	Tomas	110V	180VA	2520	22,91A	42,61A	Cto. 3 30A 10AWG
	TOTA	L		2520	22,9	42,619A	0 =
Estación de radio	Tomas	110V	180VA	360	3,27A	6,09A	ტ
Batería de baño	Tomas	110V	180VA	0	0A	0A	Cto. #4:30A Conductores 10AWG
Coordinación 1	Tomas	110V	180VA	900	8,18A	15,22A	. #4 . tores
Coordinación 2	Tomas	110V	180VA	720	6,55A	12,16A	Cto
Oficina	Tomas	110V	180VA	360	3,27A	6,09A	රි
	TOTA	L		2340	21,3A	39,57A	
Oficina	A.A.	220V	800VA	800	3,64A	4,73A	Cto. 5 y 7. 15A 14AWG
TOTAL			800	3,64A	4,73A	0 1 2	
Coordinación 1	A.A.	220V	2230VA	2230	10,13A	13,2A	Cto. 6 y 8. 15A 14AWG
TOTAL			2230	10,13A	13,2A	0 –	
Pasillos B1P1	Tomas	110V	180VA	540	4,91A	9,13A	6 7 8 8
Pasillos B1P1	Lámp.	110V	30VA	180	1,64A	3,04	Cto. #9 15A 14AWG
	TOTA	L		720	6,55A	12,18A	

Tabla 11. Cálculo de los circuitos ramales - Bloque 1 P2.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	I _{circuito} ramal	l _{conductor} requerido	Cto
Aulas de clase B1P2	Lámp.	110V	92VA	1840	16,72A	22,25A	Cto #10 20A 12AWG
	TOTA	L		1840	16,72A	22,25A	O E
Aulas de clase B1P2 (6/10)	Vent.	110V	130VA	1560	14,18A	26,38A	Cto. 11 20A 12AWG
	TOTA	L		1560	14,18A	26,38A	
Aulas de clase B1P2 (4/10)	Vent.	110V	130VA	1560	14,18A	26,38A	Cto. 12 20A 12AWG
	1560	14,18A	26,38A	0 -			
Pasillos B1P2	Tomas	110V	180VA	540	4,91A	9,13A	ო ტ
Pasillos B1P2	Lámp.	110V	30VA	180	1,64A	3,04	Cto. 13 15A 14AWG
	TOTA	L		720	6,55A	12,18A	0 +
Aulas de clase B1P2 (5/10)	Tomas	110V	180VA	1800	16,36A	30,44A	Cto. 14 20A 12AWG
	TOTA	L		1800	16,36A	30,44A	0 +
Pasillos B1P2	Reflector	220V	908VA	908	4,13A	7,68A	Cto. 15 y 17. 15A 14AWG
TOTAL			908	4,13A	7,68A	2 ← ←	
Aulas de clase B1P2 (5/10)	Tomas	110V	180VA	1800	16,36A	30,44A	Cto. 16 20A 12AWG
	TOTA	L		1800	16,36A	30,44A	

Tabla 12. Cálculo de porcentajes de regulación de los conductores - B1.

Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación	Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación
1	2,87	0,015	1,54	10	4,61	0,018	2,37
2	4,61	0,015	2,14	11	4,61	0,026	2,91
3	2,87	0,025	2,82	12	4,61	0,0775	2,78
4	2,87	0,013	1,34	13	7,15	0,075	2,40
5 y 7	7,15	0,0035	0,15	14	4,61	0,042	1,53
6 y 8	7,15	0,007	0,46	15 y 17	7,15	0,047	1,28
9	7,15	0,068	2,98	16	4,61	0,0775	2,58

Circuitos ramales Bloque 2: la carga que suponen los elementos instalados en esta infraestructura, se presenta en la tabla 13 y los circuitos ramales respectivos a este bloque, con sus capacidades de corriente y protecciones seleccionadas, en las tablas 14 y 15; finalmente, en la tabla 16 se presenta el calculo del porcentaje de regulación de los conductores de estos circuitos ramales.

Tabla 13. Elementos de circuito del Bloque 2 y cantidades de elementos.

Lugar	Cant	Lámparas	Tomas	Ventiladores	A.A
Aulas de clase B2P1	4 aulas	2 en cada aula	2 en cada aula	2 en cada aula	0
Aulas de clase B2P2	5 aulas	2 por aula de clase	2 en cada aula	2 en cada aula	0
Sala de profesores	1	4	3	1	1
Baño sala de profesores	1	2	2	0	0
Cocina	1	2	6	0	0
Biblioteca	1	4	2	1	1
Aula niños con sordera	1	2	2	1	0
Laboratorio de física	1	6	6	3	0
Laboratorio de química	1	6	6	3	0
Sala de audiovisuale	1	2	3	2	0
Pasillos B2P1	1	6	3	0	0
Pasillos B2P2	1	6 Lámp y 2 Reflect.	3	0	0

Tabla 14. Cálculo de los circuitos ramales - Bloque 2 P1.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	l _{circuito} ramal	l _{conductor} requerido	Cto
Sala de profesores	Tomas	110V	180VA	360	4,1A	6,09A	WG
Baño sala de profesores	Tomas	110V	180VA	0	0A	0A	:150A s 14A
Biblioteca	Tomas	110V	180VA	360	4,1A	6,09A	#1 :tore
Aula niños con sordera	Tomas	110V	180VA	360	4,1A	6,09A	Cto. #1:150A Conductores 14AWG
	TOTA	L		1080	12,3A	18,26A	
Aulas de clase B2P1	Vent.	110V	130VA	1040	9,45A	17,59A	(1)
Sala de profesores	Vent.	110V	130VA	130	1,18A	2,19A	DA 2AWG
Baño sala de profesores	Vent.	110V	130VA	0	0A	0A	Cto. #2 : 20A Conductores 12AWG
Biblioteca	Vent.	110V	130VA	130	1,18A	2,19A	Cto.
Aula niños con sordera	Vent.	110V	130VA	130	1,18A	2,19A	Con
	TOTA	L		1430	12,99A	24,18A	
Aulas de clase B2P1	Tomas	110V	180VA	1440	13,1A	24,35A	Cto. #3 20A 12AWG
Pasillos B2P1	Tomas	110V	180VA	540	4,91A	9,13A	to. #
	TOTA	L		1980	18,01A	33,48A	Ö
Aulas de clase B2P1	Lámp.	110V	92VA	736	6,69A	12,45A	
Sala de profesores	Lámp.	110V	92VA	368	3,35A	6,22A	ပ္
Baño sala profesores	Lámp.	110V	25VA	50	0,45A	0,85A	Cto. #4 : 30A Conductores 10AWG
Cocina	Lámp.	110V	92VA	184	1,67A	3,11A	#4 : ores
Biblioteca	Lámp.	110V	92VA	368	3,35A	6,22A	Cto.
Aula niños con sordera	Lámp.	110V	92VA	184	1,67A	3,11A	Con
Pasillos B2P1	Lámp.	110V	30VA	180	1,64A	3,04A	
	TOTA	L		2070	18,82A	35A	
Cocina	Tomas	110V	250VA	1500	13,64A	4,73A	Cto. #5 15A 14AWG
TOTAL		1500	13,64A	25,37A	0 +		
Sala de profesores	A.A.	220V	2230VA	2230	10,13A	13,2A	Cto 12 y 13 15A 14AWG
	TOTAL		2230	10,13A	13,2A	0 - 4	
Biblioteca	A.A.	220V	2230VA	2230	10,13A	13,2A	Cto 14 y 15 15A 14AWG
	TOTA	L		2230	10,13A	13,2A	육 4 4 4 4 5 6 6 7 8 6 7 8 9 9 10 10 10 11 12 12 12 13 14 15 16 17 18 19 10 10 10 11 12 12 12 13 14 15 16 17 18 18 19 10 10 11 12 12 13 14 15 16 17 18 18 19 10 10 11 12 12 12 13 14 15 <

Tabla 15. Cálculo de los circuitos ramales - Bloque 2 P2.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	l _{circuito}	l _{conductor}	Cto
Sala de audiovisuales	Tomas	110V	180VA	540	4,91A	9,13A	4WG
Laboratorio de física	Tomas	110V	180VA	1080	9,82A	18,26A	[‡] 6 : 30∕ res 10∕
Laboratorio de química	Tomas	110V	180VA	1080	9,82A	18,26A	Cto. #6 : 30A Conductores 10AWG
	TOTA	L		2700	24,55A	45,66A	රි
Aulas de clase B2P2	Tomas	110V	180VA	1800	16,36A	30,44A	9 / / B
Pasillos B2P1	Tomas	110V	180VA	540	4,91A	9,13A	Cto. #7 30A 10AWG
	TOTA	L		2340	21,27A	39,57A	, ,
Aulas de clase B2P2	Lámp.	110V	92VA	920	8,36A	15,56A	
Sala de audiovisuales	Lámp.	110V	92VA	184	1,67A	3,11A	A DAWG
Laboratorio de física	Lámp.	110V	92VA	552	5,02A	9,33A	Cto. #8 : 30A Conductores 10AWG
Laboratorio de química	Lámp.	110V	25VA	552	5,02A	9,33A	Cto. Conduct
Pasillos B2P1	Lámp.	110V	30VA	180	1,64A	3,04A	J
	TOTA	L		2388	21,7A	40,38A	
Pasillos B2P2	Reflector	220V	908VA	908	4,13A	7,68A	Cto. 9 y 11 15A 14AWG
	TOTA	L		908	4,13A	7,68A	0-4
Aulas de clase B2P2	Vent.	110V	130VA	1300	11,82A	21,98A	(D
Sala de audiovisuales	Vent.	110V	130VA	260	2,36A	4,39A	30A 10AWC
Laboratorio de física	Vent.	110V	130VA	390	3,55A	6,59A	Cto. #10 : 30A Conductores 10AWG
Laboratorio de química	Vent.	110V	130VA	390	3,55A	6,59A	Condt
	TOTA	L		2340	21,27A	39,57A	

Tabla 16. Cálculo de porcentajes de regulación de los conductores - B2.

Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación	Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación
1	7,15	0,018	2,71	7	2,87	0,015	1,55
2	4,61	0,022	2,24	8	2,87	0,019	2,02
3	4,61	0,01	1,40	9 y 11	7,15	0,055	1,50
4	2,87	0,011	1,00	10	2,87	0,014	1,45
5	7,15	0,016	2,67	12 y 13	7,15	0,01	0,66
6	2,87	0,023	2,78	14 y 15	7,15	0,04	2,70

• Circuitos ramales Edificio administrativo: la carga que suponen los elementos instalados en esta infraestructura, se presenta en la tabla 17. En esta infraestructura se colocara un TD cada piso, por lo que a continuación se presentara en la tabla 18 y 20, los circuitos ramales respectivos a esta edificación, con las capacidades de corriente y protecciones seleccionadas, para el primer y segundo piso, respectivamente; finalmente, en la tabla 19 y 21, se presenta el calculo del porcentaje de regulación de los conductores de estos circuitos ramales.

Tabla 17. Elementos de circuito del Edificio Administrativo y cantidades de elementos.

Lugar	Cant	Lámparas	Tomas	Ventiladores	A.A
Rectoría	1	4	7	0	2
Secretaría	1	4	6	0	2
Portería	1	1	1	0	0
Sala de audiovisuale	1	8	6	0	1
Sala de informática	1	7	1 A.T.	0	1
Oficina	1	1	2	0	1
Pasillo P2	1	3 Lámp y 2 Reflec.	0	0	0

Tabla 18. Cálculo de los circuitos ramales – Edificio administrativo P1.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	I _{circuito}	l _{conductor}	Cto		
Rectoría	Lámp.	110V	92VA	368	3,35A	4,36A			
Secretaría	Lámp.	110V	92VA	368	3,35A	4,36A	20A ores G		
Portería	Lámp.	110V	92VA	92	0,84A	1,09A	o. #1 : 20 anductor 12AWG		
Secretaría	Tomas	110	180VA	1080	9,81A	12,78A	Cto. #1:20A Conductores 12AWG		
	TOTA	L		1908	17,35A	22,59A			
Rectoría	A.A1.	220V	2970VA	2970	13,5A	17,58A	Cto. #2 y 4: 15A 14AWG		
	TOTA	L		2970	13,5A	17,58A	g 4. 4		
Rectoría	Tomas	110V	180VA	1260	11,45A	14,91A	.: ტ		
Portería	Tomas	110V	180VA	180	1,64A	2,13A	Cto. #3: 15A 14AWG		
	TOTA	L		1440	13,09A	17.22A	0 4		
Rectoría	A.A2.	220V	2970VA	2970	13,5A	17,58A	Cto. 5 y 7. 15A 14AWG		
	TOTA	L		2970	13,5A	17,58A	2 ~ 4		
Secretaría	A.A1.	220V	2970VA	2970	13,5A	17,58A	Cto. 9 y 11. 15A 14AWG		
	TOTA	L		2970	13,5A	17,58A	Q = 4		
Secretaría	A.A2.	220V	2970VA	2970	13,5A	17,58A	Cto. 6 y 8. 15A 14AWG		
TOTAL			2970	13,5A	17,58A	2 ∞ 4			
Sala de audivisuales	A.A.	220V	2230VA	2230	10,13A	13,2A	Sto. 10 y 12 15A 14AWG		
TOTAL				2230	10,13A	13,2A	D		

Tabla 19. Cálculo de porcentajes de regulación de los conductores - EAD P1.

Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación
1	4,61	0,015	2,04
2 y 4	7,15	0,002	0,18
3	7,15	0,01	1,58
5 y 7	7,15	0,004	0,35
6 y 8	7,15	0,006	0,53
9 y 11	7,15	0,008	0,71
10 y 12	7,15	0,005	0,33

Tabla 20. Cálculo de los circuitos ramales – Edificio administrativo P2.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	l _{circuito} ramal	l _{conductor} requerido	Cto
Sala de audiovisuales	Tomas	110V	180VA	1080	9,82A	12,78A	10A res
Oficina	Tomas	110V	180VA	360	3,27A	4,26A	o. #1 : 20 anductor 12AWG
Pasillo P2	Tomas	110V	180VA	180	1,64A	2,13A	Cto. #1: 20A Conductores 12AWG
	TOTA	L		1620	14,73A	19,18A	
Pasillos P2	Reflector	220V	908VA	908	4,13A	7,68A	Cto. #2 y 4: 20A 12AWG
	TOTA	L		908	4,13A	7,68A	Q 4 %
Sala de audiovisuales	Lámp.	110V	92VA	736	6,69A	8,71A	WG
Sala de informática	Lámp.	110V	92VA	644	5,85A	7,62A	Cto. #3 : 20A Conductores 12AWG
Oficina	Lámp.	110V	92VA	92	0,84A	1,09A	to.# uctor
Pasillo	Lámp.	110V	92VA	276	2,51A	3,26A	Condi
	TOTA	L		1748	15,89A	20,69A	U
Oficina	A.A.	220V	800VA	800	3,64A	4,73A	Cto. 5 y 7. 15A 14AWG
	ТОТА	L		800	3,64A	4,73A	Ω ~ 1
Sala de informática	A.A.	220V	4300VA	4300	19,5A	28,31A	Cto. 6 y 8. 20A 12AWG
	TOTA	L		4300	19,5A	28,31A	0 & 5
Sala de informática	A.T.	220V	6000VA	6000	27,27A	44,39A	Cto. 9 y 11 30A 10AWG
	TOTA	L		6000	27,27A	44,39A	0

Tabla 21. Cálculo de porcentajes de regulación de los conductores - EAD P2.

Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación
1	4,61	0,017	1,96
2 y 4	7,15	0,02	0,54
3	4,61	0,027	1,83
5 y 7	7,15	0,03	0,71
6 y 8	4,61	0,02	1,66
9 y 11	2,87	0,018	1,30

 Circuitos ramales Áreas comunes: la carga que suponen los elementos instalados en esta infraestructura, se presenta en la tabla 22 y los circuitos ramales respectivos a esta área, con sus capacidades de corriente y protecciones seleccionadas, en la tabla 23; finalmente, en la tabla 24 se presenta el calculo del porcentaje de regulación de los conductores de estos circuitos ramales.

Tabla 22. Elementos de circuito de áreas comunes y cantidades de elementos.

Lugar	Cant	Lámparas	Tomas	Ventiladores	A.A
Aula múltiple	1	4	7	0	0
Minitiendas	3	1	1	0	0
Patio	1	0	0	0	0
Bat. sanitaria	1	2	0	0	0
Coordinación 3	1	1	2	0	0

Tabla 23. Cálculo de los circuitos ramales - Áreas comunes.

Lugar	Element	Nivel Tensión	Pot. elemento	Pot. total	I _{circuito} ramal	l conductor requerido	Cto
Aula múltiple	Reflec.	220V	454VA	1816	8,25A	10,75A	Cto #1 y 3 15A 14AWG
	TOTA	L		1816	8,25A	10,75A	0 % -
Aula múltiple	Tomas	110V	180VA	1260	11,45A	14,91A	Cto. #2 20A 12AWG
	TOTA	L		1260	11,45A	14,91A	0 -
Patio	Bomba de agua	220	1120VA	1120	5,09A	8,28A	Cto. 4 y 5 15A 14AWG
	TOTA	L		1120	5,09A	8,28A	004
Batería Sanitaria	Lámp.	110V	92VA	92	1,67A	2,72A	Cto. #6:15A Conductores 14AWG
Coordinación 3	Lámp.	110V	92VA	184	0,84A	1,336A	#6 : uctc
Coordinación 3	Tomas	110V	180VA	360	3,27A	5,32A	Sono 14
TOTAL			636	5,78A	9,41A		
Minitiendas	Lámp.	110V	32VA	96	0,87A	1,42A	ر ارو
Minitiendas	Tomas	110V	180VA	1080	9,82A	15,98A	Cto. 7 15A 14AWG
	TOTA	L		1176	10,69A	20,42A	7

Tabla 24. Cálculo de porcentajes de regulación de los conductores - Áreas comunes.

Cto	Zef (Ω/Km)	Distancia prom. (m)	% Regulación
1 y 2	7,15	0,035	2,22
3	4,61	0,025	2,78
4 y 5	7,15	0,02	0,77
6	7,15	0,025	2,04
7	7,15	0,024	1,61

4.1.3 Cálculo de los circuitos alimentadores, cuadros de carga y canalizaciones

Los alimentadores de los circuitos ramales requeridos para alimentar las cargas que estos contemplan, se determinaran considerando lo expuesto en la NTC 2050, en las secciones: 220-13, en el cual se especifica que las salidas de tomacorrientes no mayores a 180VA, se pueden considerar como salidas de alumbrado general en edificaciones que no sean viviendas, además, se presentan factores de demanda sugeridos para el cálculo de los conductores portadores de corriente del alimentador; 220-22, en donde se hace referencia al calculo del conductor de neutro del circuito alimentador; 250-94, en el cual se especifica el calibre del conductor del electrodo de puesta a tierra. Por otra parte, se debe tener en cuenta que la tensión de alimentación de estos tableros de distribución secundaria será de 220V.

La canalización requerida para los alimentadores se obtiene a partir de dos requerimientos; el primero de ellos hace referencia al cálculo del diámetro de la tubería, el cual se realiza teniendo en cuenta lo expuesto en la NTC 2050 [2] en el capitulo 9 cuadro 4, donde se especifican las dimensiones de las tuberías y los porcentajes de ocupación; y los valores de los diámetros exteriores de los

conductores que se canalizaran por esta misma [17], [18]; el segundo de ellos hace referencia al tipo de tubería seleccionada para la canalización, por lo que se recurre a las secciones 347 y 348 de la NTC 2050.

 Alimentador TMBB1: Alimenta los circuitos ramales correspondientes a las cargas del bloque 1, que llegan al tablero de distribución secundario.

Los cálculos presentados en la tabla 25, permiten seleccionar para los conductores no puestos a tierra del alimentador, un conductor THHN #2AWG y una protección bipolar de 125A.

Tabla 25. Cálculo de los conductores del circuito alimentador TMBB1.

Carga de tomas y alumbrado	Primeros 10KVA (100%)	Resto de KVA (50%)	Carga de Vent. y A.A.	Carga total
14973VA	10000VA	2486,5VA	8230VA	20716,5VA
Conductores no puestos a tierra	Requerida para utilizar el conductor al 80%	l _{Maxima} carga del neutro	I _{Maxima} carga del neutro (140%)	Requerida para utilizar el conductor al 80%
94,17A	117,7A	86,23A	120,72A	150,9A

Para el conductor de neutro del circuito alimentador se selecciona una conductor #1/0AWG y según el cuadro 250-94 de la NTC2050, el calibre del conductor del electrodo a tierra es THHN #6AWG. En el anexo 2, se pueden observar estas especificaciones y la distribución de la carga en este tablero.

Para calcular la canalización [19], primeramente se debe considerar que los conductores no puestos a tierra de este alimentador tienen un diámetro exterior de 9,65mm y que el conductor de neutro tiene un diámetro exterior de 12,2mm; y, que sus áreas respectivas corresponden a 0,11pulg² y

0,18pulg². El área total ocupada por los conductores es de 0,4pulg². Según la norma NTC 2050 capitulo 9 cuadro 4, el diámetro mínimo de la tubería debe ser de 1,12pulg; seleccionando para este caso una tubería EMT de 11/2pulg, cuyo diámetro es de 1,61pulg.

 Alimentador TMBB2: Alimenta los circuitos ramales correspondientes a las cargas del bloque 2, que llegan al tablero de distribución secundario.

Tabla 26. Cálculo de los conductores del circuito alimentador del TMBB2.

Carga de tomas y alumbrado	Primeros 10KVA (100%)	Resto de KVA (50%)	Carga de Vent. y A.A.	Carga total
12558VA	10000VA	1279VA	10638VA	21917VA
I _{Conductores} no puestos a	I _{Requerida} para utilizar el	I _{Maxima} carga del	I _{Maxima} carga del	I _{Requerida} para utilizar
Conductores no puestos a	Requerida para utilizar el conductor al 80%	I _{Maxima} carga del neutro	IMaxima carga del neutro (140%)	Requerida para utilizar el conductor al 80%

Los cálculos presentados en la tabla 26, permiten seleccionar para los conductores no puestos a tierra del alimentador un conductor THHN #2AWG y una protección bipolar de 125A; para el conductor de neutro del circuito alimentador se selecciona una conductor #1/0AWG y según el cuadro 250-94 de la NTC2050, el calibre del conductor del electrodo a tierra es THHN #6AWG. En el anexo 3, se pueden observar estas especificaciones y la distribución de la carga en este tablero.

El diámetro de los conductores no puestos a tierra de este alimentador tienen un diámetro exterior de 9,65mm y que el conductor de neutro tiene un diámetro exterior de 12,2mm; sus áreas respectivas corresponden a 0,11pulg² y 0,18pulg². El área total ocupada por los conductores es de

0,4pulg². Según la norma NTC 2050 capitulo 9 cuadro 4, el diámetro mínimo de la tubería debe ser de 1,12pulg; seleccionando para este caso una tubería EMT de 11/2pulg, cuyo diámetro es de 1,61pulg. Obteniendo el mismo resultado, que para el caso anterior.

 Alimentador TMBEAD1: Alimenta los circuitos ramales correspondientes a las cargas de la primera planta del edificio administrativo, que llegan al tablero de distribución secundario.

Los cálculos presentados en la tabla 27, permiten seleccionar para los conductores no puestos a tierra del alimentador un conductor THHN #4AWG y una protección bipolar de 100A; para el conductor de neutro del circuito alimentador se selecciona una conductor #10AWG y según el cuadro 250-94 de la NTC2050, el calibre del conductor del electrodo a tierra es THHN #8AWG. En el anexo 4, se pueden observar estas especificaciones y la distribución de la carga en este tablero.

Tabla 27. Cálculo de los conductores del circuito alimentador del TMBEAD1.

Carga de tomas y alumbrado	Primeros 10KVA (100%)	Resto de KVA (50%)	Carga de Vent. y A.A.	Carga total
3348VA	3348VA	0VA	14110VA	17458VA
Conductores no puestos a tierra	Requerida para utilizar el conductor al 80%	l _{Maxima} carga del neutro	Maxima carga del neutro (140%)	Requerida para utilizar el conductor al 80%
79,35A	99,2A	17,34A	24,28A	30,35A

El cálculo de la canalización del circuito alimentador del TMBEAD1, se encuentra sujeto a los datos obtenidos para el circuito alimentador del TMBEAD2, debido a que estos circuito se encuentran dispuestos para alimentar cargas en una misma edificación de la institución educativa.

 Alimentador TMBEAD2: Alimenta los circuitos ramales correspondientes a las cargas de la segunda planta del edificio administrativo, que llegan al tablero de distribución secundario.

Los cálculos presentados en la tabla 28, permiten seleccionar para los conductores no puestos a tierra del alimentador un conductor THHN #4AWG y una protección bipolar de 90A; para el conductor de neutro del circuito alimentador se selecciona una conductor #10AWG y según el cuadro 250-94 de la NTC2050, el calibre del conductor del electrodo a tierra es THHN #8AWG. En el anexo 5, se pueden observar estas especificaciones y la distribución de la carga en este tablero.

Tabla 28. Cálculo de los conductores del circuito alimentador del TMBEAD2.

Carga de tomas y alumbrado	Primeros 10KVA (100%)	Resto de KVA (50%)	Carga de Vent. y A.A.	Carga total
3368VA	3368VA	0VA	12008VA	15376VA
Conductores no puestos a tierra	IRequerida para utilizar el conductor al 80%	l _{Maxima} carga del neutro	l _{Maxima} carga del neutro (140%)	Requerida para utilizar el conductor al 80%
69,9A	87,4A	15,9A	22,3A	27,83A

Como se menciono anteriormente, el cálculo de la canalización para los circuitos alimentadores de los TMBEAD1 Y TMBEAD2, se realiza teniendo en cuenta que se llevaran por la misma tubería. Cabe anotar, que los alimentadores de estos tableros cuentan con los mismos calibre tanto para los conductores no puestos a tierra, como para los de neutro.

Los conductores no puestos a tierra tienen un diámetro exterior de 8,18mm y que el conductor de neutro tiene un diámetro exterior de 5,5mm; sus áreas respectivas corresponden a 0,08pulg² y 0,036pulg². El área total ocupada por los conductores es de 0,4pulg². Según la norma NTC 2050 capitulo 9 cuadro 4, el diámetro mínimo de la tubería debe ser de 1,12pulg; seleccionando para este caso una tubería EMT de 11/2pulg, cuyo diámetro es de 1,61pulg.

 Alimentador TMBAC: Alimenta los circuitos ramales correspondientes a las áreas comunes, que llegan a este tablero de distribución secundario.

Los cálculos presentados en la tabla 29, permiten seleccionar para los conductores no puestos a tierra del alimentador un conductor THHN #10AWG y una protección bipolar de 40A; para el conductor de neutro del circuito alimentador se selecciona una conductor #12AWG y según el cuadro 250-94 de la NTC2050, el calibre del conductor del electrodo a tierra es THHN #8AWG. En el anexo 6, se pueden observar estas especificaciones y la distribución de la carga en este tablero.

Tabla 29. Cálculo de los conductores del circuito alimentador del TMBAC.

Carga de tomas y alumbrado	Primeros 10KVA (100%)	Resto de KVA (50%)	Carga de Vent. y A.A.	Carga total
3072VA	3072VA	0VA	2936VA	6008VA
Conductores no puestos a tierra	Requerida para utilizar el conductor al 80%	l _{Maxima} carga del neutro	I _{Maxima} carga del neutro (140%)	Requerida para utilizar el conductor al 80%
27,3A	34,14A	17,3A	24,2A	30,3A

El diámetro de los conductores no puestos a tierra de este alimentador tienen un diámetro exterior de 4,2mm y que el conductor de neutro tiene un

diámetro exterior de 3,34mm; sus áreas respectivas corresponden a 0,021pulg² y 0,013pulg². El área total ocupada por los conductores es de 0,055pulg². Según la norma NTC 2050 capitulo 9 cuadro 4, el diámetro mínimo de la tubería debe ser de 0,66pulg; seleccionando para este caso una tubería EMT de 3/4pulg, cuyo diámetro es de 0,824pulg.

4.1.4 Cálculo del alimentador de baja tensión y medio de desconexión

El alimentador del tablero correspondiente al medio de desconexión principal requerido para alimentar las cargas de la institución educativa, se determinará considerando lo expuesto en la NTC 2050, en las secciones 220-13 y 220-22. Por otra parte, se debe tener en cuenta que la tensión de alimentación de este tablero es de 220V.

Tabla 30. Cálculo de los conductores del circuito alimentador del TGBT.

Carga de tomas y alumbrado	Primeros 10KVA (100%)	Resto de KVA (50%)	Carga de Vent. y A.A.	Carga total
37319VA	10000VA	13659,5VA	47922VA	71581,5VA
Conductores no puestos a tierra	Requerida para utilizar el conductor al 80%	lMaxima carga del neutro	IMaxima carga del neutro (140%)	Requerida para utilizar el conductor al 80%
325,37A	406,7A	217,91A	305,7A	381,4A

Por lo anterior, se selecciona para los conductores no puestos a tierra del alimentador, un conductor THHN 500Kcmil y una protección bipolar de 400A; para el conductor de neutro del circuito alimentador se selecciona un conductor 500Kcmil y según el cuadro 250-94 de la NTC2050, el calibre del conductor del electrodo a tierra es THHN #1/0AWG.

4.1.5 Cálculo del transformador

Los requerimientos de carga con los que cuenta la institución educativa Soledad Román de Núñez sede principal, han propiciado la necesidad de incluir un equipo se transformación de tensión que le permita alimentar dicha carga.

Para seleccionar la capacidad de este equipo, se debe tener en cuenta los siguientes aspectos:

- Carga máxima demandada: Esta carga se encuentra sujeta al factor de demanda F_d de las cargas de la institución educativa. El factor de demanda se establece a partir de la relación entre la máxima carga demanda por la institución en un día de hábil de labores y la máxima carga instalada [21]; tomando como referencia la información contenida en las tablas 3 y 5, se obtiene como resultado un F_d= 0,71.
- Porcentaje de reserva para futuras ampliaciones en la red eléctrica, que las cuales se encuentran sujetas a implementaciones tecnológicas para mejorar la calidad educativa. Este valor se establece en un 10%.
- Características de conexión: Equipo de transformación de tensión de 13,2kV a 240/120V, 1Ø 3h [7].

La mínima capacidad del equipo de transformación de tensión requerido para poder alimentar las cagas de la institución educativa, se presenta a continuación:

Potencia = Carga instalada* $(F_d + %reserva) = 85977*(0,71 + 0,1) = 69641,4VA$

Seleccionando un transformador de tensión de 75kVA, de 13,2kV a 240/120V, 1Ø 3h, 60 ciclos, con refrigeración por aceite. La protección primaria para este equipo se selecciona de 10A, según lo expuesto en [7] en la pagina 42.

4.2 DIAGRAMAS UNIFILARES

El esquema eléctrico planteado para las instalaciones eléctricas de la institución educativa Soledad Román de Núñez sede principal y la trayectoria de los circuitos de alimentación y circuitos ramales, se pueden observar detalladamente en los diagramas unifilares que se presentan a continuación y/o que se encuentran como documentos anexos a este trabajo, según sea el caso.

En la siguiente figura, se presenta el diagrama unifilar de la institución educativa Soledad Román de Núñez sede principal.

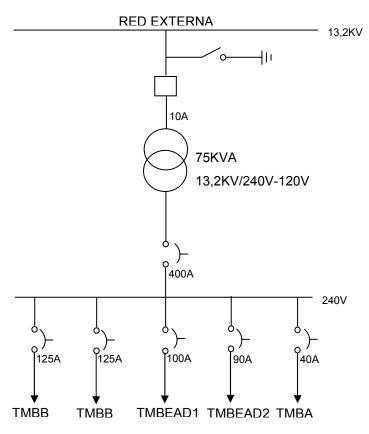


Figura 14. Diagrama unifilar I.E. Soledad Román de Núñez sede principal.

En el anexo 7 se presenta el plano de planta de la institución educativa Soledad Román de Núñez sede principal y la red externa actual; en el anexo 8 se presenta el plano eléctrico de las instalaciones correspondientes al bloque 1, cuadros de carga, detalles de llegada de acometida y puesta a tierra, entre otros; en el anexo 9 se presenta el plano eléctrico de las instalaciones correspondientes al bloque 2, cuadros de carga, detalles de llegada de acometida y puesta a tierra, entre otros; en el anexo 10 se presenta el plano eléctrico de las instalaciones correspondientes al edificio administrativo, cuadros de carga, detalles de llegada y derivación de la acometida, entre otros; en el anexo 11 se presenta el plano eléctrico de las instalaciones correspondientes a las áreas comunes, cuadros de carga, detalles de llegada de la acometida, control de los reflectores, entre otros; en el anexo 12 se presenta los detalles de la distribución de los alimentadores de los TMB con los que cuenta la instalación eléctrica de la institución educativa; en el anexo 13, se presentan los detalles de la puesta a tierra de la institución.

4.3 PRESUPUESTO PARA IMPLEMENTAR EL PROYECTO

La materialización de la propuesta de rediseño de la institución educativa Soledad Román de Núñez sede principal, contempla los requerimientos propuestos en este capitulo, los cuales a su vez, contemplan requerimientos de las normatividades y reglamentaciones vigentes. En la siguiente tabla se presenta la información detallada de los costos que supone ejecutar el rediseño de las instalaciones eléctricas de la institución.

Tabla 31. Presupuesto de ejecución de la obra.

	CANTIDADES DE OBRA PARA ADECUACIÓN DE INSTALACIONES ELÉCTRICAS INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NÚÑEZ SEDE PRINCIPAL							
	ITEM	UNIDAD	CANT.	VALOR UNITARIO	VALOR TOTAL			
1	BLOQUE 1							
1.1	Conductor de Cu calibre #10 AWG THHN/THWN Blanco	ML	450	\$ 1.250	\$ 562.500			
1.2	Conductor de Cu calibre #10 AWG THHN/THWN Rojo	ML	250	\$ 1.250	\$ 312.500			
1.3	Conductor de Cu calibre #10 AWG THHN/THWN Negro	ML	180	\$ 1.250	\$ 225.000			
1.4	Conductor de Cu calibre #10 AWG THHN/THWN Verde	ML	250	\$ 1.250	\$ 312.500			
1.5	Conductor de Cu calibre #12 AWG THHN/THWN Blanco	ML	600	\$ 908	\$ 544.800			
1.6	Conductor de Cu calibre #12 AWG THHN/THWN Rojo	ML	250	\$ 908	\$ 227.000			
1.7	Conductor de Cu calibre #12 AWG THHN/THWN Negro	ML	350	\$ 908	\$ 317.800			
1.8	Conductor de Cu calibre #14 AWG THHN/THWN Negro	ML	280	\$ 630	\$ 176.400			
1.9	Conductor de Cu calibre #14 AWG THHN/THWN Rojo	ML	200	\$ 630	\$ 126.000			
1.10	Conductor de Cu calibre #14 AWG THHN/THWN Blanco	ML	230	\$ 630	\$ 144.900			
1.11	Cable encauchetado 3x14 AWG blanco, negro y verde	ML	130	\$ 2.230	\$ 289.900			
1.12	Tubería EMT Ø 1"	Unidad	40	\$ 12.870	\$ 514.800			
1.13	Unión EMT Ø 1"	Unidad	56	\$ 680	\$ 38.080			
1.14	Curva EMT Ø 1" 90°	Unidad	16	\$ 2.340	\$ 37.440			
1.15	Conector EMT Ø 1"	Unidad	60	\$ 670	\$ 40.200			
1.16	Tubería EMT Ø 3/4"	Unidad	52	\$ 10.134	\$ 526.968			
1.17	Unión EMT Ø 3/4"	Unidad	75	\$ 584	\$ 43.800			
1.18	Curva EMT Ø 3/4" 90°	Unidad	38	\$ 1.620	\$ 61.560			
1.19	Curva EMT Ø 3/4" 45°	Unidad	40	\$ 1.620	\$ 64.800			
1.20	Conector EMT Ø 3/4"	Unidad	100	\$ 525	\$ 52.500			
1.21	Tubería EMT Ø 1/2"	Unidad	25	\$ 8.973	\$ 224.325			
1.22	Curva EMT Ø 1/2" 90°	Unidad	35	\$ 900	\$ 31.500			
1.23	Unión EMT Ø 1/2"	Unidad	20	\$ 390	\$ 7.800			
1.24	Conector EMT Ø 1/2"	Unidad	45	\$ 525	\$ 23.625			
1.25	Tubería PVC Ø 1/2"	Unidad	55	\$ 1.850	\$ 101.750			
1.26	Curva PVC Ø 1/2" 90°	Unidad	73	\$ 240	\$ 17.520			
1.27	Conector PVC Ø 1/2"	Unidad	125	\$ 120	\$ 15.000			
1.28	Unión PVC Ø 1/2"	Unidad	75	120	9000			
1.29	Caja PVC 4"x4" con Tapa	Unidad	23	\$ 1.600	\$ 36.800			
1.30	Caja EMT 4"x4" con Tapa	Unidad	30	\$ 16.900	\$ 507.000			
1.31	Caja PVC 2"x4"	Unidad	58	\$ 730	\$ 42.340			
1.32	Interruptor Sencillo 10A 120V	Unidad	48	\$ 3.200	\$ 153.600			
1.33	Tomacorriente doble Leviton 15A 120V	Unidad	53	\$ 1.980	\$ 104.940			
1.34	Caja Hexagonal EMT	Unidad	90	\$ 11.650	\$ 1.048.500			
1.35	Lámpara de Sobreponer fluorescente Slim Line 2x40W T12 completa	Unidad	6	\$ 43.000	\$ 258.000			

1.36	Lámpara de Sobreponer fluorescente Slim Line 1x20W T12 completa	Unidad	12	\$ 43.000	\$ 516.000
1.37	Ventilador de Techo 100W 120V	Unidad	13	\$ 150.000	\$ 1.950.000
1.38	Breaker enchufable monopolar 15A Luminex	Unidad	2	\$ 6.950	\$ 13.900
1.39	Breaker enchufable bipolar 15A Luminex	Unidad	6	\$ 18.900	\$ 113.400
1.40	Breaker enchufable monopolar 20A Luminex	Unidad	5	\$ 6.950	\$ 34.750
1.41	Breaker enchufable monopolar 30A Luminex	Unidad	4	\$ 6.950	\$ 27.800
1.42	Pegante PVC	Galón	2	\$ 79.046	\$ 158.092
1.43	Disco de corte punta de diamante	Unidad	1,3	\$ 100.000	\$ 130.000
1.44	Corte y Retiro material de Demolición de muro	ML	70	\$ 10.000	\$ 700.000
1.45	Cemento 20kg	Unidad	2	\$ 18.000	\$ 36.000
1.46	Lija #120	Pliego	6	\$ 600	\$ 3.600
1.47	Chazos expansivos metálicos 1/2"x1"	Unidad	70	\$ 200	\$ 14.000
1.48	Riel Chanel para grapa 3/4"	ML	40	\$ 12.500	\$ 500.000
1.49	Grapa galvanizada 1/2"	Unidad	20	\$ 720	\$ 14.400
1.50	Grapa galvanizada 3/4"	Unidad	111	\$ 720	\$ 79.920
1.51	Tablero Multibreaker Bifasico 24 Circuitos	Unidad	1	\$ 147.000	\$ 147.000
	SUBTOTAL				11.640.010
2	BLOQUE	2			
2.1	Conductor de Cu calibre #10 AWG THHN/THWN Blanco	ML	400	\$ 1.250	\$ 500.000
2.2	Conductor de Cu calibre #10 AWG THHN/THWN Rojo	ML	250	\$ 1.250	\$ 312.500
2.3	Conductor de CU calibre #10 AWG THHN/THWN Negro	ml	150	\$ 1.250	\$ 187.500
2.4	Conductor de Cu calibre #10 AWG THHN/THWN Verde	ML	400	\$ 1.250	\$ 500.000
2.5	Conductor de Cu calibre #12 AWG THHN/THWN Negro	ML	100	\$ 908	\$ 90.800
2.6	Conductor de Cu calibre #12 AWG THHN/THWN Rojo	ML	100	\$ 908	\$ 90.800
2.7	Conductor de Cu calibre #14 AWG THHN/THWN Negro	ML	310	\$ 630	\$ 195.300
2.8	Conductor de Cu calibre #14 AWG THHN/THWN Rojo	ML	75	\$ 630	\$ 47.250
2.9	Conductor de Cu calibre #14 AWG THHN/THWN Blanco	ML	385	\$ 630	\$ 242.550
2.10	Cable encauchetado 3x14 AWG blanco, negro y verde	ML	150	\$ 2.230	\$ 334.500
2.11	Tubería EMT Ø 1"	Unidad	40	\$ 12.870	\$ 514.800
2.12	Unión EMT Ø 1"	Unidad	56	\$ 680	\$ 38.080
2.13	Curva EMT Ø 1" 90°	Unidad	16	\$ 2.340	\$ 37.440
2.14	Conector EMT Ø 1"	Unidad	60	\$ 670	\$ 40.200
2.15	Tubería PVC Ø 3/4"	Unidad	45	\$ 1.850	\$ 83.250
2.16	Curva PVC Ø 3/4" 90°	Unidad	35	\$ 240	\$ 8.400
2.17	Conector PVC Ø 3/4"	Unidad	60	\$ 120	\$ 7.200
2.18	Unión PVC Ø 3/4"	Unidad	50	\$ 120	\$ 6.000
2.19	Tubería EMT Ø 3/4"	Unidad	53	\$ 10.134	\$ 537.102
2.20	Unión EMT Ø 3/4"	Unidad	60	\$ 584	\$ 35.040
2.21	Curva EMT Ø 3/4" 90°	Unidad	39	\$ 1.620	\$ 63.180
2.22	Curva EMT Ø 3/4" 45°	Unidad	15	\$ 1.620	\$ 24.300
2.23	Conector EMT Ø 3/4"	Unidad	65	\$ 525	\$ 34.125
2.24	Tubería EMT Ø 1/2"	Unidad	52	\$ 8.973	\$ 466.596

2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc 2.52 Tc 2.53 Pr 2.54 Cr 2.55 Ri 2.56 Gc 2.57 Ri 2.58 Gc 2.59 Tc 2.60 Cc	Tubería PVC Ø 2" Curva PVC Ø 2" 90° Conector PVC Ø 2"	Unidad Unidad Unidad	9 4 3	\$ 16.500 \$ 11.200	\$ 66.000 \$ 33.600
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.47 Lij 2.48 Ve 2.49 Tc 2.50 Cc 2.51 Te 2.52 Tr Tr 2.53 Pr 2.54 Cr 2.55 Ri 2.56 Gr 2.57 Ri 2.58 Gr 2.59 Tu					
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inf 2.36 Tc 2.37 Cc 2.38 Lc 71 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.44 Di 2.45 Cc 2.47 Lij 2.48 Vc 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tubería PVC Ø 2"	Unidad	9	Ψ 10.200	Ψ 17 2.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.33 Cc 2.34 Cc 2.35 Inf 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc 2.53 Pr 2.54 Cr 2.55 Ri 2.56 Gr 2.57 Ri			0	\$ 19.200	\$ 172.800
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Ve 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc 2.53 Pr 2.54 Cr 2.55 Ri 2.56 Gr	Grapa galvanizada 1/2"	Unidad	120	\$ 680	\$ 81.600
2.30 Cc 2.31 Ur 2.32 Ca 2.33 Cc 2.34 Cc 2.35 Inf 2.36 Tc 2.37 Cc 2.38 Lé T1 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Ce 2.47 Lij 2.48 Ve 2.49 Ta 2.50 Ca 2.51 Te 2.52 Tu 2.53 Pr 2.54 Cc 2.55 Ri	Riel Chanel para grapa 1/2"	ML	22	\$ 12.500	\$ 275.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc 2.53 Pr 2.53 Pr 2.54 Cr	Grapa galvanizada 3/4"	Unidad	95	\$ 720	\$ 68.400
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc 2.53 Pr	Riel Chanel para grapa 3/4"	ML	15	\$ 12.500	\$ 187.500
2.30 Cc 2.31 Ur 2.32 Ca 2.33 Cc 2.34 Ca 2.35 Inf 2.36 Tc 2.37 Ca 2.38 Lá 71 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Ce 2.47 Lij 2.48 Ve 2.49 Ta 2.50 Ca 2.51 Te 2.52 Tu Tig	Chazos expansivos metálicos 1/2"x1"	Unidad	119	\$ 200	\$ 23.800
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Ve 2.49 Tc 2.50 Cc 2.51 Tc 2.52 Tc	Prensaestopa Metálico Ø1/2"	Unidad	6	\$ 12.900	\$ 77.400
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc 2.49 Tc 2.50 Cc	Tubería Flexible metálica Coraza Americana Liquid Tight Ø 1/2"	ML	13	\$ 14.910	\$ 193.830
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inf 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc 2.49 Tc	Terminales de CU para cable calibre 3/0 AWG 3M	Unidad	4	\$ 11.369	\$ 45.476
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij 2.48 Vc	Cable monopolar THHN/THWN calibre 3/0 AWG	ML	80	\$ 16.590	\$ 1.327.200
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc T1 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc 2.46 Cc 2.47 Lij	Tablero multibreaker bifásico 18ctos	Unidad	1	\$ 117.000	\$ 117.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di 2.45 Cc 2.46 Cc	Ventilador de techo 100W 120V	Unidad	2	\$ 150.000	\$ 300.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.42 Br 2.43 Pc 2.44 Di 2.45 Cc	Lija #120	Pliego	5	\$ 600	\$ 3.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe 2.44 Di	Cemento 20kg	Unidad	3	\$ 18.000	\$ 54.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br 2.41 Br 2.42 Br 2.43 Pe	Corte y Retiro material de Demolición de muro	ML	90	\$ 10.000	\$ 900.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc T1 2.39 Br 2.40 Br 2.41 Br 2.42 Br	Disco de corte punta de diamante	Unidad	2	\$ 100.000	\$ 200.000
2.30 Cc 2.31 Ur 2.32 Ca 2.33 Ca 2.34 Ca 2.35 Int 2.36 Tc 2.37 Ca 2.38 Lá T1 2.39 Br 2.40 Br 2.41 Br	Pegante PVC	Galón	2	\$ 79.046	\$ 158.092
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 2.39 Br 2.40 Br	Breaker enchufable monopolar 30A Luminex	Unidad	5	\$ 6.950	\$ 34.750
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lc 71 2.39 Br	Breaker enchufable monopolar 20A Luminex	Unidad	2	\$ 18.900	\$ 37.800
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Inr 2.36 Tc 2.37 Cc 2.38 Lá T1	Breaker enchufable monopolar 15A Luminex	Unidad	2	\$ 18.900	\$ 37.800
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc 2.37 Cc 2.38 Lé	Breaker enchufable bipolar 15A Luminex	Unidad	3	\$ 18.900	\$ 56.700
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int 2.36 Tc	Lámpara de Sobreponer fluorescente Slim Line 2x40W T12 completa	Unidad	9	\$ 43.000	\$ 387.000
2.30 Cc 2.31 Ur 2.32 Cc 2.33 Cc 2.34 Cc 2.35 Int	Caja Hexagonal EMT	Unidad	82	\$ 11.650	\$ 955.300
2.30 Co 2.31 Ur 2.32 Co 2.33 Co 2.34 Co	Tomacorriente doble Leviton 15A 120V	Unidad	54	\$ 1.980	\$ 106.920
2.30 Cd 2.31 Ur 2.32 Cd 2.33 Cd	Interruptor Sencillo 10A 120V	Unidad	34	\$ 3.200	\$ 108.800
2.30 Co 2.31 Ur 2.32 Ca	Caja PVC 2"x4"	Unidad	54	\$ 730	\$ 39.420
2.30 Co 2.31 Ur	Caja EMT 4"x4" con Tapa	Unidad	24	\$ 16.900	\$ 405.600
2.30 Cd	Caja PVC 4"x4" con Tapa	Unidad	22	\$ 1.600	\$ 35.200
	Unión PVC Ø 1/2"	Unidad	45	\$ 120	\$ 5.400
2.29 Cl	Conector PVC Ø 1/2"	Unidad	120	\$ 120	\$ 14.400
0.00	Curva PVC Ø 1/2" 90°	Unidad	60	\$ 240	\$ 14.400
2.28 Tu	Tubería PVC Ø 1/2"	Unidad	62	\$ 1.850	\$ 114.700
2.27 Cu	Curva EMT Ø 1/2" 90°	Unidad	35	\$ 900	\$ 31.500
2.26 Ur	Unión EMT Ø 1/2"	Unidad	41	\$ 390	\$ 15.990
2.25 Cd	Conector EMT Ø 1/2"	Unidad	38	\$ 390	\$ 14.820

3	EDIFICIO ADMINISTRATIVO					
3.1	Conductor de Cu calibre #10 AWG THHN/THWN Blanco	ML	165	\$ 1.250	\$ 206.250	
3.2	Conductor de Cu calibre #10 AWG THHN/THWN Rojo	ML	64	\$ 1.250	\$ 80.000	
3.3	Conductor de Cu calibre #10 AWG THHN/THWN Negro	ML	101	\$ 1.250	\$ 126.250	
3.4	Conductor de Cu calibre #10 AWG THHN/THWN Verde	ML	165	\$ 1.250	\$ 206.250	
3.5	Conductor de Cu calibre #12 AWG THHN/THWN Negro	ML	40	\$ 908	\$ 36.320	
3.6	Conductor de Cu calibre #12 AWG THHN/THWN Rojo	ML	40	\$ 908	\$ 36.320	
3.7	Conductor de Cu calibre #14 AWG THHN/THWN Negro	ML	120	\$ 630	\$ 75.600	
3.8	Conductor de Cu calibre #14 AWG THHN/THWN Rojo	ML	120	\$ 630	\$ 75.600	
3.9	Cable encauchetado 3x14 AWG blanco, negro y verde	ML	150	\$ 2.230	\$ 334.500	
3.10	Tubería EMT Ø 3/4"	Unidad	8	\$ 10.314	\$ 82.512	
3.11	Unión EMT Ø 3/4"	Unidad	12	\$ 584	\$ 7.008	
3.12	Curva EMT Ø 3/4" 90°	Unidad	10	\$ 1.620	\$ 16.200	
3.13	Conector EMT Ø 3/4"	Unidad	8	\$ 525	\$ 4.200	
3.14	Tubería EMT Ø 1/2"	Unidad	18	\$ 8.973	\$ 161.514	
3.15	Conector EMT Ø 1/2"	Unidad	38	\$ 390	\$ 14.820	
3.16	Curva EMT Ø 1/2" 90°	Unidad	23	\$ 900	\$ 20.700	
3.17	Tubería PVC Ø 1/2"	Unidad	42	\$ 1.850	\$ 77.700	
3.18	Curva PVC Ø 1/2" 90°	Unidad	45	\$ 240	\$ 10.800	
3.19	Conector PVC Ø 1/2"	Unidad	92	\$ 120	\$ 11.040	
3.20	Unión PVC Ø 1/2"	Unidad	38	\$ 120	\$ 4.560	
3.21	Caja PVC 4"x4" con Tapa	Unidad	10	\$ 1.600	\$ 16.000	
3.22	Caja EMT 4"x4" con Tapa	Unidad	10	\$ 16.900	\$ 169.000	
3.23	Caja PVC 2"x4"	Unidad	26	\$ 730	\$ 18.980	
3.24	Interruptor Sencillo 10A 120V	Unidad	18	\$ 3.200	\$ 57.600	
3.25	Tomacorriente doble Leviton 15A 120V	Unidad	26	\$ 1.980	\$ 51.480	
3.26	Caja Hexagonal EMT	Unidad	24	\$ 11.650	\$ 279.600	
3.27	Lámpara de Sobreponer fluorescente Slim Line 2x40W T12 completa	Unidad	3	\$ 43.000	\$ 129.000	
3.28	Breaker enchufable bipolar 15A Luminex	Unidad	7	\$ 18.900	\$ 132.300	
3.29	Breaker enchufable monopolar 20A Luminex	Unidad	2	\$ 18.900	\$ 37.800	
3.30	Breaker enchufable bipolar 30A Luminex	Unidad	2	\$ 18.900	\$ 37.800	
3.31	Breaker enchufable monopolar 30A Luminex	Unidad	1	\$ 6.950	\$ 6.950	
3.32	Pegante PVC	Galón	1	\$ 0	\$ 0	
3.33	Disco de corte punta de diamante	Unidad	1	\$ 1.250	\$ 1.250	
3.34	Corte y Retiro material de Demolición de muro	ML	30	\$ 1.250	\$ 37.500	
3.35	Cemento 20kg	Unidad	2	\$ 1.250	\$ 2.500	
3.36	Lija #120	Pliego	3	\$ 908	\$ 2.724	
3.37	Tablero multibreaker bifásico 12ctos	Unidad	2	\$ 112.000	\$ 224.000	
3.38	Cable monopolar THHN/THWN calibre 3/0 AWG	ML	80	\$ 16.590	\$ 1.327.200	
3.39	Terminales de CU para cable calibre 3/0 AWG 3M	Unidad	4	\$ 11.369	\$ 45.476	
3.40	Tubería Flexible metálica Coraza Americana Liquid Tight Ø 1/2"	ML	13	\$ 14.910	\$ 193.830	

3.41	Prensaestopa Metálico Ø1/2"	Unidad	6	\$ 12.900	\$ 77.400	
3.42	Chazos expansivos metálicos 1/2"x1"	Unidad	35	\$ 200	\$ 7.000	
3.43	Riel Chanel para grapa 3/4"	ML	8	\$ 630	\$ 5.040	
3.44	Grapa galvanizada 3/4"	Unidad	45	\$ 630	\$ 28.350	
3.45	Riel Chanel para grapa 1/2"	ML	8	\$ 12.500	\$ 100.000	
3.46	Grapa galvanizada 1/2"	Unidad	45	\$ 680	\$ 30.600	
3.47	Tubería PVC Ø 2"	Unidad	9	\$ 19.200	\$ 172.800	
3.48	Curva PVC Ø 2" 90°	Unidad	4	\$ 16.500	\$ 66.000	
3.49	Conector PVC Ø 2"	Unidad	3	\$ 10.300	\$ 33.600	
3.43		Officac	3	ψ 11.200		
	SUBTOTAL				\$ 4.879.924	
4	ÁREAS COMI	JNES				
4.1	Conductor de Cu calibre #14 AWG THHN/THWN Blanco	ML	60	\$ 630	\$ 37.800	
4.2	Conductor de Cu calibre #14 AWG THHN/THWN Negro	ML	200	\$ 630	\$ 126.000	
4.3	Conductor de Cu calibre #14 AWG THHN/THWN Rojo	ML	200	\$ 630	\$ 126.000	
4.4	Conductor de Cu calibre #14 AWG THHN/THWN Verde	ML	200	\$ 630	\$ 126.000	
4.5	Cable encauchetado 3x14 AWG blanco, negro y verde	ML	20	\$ 2.233	\$ 44.660	
4.6	Tubería EMT Ø 3/4"	Unidad	5	\$ 10.134	\$ 50.670	
4.7	Unión EMT Ø 3/4"	Unidad	8	\$ 584	\$ 4.672	
4.8	Curva EMT Ø 3/4" 90°	Unidad	2	\$ 1.620	\$ 3.240	
4.9	Conector EMT Ø 3/4"	Unidad	15	\$ 525	\$ 7.875	
4.10	Tubería EMT Ø 1/2"	Unidad	45	\$ 8.973	\$ 403.785	
4.11	Conector EMT Ø 1/2"	Unidad	70	\$ 390	\$ 27.300	
4.12	Unión EMT 1/2"	Unidad	50	\$ 630	\$ 31.500	
4.13	Curva EMT 1/2" 90°	Unidad	20	\$ 900	\$ 18.000	
4.14	Caja EMT 4"x4" con Tapa	Unidad	10	\$ 16.900	\$ 169.000	
4.15	Caja EMT 2"x4"	Unidad	10	\$ 730	\$ 7.300	
4.16	Interruptor Sencillo 10A 120V	Unidad	10	\$ 3.200	\$ 32.000	
4.17	Tomacorriente doble Leviton 15A 120V	Unidad	15	\$ 1.980	\$ 29.700	
4.18	Caja Hexagonal EMT	Unidad	8	\$ 11.650	\$ 93.200	
4.19	Chazos expansivos metálicos 1/4"x1"	Unidad	70	\$ 200	\$ 14.000	
4.20	Breaker enchufable monopolar 15A Luminex	Unidad	3	\$ 6.950	\$ 20.850	
4.21	Breaker enchufable bipolar 15A Luminex	Unidad	5	\$ 18.900	\$ 94.500	
4.22	Riel Chanel para grapa 3/4"	ML	8	\$ 12.500	\$ 100.000	
4.23	Grapa galvanizada 3/4"	Unidad	45	\$ 720	\$ 32.400	
4.24	Grapa Galvanizada 1/2"	Unidad	80	\$ 680	\$ 54.400	
4.25	Riel Chanel para Grapa 1/2"	ML	15	\$ 12.500	\$ 187.500	
4.26	Segueta	Unidad	5	\$ 1.200	\$ 6.000	
4.27	Tablero Multibreaker bifásico 12ctos	Unidad	1	\$ 87.000	\$ 87.000	
SUBTOTAL \$1.						
_						
5	COBECTACION III OT COTE, TABLETTO I KINGII AL I ALIMENTADORES					
5.1	Transformador 75KVA 1Ø 3h, 13,8kV/240V-120V Tipo Poste	Unidad	1	11.252.000	\$11.252.000	

5.2	Instalación de Equipo de Medida Semidirecta Exterior	Global	1	\$ 445.000	\$ 445.000
5.3	Estudio de Conexión 1 - 100kVA	Global	1	\$ 178.804	\$ 178.804
5.4	Consultoria de Proyectos 1 - 100kVA	Global	1	\$ 118.000	\$ 118.000
5.5	Breaker Industrial Bipolar/Tripolar 380A - 420A - 220V	Unidad	1	\$ 786.000	\$ 786.000
5.6	Caja metálica para Breaker Totalizador 44cmx23cmx14cm	Unidad	1	\$ 31.000	\$ 31.000
5.7	Barra de Cobre 30mmx30cmx8mm	Unidad	4	\$ 24.500	\$ 98.000
5.8	Gabinete Metálico 40cmx20cmx10cm	Unidad	1	\$ 88.000	\$ 88.000
5.9	Aisladores de baja tensión de 3" con Tornillos	Unidad	8	\$ 4.200	\$ 33.600
5.10	Electrodo de Cobre Ø5/8" - 2,4m Copperweld	Unidad	3	\$ 87.000	\$ 261.000
5.11	Conductor CU desnudo Calibre #2 AWG	ML	120	\$ 6.100	\$ 732.000
5.12	Cortacircuitos 27kV 100A 430mm	Unidad	2	\$ 240.000	\$ 480.000
5.13	Fusible para Cortacircuito 10A 15kV	Unidad	2	\$ 3.500	\$ 7.000
5.14	Pararrayos 15kV tipo Intemperie	Unidad	2	\$ 45.000	\$ 90.000
5.15	Cable THHN/THWN Calibre 500KCMIL	ML	50	\$ 55.000	\$ 2.750.000
5.16	Poste en Concreto 12m x 500dan	Unidad	1	\$ 1.450.000	\$ 1.450.000
5.17	Cruceta metálica 2.4m	Unidad	2	\$ 325.000	\$ 650.000
5.18	Perno de 5/8" x 12"	Unidad	4	\$ 5.300	\$ 21.200
5.19	Arandela Plana redonda de 5/8"	Unidad	16	\$ 1.200	\$ 19.200
5.20	Tubería EMT Ø3"	Unidad	6	\$ 36.500	\$ 219.000
5.21	Capacete para tubería EMT Ø3"	Unidad	1	\$ 56.800	\$ 56.800
5.22	Soldadura Caldweld 115g	Unidad	2	\$ 28.600	\$ 57.200
5.23	Cable de Acero de 3/8" para retenida	ML	20	\$ 2.500	\$ 50.000
5.24	Grapa Tres Pernos	Unidad	4	\$ 6.500	\$ 26.000
5.25	Aislador Tensor 3/8"	Unidad	3	\$ 12.650	\$ 37.950
5.26	Varilla de Anclaje 1/8"	Unidad	1	\$ 19.200	\$ 19.200
5.27	Descargo Costo Directo por Hora	Unidad	4	\$ 219.442	\$ 877.768
5.28	Tubería EMT Ø 1 1/2"	Unidad	50	\$ 23.600	\$ 1.180.000
5.29	Unión EMT Ø 1 1/2"	Unidad	18	\$ 6.800	\$ 122.400
5.30	Curva EMT Ø 1 1/2" 90°	Unidad	4	\$ 12.300	\$ 49.200
5.31	Conector EMT Ø 1 1/2"	Unidad	15	\$ 3.200	\$ 48.000
5.32	Cable de Cu THHN/THWN #2 AWG	ML	120	\$ 4.301	\$ 516.120
5.33	Cable de Cu THHN/THWN #4 AWG	ML	130	\$ 2.600	\$ 338.000
5.34	Cable de Cu THHN/THWN #1/0 AWG	ML	60	\$ 10.400	\$ 624.000
5.35	Cable de Cu THHN/THWN #8 AWG	ML	60	\$ 1.810	\$ 108.600
5.36	Cable de Cu THHN/THWN 500KCMIL	ML	30	\$ 55.200	\$ 1.656.000
SUBTOTAL					25.477.042
SUBTOTAL MATERIALES					55.030.439

HERRAMIENTAS REQUERIDAS PARA LA ADECUACIÓN DE LAS INSTALACIONES ELECTRICAS DE LA INSTITUCIÓN EDUCATIVA SOLEDAD ROMÁN DE NÚÑEZ SEDE PRINCIPAL						
	ITEM	UNIDAD	CANT.	VALOR UNITARIO	VALOR TOTAL	
1	HERRAMIEN	ITAS				
1.1	Palustre de Mango Plástico 5"	Unidad	3	\$ 4.900,00	\$ 14.700,00	
1.2	Cincel Cortafrío 3/4"x8"	Unidad	3	\$ 12.900,00	\$ 38.700,00	
1.3	Balde para Construcción	Unidad	3	\$ 2.700,00	\$ 8.100,00	
1.4	Carretilla buggy 2,7pies cubicos	Unidad	1	\$119.900,00	\$119.900,00	
1.5	Flexómetro 5m x 3/4"	Unidad	1	\$ 12.900,00	\$ 12.900,00	
1.6	Pinza voltiamperimétrica	Unidad	1	\$ 67.900,00	\$ 67.900,00	
1.7	Destornillador Tester 1/8" 3 3/4"	Unidad	3	\$ 4.500,00	\$ 13.500,00	
1.8	Pinza pelacable multiusos	Unidad	3	\$ 7.500,00	\$ 22.500,00	
1.9	Alicate cortafrio corte diagonal 8"	Unidad	3	\$ 24.900,00	\$ 74.700,00	
1.10	Alicate Universal 7"	Unidad	3	\$ 23.900,00	\$ 71.700,00	
1.11	Destornillador Pala Aislado a 600V 1x100mm	Unidad	3	\$ 4.900,00	\$ 14.700,00	
1.12	Destornillador estria Aislado a 600V 1x100mm	Unidad	3	\$ 4.900,00	\$ 14.700,00	
1.13	Marco de Segueta Fijo	Unidad	1	\$ 9.900,00	\$ 9.900,00	
1.14	Caja de herramientas plástica 20"	Unidad	1	\$ 34.900,00	\$ 34.900,00	
1.15	Taladro percutor 1/2" DeWALT	Unidad	1	219.900,00	219.900,00	
1.16	Pulidora 4 1/2" Black and Decker	Unidad	1	\$ 89.900,00	\$ 89.900,00	
1.17	Martillo Almadana 2 Lb.	Unidad	3	\$ 15.900,00	\$ 47.700,00	
SUBTOTAL						
2	MANO DE O	BRA				
2.1	Ingeniero Electricista	Mes	1,5	\$ 1.800.000	\$ 2.700.000	
2.2	2 Oficial Electricista	Mes	3	\$ 900.000	\$ 2.700.000	
2.3	2 Ayudante Electricista	Mes	3	\$ 750.000	\$ 2.250.000	
	SUBTOTAL				\$ 7.650.000	
SUBTOTAL MANO DE OBRA						
TOTAL OBRA ELECTRICA 63.556.739						
ADMINISTRACION (10%)						
IMPREVISTOS (3%)						
UTILIDAD (4%)					\$ 1.906.702 \$ 2.542.270	
IVA SOBRE UTILIDAD (16%)					\$ 406.763	
VALOR TOTAL DE LA OBRA					74.768.148	

5. DISEÑO DE SISTEMA DE PUESTA A TIERRA

La institución educativa Soledad Román de Núñez sede principal no cuenta con un sistema de puesta a tierra que permita proteger correctamente a los estudiantes y profesores de la institución educativa de las posibles tensiones de paso y contacto presentes en condiciones de cortocircuito, y al mismo tiempo a los equipos y elementos que alimentan a través de los circuitos ramales; por lo que se hace necesario diseñar un sistema de puesta a tierra.

Para iniciar el diseño de la puesta tierra, es necesario tomar mediciones de la resistividad del terreno, por lo que el método de Wenner es utilizado para tal fin [23]. La resistividad obtenida cuenta con un valor aproximado de 47,78 Ω /m

Tabla 32. Resistencia medida del suelo - Método de Wenner.

	a=2m	a=4m	a=8m
Eje 1	2,1	1,2	0,8
Eje 2	2,4	1,7	1,4
Eje 3	0,7	0,9	1,7
Eje 4	2,6	1,5	0,4
Eje 5	3,2	2,9	0,6
Eje 6	1,1	2,1	1,5

La determinación de la malla de tierra necesaria a instalar en la institución educativa Soledad Román de Núñez sede principal, se realiza según lo expuesto en la IEEE Standard 80-2000 [3]; con este método se determinará la resistencia obtenida debido al arreglo de la malla, cabe aclarara que en la tabla 25 de RETIE [1] se establece que el valor máximo de la resistencia de puesta a tierra debe ser de 10Ω . También se definirán las tensiones de paso y contacto máximas

permitidas para las condiciones del terreno, y considerando que el tiempo de duración de la falla es de 0,5 segundos.

El arreglo propuesto consta de una malla de tierra cuadrada con un electrodo en cada esquina del arreglo y conductores calibre 4/0 AWG, así como se presenta en la siguiente figura; la unión entre el conductor y el electrodo se realizará con soldadura exotérmica. La malla se enterrará a 40cm de profundidad y será cubierta por una capa de terreno natural y luego con una capa de concreto de 5cm. Ver detalles del arreglo en el anexo 13.

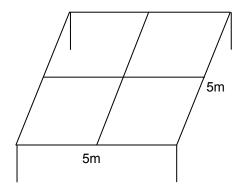


Figura 15. Arreglo propuesto para la malla de tierra.

Aplicando el método propuesto IEEE Standard 80-2000 [3] se obtiene que la resistencia de la malla de puesta a tierra, se encuentra alrededor de $8,9\Omega$. Las tensiones de paso y contacto [23], se encuentran alrededor de 1654,48V y 580,14V, respectivamente.

En lo que respecta a los valores de corriente de cortocircuito se utiliza el método de punto a punto expuesto en [22], para determinarla; obteniendo como resultado que la corriente de cortocircuito en el secundario del transformador de 75KVA es aproximadamente 15,79kA, pero considerando el factor de decremento D_f y las proyecciones de crecimiento del sistema C_p [23], el valor de la corriente de

cortocircuito que circularía por la malla de puesta a tierra de la institución educativa es de 787,5A.

Con toda esta información y apoyándonos en el programa ETAP POWER STATION 4.0 [24], se simula la malla de puesta a tierra, para determinar que los valores de la tensiones de paso y contacto de encuentren dentro de los limites permitidos.

El valor de las tensiones de contacto y de paso obtenidas a partir de simulación es 668,6V y 1092,7V, respectivamente. Lo que permite establecer que el diseño de la malla de puesta a tierra cumple con los estándares establecidos para proteger tanto a las personas que habitan la institución educativa, como a los equipos y elementos que se encuentran en los circuitos ramales.

6. CONCLUSIONES

Tomando en consideración el análisis realizado en los diferentes capítulos de este documento, las visitas hechas a la institución y las entrevistas realizadas al director y profesores de la institución educativa Soledad Román de Núñez sede principal, se pueden establecer las siguientes conclusiones:

- El análisis de las mediciones efectuadas a diversas variables eléctricas en la institución educativa, reveló que las instalaciones eléctricas de la institución no se encuentran en la capacidad de soportar la demanda exigida por la misma, es decir, existe un déficit en las instalaciones eléctricas que afecta directamente en la calidad educativa de la institución, puesto que esto obliga a los maestros a redistribuir los horarios para el uso de aulas como la de informática y los laboratorios.
- La calidad de la educación ofrecida por la institución se ve seriamente comprometida al no poderse utilizar por completo las herramientas de apoyo a la educación, especialmente las tecnologías de la información y la comunicación, lo que afecta considerablemente las competencias aportadas a los estudiantes y a la competitividad de la institución en el sector educativo de la ciudad.
- La empresa comercializadora de energía de la región, ELECTRICARIBE, no cumple con el contrato de condiciones uniformes que rige la prestación del servicio al realizar la medida de la energía de manera inadecuada, debido a que los equipos que cumplen la función de transportar y medir la energía son insuficientes para la demanda de la institución en horas de gran actividad, lo que ocasiona un detrimento económico tanto para la institución como para la misma empresa comercializadora.

- La ausencia total de planos y memorias de cálculo de las instalaciones eléctricas de la institución educativa dificultan en gran manera trabajos eléctricos y civiles y hacen imprevisible cualquier posibilidad de ampliación, adicionalmente ocasionan imprevistos en la planeación de trabajos, por lo que debe destinar recursos para éstos.
- De acuerdo al dictamen de inspección y verificación de las instalaciones eléctricas para uso final del RETIE, las actuales instalaciones eléctricas de la Institución Educativa Soledad Román de Núñez sede principal no presentan conformidad con el RETIE por lo que se hizo necesario plantear el rediseño propuesto en este documento.
- Con el rediseño de las instalaciones eléctricas presentadas en este documento se garantiza que la demanda de energía eléctrica requerida por la carga de la Institución Educativa Soledad Román de Núñez sede principal, será proporcionada de manera eficiente, adicionalmente se disminuirán los riesgos eléctricos en la institución al eliminar los contactos accidentales con partes energizadas, al despejar eficientemente las fallas eléctricas, al proteger las instalaciones eléctricas contra las condiciones ambientales, entre otras características, de esta forma se espera que las herramientas al apoyo de la educación sean utilizadas eficazmente y apoyen las competencias de los estudiantes del plantel, así como la competitividad del mismo a nivel local y regional.
- Se presenta la necesidad de instalar un transformador para servicio exclusivo de las instalaciones eléctricas de la institución, pues de esta forma se garantiza que el suministro de energía a la carga sea suplida completamente.

- Un estudio de comportamiento horario de la carga durante el día permite establecer las horas de mayor actividad de la institución, de esta manera es posible determinar factores de demanda y cargabilidad para el cálculo de transformadores que permitan suplir la demanda exigida.
- Si bien el RETIE establece valores de referencia para las resistencias de las puestas a tierra, el aspecto más importante que determina un buen diseño de ésta es el que se mantengan las tensiones de contacto y paso transferidas por debajo de los niveles de soportabilidad máximas del ser humano, de ésta forma, y realizando una interconexión adecuada con todas las puestas a tierra en la zona, se garantiza que las personas se encontrarán protegidas ante las fallas presentadas y que los equipos las despejarán de manera efectiva.

BIBLIOGRAFÍA

- [1] Ministerio de minas y energía, "Anexo general, resolución No. 18 1294 del 06 de Agosto de 2008, Reglamento Técnico de Instalaciones Eléctricas (RETIE)", Colombia, 2008.
- [2] ICONTEC, "Código Eléctrico Colombiano NTC 2050", Colombia, 2008.
- [3] The Institute Of Electrical And Electronics Engineers Inc. "IEEE Standard 80-2000, Guide For Safety In AC Substation Grounding", Estados Unidos, 2000.
- [4] DICCIONARIO DE LA LENGUA ESPAÑOLA, VIGESIMA SEGUNDA EDICIÓN. [Consulta: 22 de noviembre de 2009], Disponible en http://buscon.rae.es/drael/.
- [5] ELECTRICARIBE, Contrato de prestación del servicio publico de distribución y/o comercialización de energía eléctrica [Consulta: 22 de noviembre de 2009], disponible en http://www.electricaribe.com/Portals/1/NormativaComercial/CCU_Electricaribe_Nov2004.pdf
- [6] ELECTRICARIBE, *Norma técnica de acometidas y medidas* [Consulta: 28 de noviembre de 2009], disponible en http://www.electricaribe.com/Portals/1/NormativaRedes/Norma%20T%C3%A9cnic a%20Acometidas%20y%20Medidas.pdf
- [7] DIEZ HENAO, CARLOS MARIO, "Instalaciones Eléctricas", Colombia 1995. Sena.

- [8] CENTELSA, Guía para el diseño de instalaciones eléctricas domiciliarias seguras [Consulta: 5 de diciembre de 2009], disponible en http://www.centelsa.com.co/index.php?p=boletines.vsitemview&itemact=main
- [9] McREYNOLD RAY, "Step by step guide book on home wiring", Estados Unidos, 1982. Step by step guide book Co.
- [10] CÁLCULO DE INSTALACIONES DE ALUMBRADO. [Consulta: 16 de diciembre de 2009], Disponible en http://edison.upc.edu/curs/llum/interior/iluint2.html.
- [11] LÁMPARAS FLUORECENTES. [Consulta: 23 de diciembre de 2009],
 Disponible

 http://www.maresa.com/pdf/19%20iluminacion/05%20fluorescentes3.pdf
- [12] VITTORIO RE, "Iluminación interna", España 1989. Editorial Marcambo Boixareu editores.
- [13] USO ADECUADO DE LOS ELECTRODOMÉSTICOS. [Consulta: 23 de diciembre de 2009], Disponible en http://www.co.electricaribe.unionfenosa.com/Default.aspx?tabid=318
- [14] INSTALACIÓN DE PRUEBA, REFLECTORES METAL HALIDE. [Consulta: 23 de diciembre de 2009], Disponible en http://www.update.com.do/index-Dateien/Files/prueba Metal Halide 400 Santiago.pdf
- [15] LUMINOTECNIA. [Consulta: 26 de diciembre de 2009], Disponible en http://www.obralux.com/pdf/luminotecnia.pdf

- [16] CAPACIDAD DE CORRIENTE. [Consulta: 26 de diciembre de 2009], Disponible en http://www.centelsa.com.co/userfiles/tecnicos/6E.pdf
- [17] CATÁLOGOS DE CONDUCTORES DE COBRE AISLADO. [Consulta: 3 de enero de 2010], Disponible en http://www.procables.com.co/portal/modules/Downloads/files/1173129444-thhn.thwn.pdf
- [18] CATÁLOGO TUBERÍA CONDUIT. [Consulta: 3 de enero de 2010], Disponible en http://www.corpacero.com /eContent/library/documents/DocNewsNo111DocumentNo80.PDF
- [19] INSTALACIÓN ELÉCTRICA RESIDENCIAL. [Consulta: 3 de enero de 2010], Disponible en http://pdf.rincondelvago.com/instalacion-electrica 1.html
- [20] ICONTEC, "Presentación de tesis, trabajos de grado y otros trabajos de investigación NTC 1486", Colombia, 2008.
- [21] BUENDÍA ÁNGELA, HERNÁNDEZ DIANA, MARÍN XIMENA, HINCAPIÉ NELSON, "Instalación eléctrica industrial: fabrica Cablima", Colombia, 2006.
- [22] COOPER BUSSMANN, "Engineering Dependable Protection For An Electrical Distribution System Bulletin EDP-1", [Consulta: 22 de noviembre de 2009], Disponible en http://www.bussmann.com/library/docs/Edp-1.pdf
- [23] MEJIA VILLEGAS, "Subestaciones de alta y extra alta tensión", Colombia 2003.
- [24] ETAP POWER STATION V 4.0.0

Anexo 1. Dictamen de inspección y verificación de instalaciones eléctricas para uso final según RETIE

	FINAL SEGÚN RETIE			
Lugar y	fechaOrganismos de inspección		Dictamer	n No.
Nombre	o razón social del propietario de la instalación			
Direcció	n de la instalación			
	instalación: Residencial Industria Comercial Especial tipo:			
Cap.inst	alada en kVA Tensión en kV Año de t	eminación cons	trucción 🗌	
ersona	s Calificadas responsables de la instalación:	900 900 900		
Diseño (si lo hay):	Mat. Pro	of.	
nterven	toria (si lo hay):	Mat. Pro	of.	
Constru		Mat. Pro	of.	
Jonstru	eagn.		32	
ITEM	ASPECTO A EVALUAR	APLICA	CUMPLE	NO CUMPL
2	Accesibilidad a todos los dispositivos de protección Bomba contra incendio			
3	Continuidad de los conductores de tierra y conexiones equipotenciales	1 1		Ť
4	Corrientes en el sistema de puesta a tierra	3		X.
5	Distancias de seguridad Ejecución de las conexiones			8
7	Ensayos funcionales			
8	Existencia de planos, esquemas, avisos y señales Funcionamiento del corte automático de la alimentación			Ž.
10	Identificación de canalizaciones	# 1		0
11	Identificación de circuitos			Ï
12	Identificación de conductores de fase, neutro y tierras Materiales acordes con las condiciones ambientales			E.
14	Memorias de calculo	1 3		Š
15	Niveles de iluminación			
16 17	Protección contra arcos internos Protección contra electrocución por contacto directo			1
18	Protección contra electrocución por contacto indirecto	3		Š.
19	Resistencia de aislamiento			
20	Resistencia de puesta a tierra (valor) Revisiones de certificaciones de producto	1		0.
22	Selección de conductores			Š.
23	Selección de dispositivos de protección contra sobrecorrientes			
24 25	Selección de dispositivos de protección contra sobretensiones Sistema de emergencia			
26	Sistema de protección contra rayos			
27	Valores de campos Electromagnéticos		47.40.40.00	2 24 22 22 2
vota: Er	n instalaciones de vivienda y pequeños comercios, los items a verificar son:1, 3, 4, 8, 7, 8, 9, 10 OBSERVACIONES, MODIFICACIONES Y ADVERTENCIAS ESPECIALES (si las hay), 11, 12, 13, 14) e Identificac	, 17,18, 19, 20 ión de anexo	3, 21, 22, 23, 2 5.
	10 13:0			
	AS AV			
RESULT	ADO DE CONFIRMADA: Aprobada	No A	probada	1
	AND THE RESERVE AND THE RESERV			
	sables dictamen: y firma Organismo de Inspección Resoluc	ión de scredit	ación	
	on Domicilio	Teléfono		
Vombre	y firma Inspector	Mat. Prof.		

Anexo 2. Cuadro de carga TMBB1

TENSION DE OPERACIÓN: 220V 1Ø ALIMENTADOR: Cu THHN 2x#2AWG+1x1/0AWG+1x#6AWG

CAPACIDAD DE BARRAJES: 225A PROTECCIÓN ALIMENTADOR: 2x125A

CARGA TOTAL (L1+L2): 23939VA CORRIENTE MAX: 109A

LOCALIZACIÓN: BLOQUE 1 P1 - LATERAL IZQ.

DUCTO DE ALIMENTADOR: EMT Ø1 1/2"

MONTAJE: SOBREPUESTO EXTERIOR

PROTECCIÓN	DESCRIPCIÓN	CONDUCTOR Cu THHN	CARGA (W)	No. Cto.	L1	L2	No. Cto.	CARGA (W)	CONDUCTOR Cu THHN	DESCRIPCIÓN	PROTECCIÓN
30A	Iluminación P1	#10 AWG	2325	1			2	2080	#12 AWG	Ventiladores P1	20A
30A	Tomas Aulas P1	#10 AWG	2520	3			4	2340	#10 AWG	Tomas Oficina	30A
15A	A.A. Oficina	#14 AWG	400	5			6	1115	#14 AWG	A.A. Coordinación 1	15A
15A	A.A. Oficina	#14 AWG	400	7	1	_	8	1115	#14 AWG	A.A. Coordinación 1	15A
15A	Tomas y Lámparas Pas. P1	#14 AWG	720	9			10	1840	#12 AWG	Lámparas Aulas P2	20A
20A	Ventiladores P2	#12 AWG	1560	11	1		12	1560	#12 AWG	Ventiladores P2	20A
15A	Tomas y Lámparas Pas. P2	#14 AWG	720	13	-		14	1800	#12 AWG	Tomas Aulas P2	20A
15A	Reflectores	#14 AWG	454	15	\vdash		16	1800	#12 AWG	Tomas Aulas P2	20A
15A	Reflectores	#14 AWG	454	17	-		18			RESERVA	
	RESERVA			19	-		20			RESERVA	
	RESERVA			21	-		22			RESERVA	
	RESERVA			23	 		24			RESERVA	
			CARGA T	OTAL (W)	11454	11749	CARGA	TOTAL (W)			

Anexo 3. Cuadro de carga TMBB2

TENSION DE OPERACIÓN: 220V 1Ø

CAPACIDAD DE BARRAJES: 225A

CARGA TOTAL (L1+L2): 23196VA

ALIMENTADOR: Cu THHN 2x#2AWG+1x1/0AWG+1x#6AWG
PROTECCIÓN ALIMENTADOR: 2x125A

DUCTO DE ALIMENTADOR: EMT Ø1 1/2"

LOCALIZACIÓN: BLOQUE 2 P1 - SALA DE PROFESORES

CORRIENTE MAX: 105A

MONTAJE: EMPOTRADO-INTERIOR

PROTECCIÓN	DESCRIPCIÓN	CONDUCTOR Cu THHN	CARGA (W)	No. Cto.	L1 I	L2 I	2	No. Cto.	CARGA (W)	CONDUCTOR Cu THHN	DESCRIPCIÓN	PROTECCIÓN
15A	Tomas Bibliot. y Sala Aud.	#14 AWG	1080	1	-			_ 2	1430	#12 AWG	Ventiladores P1	20A
20A	Tomas Aulas y Pasillo P1	#12 AWG	1980	3	1		_	_ 4	2070	#14 AWG	Iluminación P1	30A
15A	Tomas Cocina	#14 AWG	1500	5				_ 6	2700	#10 AWG	Tomas Lab. y Audiovisuales	30A
30A	Tomas Aulas y Pasillo P2	#10 AWG	2340	7			_	- 8	2388	#10 AWG	Iluminación P2	30A
15A	Reflectores P2	#14 AWG	454	9	─			1 0	2340	#10 AWG	Ventiladores P2	30A
15A	Reflectores P2	#14 AWG	454	11	-		-	- 12	1115	#14 AWG	A.A. Sala Profesores	15A
15A	A.A. Sala Profesores	#14 AWG	1115	13	-		_	- 14	1115	#14 AWG	A.A. Biblioteca y Aula NS	15A
15A	A.A. Biblioteca y Aula NS	#14 AWG	1115	15			\vdash	- 16			RESERVA	
	RESERVA			17	▏╼╋			18			RESERVA	
			CARGA TO	OTAL (W)	11734	1146	32	CARGA T	OTAL (W)			

Anexo 4. Cuadro de carga TMBEAD1.

ALIMENTADOR: Cu THHN 2x#4AWG+1x#10AWG+1x#8AWG

CAPACIDAD DE BARRAJES: 200A PROTECCIÓN ALIMENTADOR: 2x90A

TENSION DE OPERACIÓN: 220V 1Ø

CARGA TOTAL (L1+L2): 17458VA CORRIENTE MAX: 79A MONTAJE: EMPOTRADO-INTERIOR

LOCALIZACIÓN: EDIFICIO AD. P1 - RECTORÍA

DUCTO DE ALIMENTADOR: EMT Ø1 1/2"

PROTECCIÓN	DESCRIPCIÓN	CONDUCTOR Cu THHN	CARGA (W)	No. Cto.	L1	L2	No. Cto.	CARGA (W)	CONDUCTOR Cu THHN	DESCRIPCIÓN	PROTECCIÓN
20A	Iluminación P1 y Tomas Secretaría	#12 AWG	1908	1	_		2	1485	#14 AWG	A.A1. Rectoría	15A
15A	Tomas Rectoría y Portería	#14 AWG	1440	3		-	4	1485	#14 AWG	A.A1. Rectoría	15A
15A	A.A2. Rectoría	#14 AWG	1485	5	─ ┥		- 6	1485	#14 AWG	A.A2. Secretaría	15A
15A	A.A2. Rectoría	#14 AWG	1485	7		-	- 8	1485	#14 AWG	A.A2. Secretaría	15A
15A	A.A1. Secretaría	#14 AWG	1485	9	─ ┥─		10	1115	#14 AWG	A.A. Sala audiovisuales	15A
15A	A.A1. Secretaría	#14 AWG	1485	11		•	12	1115	#14 AWG	A.A. Sala audiovisuales	15A
			CARGA T	OTAL (W)	8963	8963 8495		TOTAL (W)			

Anexo 5. Cuadro de carga TMBEAD2

TENSION DE OPERACIÓN: 220V

CAPACIDAD DE BARRAJES: 200A

CARGA TOTAL (L1+L2): 15376VA

10

ALIMENTADOR: Cu THHN 2x#4AWG+1x#10AWG+1x#8AWG
PROTECCIÓN ALIMENTADOR: 2x90A

CORRIENTE MAX: 70A

LOCALIZACIÓN: EAD P2-SALA AUDIOVISUALES

DUCTO DE ALIMENTADOR: EMT Ø1 1/2"

MONTAJE: EMPOTRADO-INTERIOR

PROTECCIÓN	DESCRIPCIÓN	CONDUCTOR Cu THHN	CARGA (W)	No. Cto.	L1	L2	No. Cto.	CARGA (W)	CONDUCTOR Cu THHN	DESCRIPCIÓN	PROTECCIÓN
20A	Tomas P2	#12 AWG	1620	1			2	454	#14 AWG	Iluminación PasilloP2	15A
20A	Iluminación P2	#12 AWG	1748	3	 		4	454	#14 AWG	Iluminación PasilloP2	15A
15A	A.A. Oficina	#14 AWG	400	5	─		- 6	2150	#12 AWG	A.A. Informática	20A
15A	A.A. Oficina	#14 AWG	400	7	-		- 8	2150	#12 AWG	A.A. Informática	20A
30A	A.T.	#10 AWG	3000	9	─ ┥		10			RESERVA	
30A	A.T.	#10 AWG	3000	11	- 	-	12			RESERVA	
			CARGA TOTAL (W)		7624	7752	CARGA	TOTAL (W)			

Anexo 6. Cuadro de carga TMBAC

TENSION DE OPERACIÓN: 220V 1Ø CAPACIDAD DE BARRAJES: 200A CARGA TOTAL (L1+L2): 6008VA

ALIMENTADOR: Cu THHN 2x#10AWG+1x#12AWG+1x#8AWG

PROTECCIÓN ALIMENTADOR: 2x40A

CORRIENTE MAX: 27A

LOCALIZACIÓN: AULA MÚLTIPLE

MONTAJE: EMPOTRADO-INTERIOR

DUCTO DE ALIMENTADOR: EMT Ø3/4"

PROTECCIÓN	DESCRIPCIÓN	CONDUCTOR Cu THHN	CARGA (W)	No. Cto.	L1	L2	N C	o. to.	CARGA (W)	CONDUCTOR Cu THHN	DESCRIPCIÓN	PROTECCIÓN
15A	lluminación Aula Múltiple	#14 AWG	908	1			:	2	1260	#14 AWG	Tomas Aula Múltiple	15A
15A	lluminación Aula Múltiple	#14 AWG	908	3			Ţ.	4	560	#14 AWG	Bomba de Agua	15A
15A	Bomba de Agua	#14 AWG	560	5	4	}	+ ,	6	636	#14 AWG	Lámp. Y tomas Coordinación 3 y Batería Sanitaria	15A
15A	Iluminación y Tomas Minitiendas	#12 AWG	1176	7	\dashv			8			RESERVA	
	RESERVA			9	→		 1	0			RESERVA	
	RESERVA			11			1	2			RESERVA	
			CARGA TO	OTAL (W)	3364	2644	CAF	RGA 1	ΓΟΤΑL (W)			

Anexo 7. Plano de planta I.E. Soledad Román de Núñez sede principal y Red externa actual.

Anexo 8. Instalaciones Eléctricas Bloque 1.

Anexo 9. Instalaciones Eléctricas Bloque 2.

Anexo 10.	Instalaciones Eléctricas Edificio Administrativo.

Anexo 11. Instalaciones Eléctricas Áreas Comunes.

Anexo 12. Tablero General de Baja Tensión y Distribución de Alimentadores.

Anexo 13. Sistema de Puesta a Tierra.