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Abstract: This paper deals with the problem regarding the optimal siting and sizing of distribution
static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected
total annual operating costs. These costs are associated with the investments made in D-STATCOMs
and expected energy losses costs. To represent the electrical behavior of the distribution networks,
a power flow formulation is used which includes voltages, currents, and power as variables via
incidence matrix representation. This formulation generates a mixed-integer nonlinear programming
(MINLP) model that accurately represents the studied problem. However, in light of the complexities
involved in solving this MINLP model efficiently, this research proposes a mixed-integer convex refor-
mulation. Numerical results regarding the final annual operating costs of the network demonstrate
that the proposed mixed-integer convex model is efficient for selecting and locating D-STATCOMs in
distribution networks, with the main advantage that it is applicable to radial and meshed distribution
grid configurations. A comparative analysis with respect to metaheuristic optimizers and convex
approximations confirms the robustness of the proposed formulation. All numerical validations
were conducted in the MATLAB programming environment with our own scripts (in the case of
metaheuristics) and the CVX convex disciplined tool via the Gurobi solver. In addition, the exact
MINLP model is solved using the GAMS software.

Keywords: radial and meshed distribution networks; distribution static compensators; mixed-integer
convex optimization; optimal power flow approximation

1. Introduction

Electric distribution networks are one of the main components of electric energy
systems, which are entrusted with interfacing transmission/sub-transmission systems at
substations with end-users through a medium-voltage network [1]. Distribution grids
typically operate between 1 and 25 kV, and they have be equivalent loads between 3 MVA
and 10 MVA. These grids can also cover a few square kilometers in urban areas and hun-
dreds of square kilometers in rural areas [2]. From a construction perspective, distribution
networks are typically configured with a radial structure, i.e., there is one and only one
path between each node and the substation bus [3]. Due to this electrical configuration,
electric distribution grids have energy losses between 6% and 18% of the energy input at
the substation terminal, which is very high when compared to high-voltage power systems,
whose losses are about 2% [4].
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To reduce the energy losses in distribution networks, there are different technical
approaches reported in the literature, as well as those implemented by distribution com-
panies, both with excellent results. These approaches include (i) grid reconfiguration [5],
(ii) phase-balancing [6], and (iii) shunt reactive power compensation [7].

The reconfiguration strategy in distribution networks is a classical approach to mini-
mizing grid power losses. This strategy requires the presence of tie-lines with reconfigurable
devices (normally-open reclosers) in the distribution system, which work in conjunction
with normally closed reclosers in order to modify the grid structure under particular load
conditions [8]. Grid reconfiguration allows for excellent energy loss reduction indica-
tors. However, it requires significant investments in protection devices and new tie-lines.
In addition, the dynamic reconfiguration of distribution networks implies the use of ad-
vanced protective coordination schemes, which also increases the total grid operating
costs [9].

The implementation of a phase-balancing approach for power loss reduction in distri-
bution networks is a methodology only applicable to three-phase asymmetric networks,
i.e., distribution networks with single-, two-, and three-phase loads with star or delta
connections [10]. This method consists of redistributing all the load connections in all
the nodes of the network, with the purpose of balancing load consumption in order to
make three-phase systems operate as fully balanced systems by a close margin [11]. The
phase-balancing approach is an efficient and low-cost approach for reducing energy losses
in distribution networks. However, its final solution is completely dependent on load
profiles, which implies that, if there are significant variations, making the phase-balancing
approach efficient will require a dynamic implementation, i.e., using reconfigurable devices
at each node, which will considerably increase the final costs [12].

Reactive power compensation in distribution grids can be implemented with fixed-
step or variable-step capacitor banks, which constitutes a low-cost solution with important
energy losses reduction effects, as well as good improvements in the grid voltage pro-
files [13]. However, the main problem with this solution is associated with the variability
of load consumption, which implies that the injection of reactive power with fixed values is
not the best option for compensating the variability of the energy losses during a typical
day of operation [14]. An additional device used in distribution networks for shunt reac-
tive power compensation is Distribution Static Compensators (D-STATCOMs), which are
devices based on power electronics that have the ability to provide variable reactive power
as a function of the grid requirements [15]. These devices need additional investments
when compared with capacitor banks. However, their dynamic behavior regarding reactive
power injection allows for better reductions in the expected annual grid energy losses,
which makes these devices attractive for installation in modern distribution networks.

This research focuses on shunt reactive power injection in distribution networks using
D-STATCOMs, as their dynamic behavior (dispatchable reactive power characteristics)
makes these devices an excellent alternative for minimizing the annual expected energy
losses in distribution networks with residential, industrial, and commercial users [16]. In
the specialized literature, there are multiple approaches regarding D-STATCOMs and their
optimal integration in distribution networks.

The problem regarding the optimal installation and sizing of D-STATCOMs was thor-
oughly studied by the authors of [17], who presented a complete review of the state of the
art and outlined different methodologies for locating these devices within a distribution
network. These methodologies include sensitive nodal analysis, heuristic and metaheuristic
approaches, artificial neural networks, and some combinations. The authors of [18] pre-
sented the application of a discrete-continuous version of the particle swarm optimization
method in order to locate and size D-STATCOMs in radial distribution networks composed
of 33 and 69 nodes. Numerical results demonstrated the effectiveness of the proposed
approach when compared with the vortex search algorithm, the genetic-based optimization
approach, and two exact MINLP solvers available in the General Algebraic Modeling
System (GAMS) software. In [19], the authors discussed the effect of the simultaneous
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integration of dispersed generators and D-STATCOMs in the reactive power transference
capabilities of the distribution grid. The authors located and sized both devices using
sensitivity-based approaches, with the main goal of maximizing the reactive loadability of
the grid by keeping voltage profiles within an acceptable range of operation. The authors
of [16] presented the application of the discrete-continuous version of the salp swarm algo-
rithm to locate and size D-STATCOMs in radial and meshed distribution networks in order
minimize the annual expected energy losses costs while considering the investments made
in compensation devices. Numerical results in the IEEE 33-bus grid, which considered resi-
dential, industrial, and commercial loads, demonstrated the effectiveness of the proposed
approach when compared to the MINLP solvers available in the GAMS software. In [20],
the authors explored the problem regarding the optimal siting and sizing of D-STATCOMs
in radial distribution networks while aiming to minimize the grid power losses in all the
distribution branches. To select the size and location of these devices, an analytical method
and the particle swarm optimization technique were employed, with promissory results in
test feeders composed of 12 and 69 nodes. The authors of [21] presented the application
of a mixed-integer conic reformulation to locate and size D-STATCOMs in distribution
networks. The proposed formulation was tested in the IEEE 33-bus grid, but it is only
applicable to purely radial distribution networks, since it is based on the branch power
flow approach presented in [22]. In [23], the authors explored the aforementioned problem
by using a probabilistic approach and sensitive factors. The main goal of this research
was improving the voltage stability margin throughout the distribution network. Monte
Carlo simulations demonstrated the effectiveness of the proposed approach in the IEEE
85-bus system. In [24], an analytical approach to locate and size D-STATCOMs and dis-
persed sources was presented. The authors used the stability index and the loss-sensitive
factor in order to determine the best locations and sizes for the dispersed generators and
D-STATCOMs. Numerical results in the IEEE 33-bus grid demonstrated the effectiveness
of the proposed approach with regard to the comparison between the benchmark case and
the final power losses and voltage profiles. Other optimization methods available in the
current literature to locate and size D-STATCOMs in distribution networks include the
fuzzy-lightning search algorithm [25], the differential evolution algorithm [26], the whale
optimization algorithm [27], the bat optimization algorithm [28], the tabu search algorithm,
the ant colony optimizer [29], and the ant lion optimizer [30], among others.

Table 1 summarizes the main approaches reported in the current literature to address
the problem of optimally placing and sizing D-STATCOMs in distribution networks.

The main characteristics of the summarized optimization approaches for locating and
sizing D-STATCOMs in distribution networks are the following: (i) most of the literature
reports focus on the power losses minimization and voltage profile improvements; (ii) three
tendencies to solve the optimization problem can be identified, i.e., selection of nodes and
sizes using sensitive index, the application of combinatorial optimization methods, and the
application of convex-based approaches; and (iii) the problem regarding location and sizes
of D-STATCOMs continues being a studied optimization problem with recent publications
in the last decade. Based on the above, this research makes the following contributions:

i. The proposal of a new two-stage approach to the problem under study by using a
mixed-integer convex model to select the optimal nodes for locating the D-STATCOMs
and a nonlinear programming model to determine their optimal sizes.

ii. The applicability of the proposed modeling to radial and meshed distribution grids
without any modification in their mathematical structure, with the main advantage
that different users are considered, i.e., residential, industrial, and commercial loads.
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Table 1. Recent literature reports associated with the problem regarding the optimal siting and sizing of
D-STATCOMs in distribution networks.

Solution Methodology Objective Function Ref. Year

Particle swarm optimization Power losses minimization, voltage profile improvement, and line
loadability improvement [20,31,32] 2005, 2014, 2018

Differential evolution algorithm Power losses minimization and voltage profile improvement [33] 2011

Ant Colony and Ant Lion optimizers Power losses minimization and voltage profile improvement [29,30] 2013, 2019

Sensitive index based on reactive power Power losses minimization and voltage stability improvement [23,34,35] 2015, 2018, 2019

Evolution-based Bat algorithm Power losses minimization and voltage profile improvement [28] 2021

Mixed convex-genetic approach Energy losses and investments costs minimization [21,36] 2021, 2022

Salp Swarm algorithm Energy losses and investment costs minimization [16] 2022

It is worth mentioning that this research focuses on using D-STATCOMs in radial
and meshed distribution networks at medium-voltage levels while aiming to minimize
the annual expected energy losses costs and considering D-STATCOM investments in the
objective function. However, the maintenance and operating costs of the D-STATCOMs
are neglected in this research, as these devices require very few revisions/interventions
during their useful life, which can be between 15 and 25 years. In addition, this research
only considers the typical daily load behavior of a work day that includes residential,
industrial, and commercial users connected to the distribution grid. This was based on the
fact that the distribution grid is located in a tropical country, i.e., between the tropics of
Capricorn and Cancer, as is the case of Colombia [16]. Notwithstanding, more research
is needed to include the seasonal behavior of the demand in the expected placement and
sizing of D-STATCOMs.

The remainder of this document is structured as follows: Section 2 presents the exact
mathematical modeling of the studied problem in its general mixed-integer nonlinear
programming (MINLP) form, Section 3 presents the main considerations for converting
the MINLP formulation into a mixed-integer convex equivalent, in order to determine the
nodes where the D-STATCOMs will be located; Section 4 describes the solution method-
ology regarding the selection of the nodes and the optimal sizes of the D-STATCOMs by
using a nonlinear programming evaluator; Section 5 shows the main characteristics of the
distribution system considered in this study, i.e., the IEEE 33-bus grid, along with its radial
and meshed configurations and its load distribution per area; Section 6 presents all the
numerical validations of the proposed solution methodology, as well as its comparison
with metaheuristic optimization methods; and Section 7 lists the main conclusions derived
from this research, as well as some possible future works.

2. Exact MINLP Formulation

The problem regarding the optimal placement and sizing of D-STATCOMs in electric
distribution networks involves a MINLP model that combines binary variables regarding
the nodes where the D-STATCOMs will be located and continuous variables regarding
voltages, currents, power flows, and D-STATCOM sizes, among others. The exact MINLP
model that represents the studied problem is presented in Equations (1)–(9).

Obj. fun.:

min z = σT ∑
l∈L

∑
h∈H

Rl

((
irl,h
)2

+
(

ii
l,h

)2
)

∆h + δT ∑
j∈N

mj

(
αm2

j + βmj + γ
)

(1)

where z represents the objective function value regarding the expected annual operating
costs of the distribution grid, σ corresponds to the average energy cost for the distribution
system’s operator, T represents the number of days in an ordinary year, Rl means the
resistive effect associated with the distribution line l, irl,h and ii

l,h are the real and imaginary
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components of the current flowing through the line l in the period of time h, ∆h represents
the period of time where electrical variables are assumed to be constant, δ is the cost
factor regarding the installation of the D-STATCOMs, mj means the size of a D-STATCOM
installed at node j, and α, β, and γ correspond to the cubic, quadratic, and linear cost
coefficients associated with the investments made in D-STATCOMs, respectively.

Remark 1. The selection of the cubic function that represents the expected investment costs of the
D-STATCOMs presented in the second part of Equation (1) was made based on the recommendations
made by the authors of [31,37], who presented a general formulation for integrating D-STATCOMs
while considering their annualized investment costs and a planning period of 5 years.

Subject to.:

pg
j,h − Pd

j,h = ∑
l∈L
Ajl

(
Vr

j,hirl,h + Vi
j,kii

l,h

)
, {∀j ∈ N , ∀h ∈ H}, (2)

qg
j,h + qst

j,h −Qd
j,h = − ∑

l∈L
Ajl

(
Vr

j,hii
l,h −Vi

j,hirl,h
)

, {∀j ∈ N , ∀h ∈ H}, (3)

0 ≤ mj ≤ yjqmax, {∀j ∈ N}, (4)

−mj ≤ qst
j,h ≤ mj, {∀j ∈ N , ∀h ∈ H}, (5)

∑
j∈N

yj ≤ η, (6)

yk ∈ {0, 1} {∀k ∈ N}, (7)

Vmin ≤
√(

Vr
j,h

)2
+
(

Vi
j,h

)2
≤ Vmax, {∀j ∈ N , ∀h ∈ H}, (8)

0 ≤
√(

irl,h
)2

+
(

ii
l,h

)2
≤ Il,max, {∀l ∈ L, ∀h ∈ H}, (9)

where pg
j,h corresponds to the active power generation in the slack source connected at node

j in the period of time h, Pd
j,h represents the demanded active power at node j in the period

of time h, Vr
j,h and Vi

j,h are the real and imaginary parts of the voltage profiles at node j for
each period of time, Ajl corresponds to the component of the node-to-branch matrix that
relates the node j with the line l, qg

j,h means the reactive power injection in the slack source

at node j in the period of time h, qst
j,h represents the reactive power injection provided by

the D-STATCOM connected at node j in the period of time h, Qd
j,h represents the demanded

reactive power at node j in the period of time h, yj represents a binary decision variable
regarding the placement (yj = 1) or not (yj = 0) of a D-STATCOM at node j, qmax means the
maximum size allowed for shunt reactive power compensation, η is the maximum number
of D-STATCOMs available for integration in the distribution grid. Vmin and Vmax represent
the minimum and maximum voltage regulation bounds allowed for all the voltage profiles
in the distribution network in any period of time, and il,max corresponds to the maximum
thermal current allowed in the conductor associated with route l in any period of time.

Note that L corresponds to the set that contains all the distribution lines of the network.
For the set of constraints (2)–(9) it is important to highlight that:

i. Equations (2) and (3) are widely known in electrical engineering as power balance
constraints, which make sure that the power input injections and absorptions at a
particular node are equal to the flow sent/received to/from the distribution lines,
i.e., it is the application of the Tellegen theorem regarding power equilibrium in
electrical networks.

ii. Inequality constraint (4) reveals the positive nature of the mj variable, which has to do
with the nominal power rate of the D-STATCOM device assigned at node j. However,
the box-type constraint (5) shows that the D-STATCOM assigned at node j has the
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ability to inject/absorb reactive power to/from the distribution grid, i.e., it is a flexible
device that works with variable power factors, including lagging or leading, as a
function of the grid requirements.

iii. Inequality constraints (6) and (7) refer to the number of D-STATCOMS available
to be installed along with the distribution network, and they confirm the binary
nature of the decision variable associated with the location of the D-STATCOMs in the
distribution grid.

iv. Inequality constraints (8) and (9) ensure that voltage regulation is performed at all the
nodes of the network in all periods of time, and that the current flowing through the
corridor l is contained within the thermal limits of its conductor.

Remark 2. The main characteristics of the optimization model (1)–(9) are the following:
(i) the objective function is nonlinear and non-convex due to the cubic form of the costs of the
D-STATCOMs, (ii) the power balance constraints are also nonlinear due to the product among
voltages and currents on the right-hand-side part of Equations (2) and (3), and (iii) the voltage
regulation constraint (8) and the thermal current limits defined in (9) are nonlinear due to the
presence of root-square functions.

Note that, to deal with the MINLP structure of the studied problem, the current
literature presents two alternatives. The first approach corresponds to the application of
combinatorial optimization methods using a master-slave solution methodology, where
the master-stage defines the location and size of the D-STATCOMs and the slave stage
solves the power flow problem [16]. The second approach is based on approximating the
MINLP model using mixed-integer convex theory in order to reach the optimal solution
of the problem via the Branch and Cut technique, which is combined with interior point
methods [21]. This research proposes a mixed-integer convex equivalent optimization
model to locate and size D-STATCOMs in radial and meshed distribution networks while
considering different demand behaviors, i.e., residential, commercial, and industrial loads.
The proposed convex equivalent reformulation will be presented in next section.

3. Mixed-Integer Convex Reformulation

The optimization model that represents the problem regarding the optimal location
and sizing of D-STATCOMs in distribution networks defined in Equations (1)–(11) is, as
previously discussed, an MINLP problem, which makes its solution with conventional
optimization methods a difficult matter, due to the high probability of getting stuck in local
optima [38].

To deal with the complexities of the MINLP modeling, this study proposes a simple
mixed-integer quadratic convex (MIQC) approximation based on the following facts:

i. The quadratic component of the objective function regarding the expected costs of the
energy losses is indeed a convex function due to the fact that the resistive parameter
of the distribution line is a positive definite parameter.

ii. The component of the objective function regarding the investment costs in D-STATCOMs
is a non-convex function owing to the presence of a cubic function combined with
the signs of the parameters α, β, and γ. However, as discussed by the authors of [21],
because the value of mj is lower than 2 Mvar for distribution networks, and given the
small values of the parameters α and β, more than 95% of the cost of the D-STATCOMs
is only dependent on its linear component. Therefore, the investment costs related to
D-STATCOMs can be transformed into a linear (convex) component.

iii. In the set of constraints, only the power balance Equations (2) and (3) are nonlinear
and non-convex. However, these can be approximated as linear convex constraints by
relaxing the voltage values, i.e., by previously solving a power flow problem without
considering D-STATCOMs. The solution to the power flow problem will provide an
approximation of the voltage profiles in all nodes of the network for all the period of
times under study, which will have soft variations once the D-STATCOMs are installed.
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iv. The voltage regulation constraint (8) is relaxed in the MIC formulation, as the voltage
magnitudes are assumed to be known. The current limit constraint (9) is reformulated
as a conic constraint using the l2-norm, i.e., a convex constraint [22].

Considering the aforementioned assumptions, the proposed MIQC model to determine
the optimal location and size of D-STATCOMs in radial and meshed distribution networks
takes the following form:

Objective function:

min zapprox = σT ∑
l∈L

∑
h∈H

Rl

((
irl,h
)2

+
(

ii
l,h

)2
)

∆h + δT ∑
j∈N

γmj (10)

Subject to.:

pg
j,h − Pd

j,h = ∑
l∈L
Ajl

(
Vr,0

j,h irl,h + Vi,0
j,k ii

l,h

)
, {∀j ∈ N , ∀h ∈ H}, (11)

qg
j,h + qst

j,h −Qd
j,h = − ∑

l∈L
Ajl

(
Vr,0

j,h ii
l,h −Vi,0

j,h irl,h
)

, {∀j ∈ N , ∀h ∈ H}, (12)

0 ≤ mj ≤ yjqmax, {∀j ∈ N}, (13)

−mj ≤ qst
j,h ≤ mj, {∀j ∈ N}, ∀h ∈ H, (14)

∑
j∈N

yj ≤ η, (15)

yk ∈ {0, 1} {∀k ∈ N}, (16)∥∥∥irl,h, ii
l,h

∥∥∥ ≤ Il,max. {∀l ∈ L, ∀h ∈ H}, (17)

where Vr,0
j,h and Vi,0

j,h represent the initial values assigned to the real and imaginary parts of
the voltage profiles after solving the multi-period power flow problem, respectively.

Remark 3. To ensure that the solution provided by the MIQC model is 100% feasible in the exact
MINLP model, the solutions of the yj variables (locations of the D-STATCOMs) provided by the
MIQC model are fixed in the MINLP one in order to refine their optimal sizes and calculate the
exact value of the objective function.

4. Summary of the Optimization Methodology

To solve the problem regarding the optimal siting and sizing of D-STATCOMs in
radial and meshed distribution networks, a two-stage approach is implemented. In the first
stage, the proposed MIQC model is solved in order to determine the nodes (yj) where the
D-STATCOMs must be located. In the second stage, these binary variables are set in the
MINLP model (1)–(9) which then becomes a nonlinear programming model (NLP). This
NLP model is solved using a specialized interior point method to refine the values of the
D-STATCOMs sizes (mj) and find the exact objective function value. The summary of the
proposed solution methodology is presented in Figure 1.

Remark 4. It is worth mentioning that the proposed optimization methodology based on the two-
stage approach summarized in Figure 1 is totally independent of the optimization tool, with the
main advantage that it can be implemented in any optimization software that can solve MIQC
models [39].
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Start: Proposed
methodologyLoad profile AC network info.

Solve the
model (10)–(17)

Find the values
for the variables yj.

Fix the variables xj
in the model (1)–(9)

Solve the
model (1)–(9)

Find the opti-
mal sizes of the

STATCOMs, i.e., mj

Refine the value of
z in (1) for each mj

Evaluation
ends?

End: Analy-
sis of results

Solution report
Modify the po-

sition of yj

no

yes

Figure 1. Main aspects of the proposed solution methodology.

5. Test Feeder Information

To validate the effectiveness and robustness of the proposed two-stage optimization
approach in siting and sizing D-STATCOMs in radial and meshed distribution networks,
the IEEE 33-bus grid is employed as a test feeder [16]. The schematic configuration of this
grid is depicted in Figure 2.

AC

Slack

1 2

3 4 5

6
7 8 9 10 11 12 13 14 15 16 17 18

23
24
25

19
20
21
22

26 27 28 29 30 31 32 33

Commercial area
Residential area
Industrial area

Figure 2. Schematic configuration of the IEEE 33-bus grid with load classifications.
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This test feeder is operated at the substation bus with a nominal voltage of 12.66 kV. Its
parametric information regarding peak load consumptions and distribution lines is listed
in Table 2.

Table 2. Parametric information of the IEEE 33-bus grid regarding loads and distribution lines.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40

With the purpose of evaluating the effect of load areas on the optimal location and
sizing of the D-STATCOMs in the distribution grid, the daily behavior of residential,
industrial and commercial loads is listed in Table 3.

Table 3. Daily demand profiles for all the areas depicted in Figure 2.

Hour Ind. (pu) Res. (pu) Com. (pu)

1 0.56 0.69 0.20
2 0.54 0.65 0.19
3 0.52 0.62 0.18
4 0.50 0.56 0.18
5 0.55 0.58 0.20
6 0.58 0.61 0.22
7 0.68 0.64 0.25
8 0.80 0.76 0.40
9 0.90 0.90 0.65
10 0.98 0.95 0.86
11 1 0.98 0.90
12 0.94 1 0.92
13 0.95 0.99 0.89
14 0.96 0.99 0.92
15 0.9 1 0.94
16 0.83 0.96 0.96
17 0.78 0.96 1
18 0.72 0.94 0.88
19 0.71 0.93 0.76
20 0.70 0.92 0.73
21 0.69 0.91 0.65
22 0.67 0.88 0.5
23 0.65 0.84 0.28
24 0.60 0.72 0.22

To evaluate the objective function defined in Equation (1), the parameters reported
in Table 4 are considered, which were taken from [16]. To avoid mistakes during the
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evaluation of this objective function, it is important to mention that the variable mj must be
defined in Mvar.

Table 4. Parameters for evaluating the installation costs of the D-STATCOMs.

Par. Value Unit Par. Value Unit

CkWh 0.1390 US$/kWh T 365 Days
∆h 1.00 h α 0.30 US$/MVAr3

β −305.10 US$/MVAr2 γ 127,380 US$/MVAr
δ 6/21,900 1/Days-years - - -

6. Numerical Validations

The implementation of the proposed mixed-integer optimization model to define
the nodes where the D-STATCOMs must be placed was conducted in the MATLAB pro-
gramming environment with the CVX tool and the Gurobi solver. In order to refine the
size of these D-STATCOMs, the GAMS software with the BONMIN solver was employed.
Note that all the implementations were carried out on a PC with an AMD Ryzen 7 3700
2.3-GHz processor and 16.0 GB RAM, running a 64-bit version of Microsoft Windows 10
Single Language.

Our methodology was compared to the most recent results in this research area, which
were obtained by [16] through the application of a solution methodology based on the
salp swarm algorithm (SSA). For this comparison, two simulation cases were considered:
(i) the injection of fixed-reactive power, i.e., operation as fixed-step capacitor banks; and
(ii) variable reactive power injection. Note that the GAMS software was also used to solve
the exact MINLP model presented in Equations (1)–(9).

6.1. Solution for the IEEE 33-Bus Grid with a Radial Configuration

Table 5 presents all numerical comparisons for the IEEE 33-bus grid when the reactive
power injection in the D-STATCOMs is considered to be constant throughout the operation
of the distribution network.

Table 5. Optimal solutions reached by the comparison and proposed optimization methods with
fixed reactive power injection in a radial grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/Year) Red. (%)

Ben. Case - - 130,613.90 0.00
COUENNE

[
5 6 11

] [
0.0000 0.53600 0.27466

]
115,960,99 11.22

BONMIN
[
8 25 30

] [
0.29796 0.09204 0.51265

]
109,560.85 16.12

SSA
[
13 25 30

] [
0.25851 0.10547 0.52801

]
108,249.36 17.12

MIC-NLP
[
14 25 30

] [
0.23082 0.09996 0.53905

]
108,215.94 17.15

The numerical results listed in Table 5 show that:

i. The proposed optimization model based on the combination of the MIC and the
NLP approaches allows finding a better optimal solution in comparison with the SSA
approach. The proposed approach found an additional gain of USD 33.42 (i.e., 0.03%)
regarding the SSA approach. Note that, with respect to the benchmark case, our
proposal found an expected annual gain of USD 22,397.96. This result clearly demon-
strates that the use of D-STATCOMs in distribution networks could be considered an
efficient alternative to reduce the expected costs of energy losses, even if these devices
are operated as fixed-step capacitor banks.

ii. The solution of the exact MINLP model with the GAMS-based BONMIN and COUENNE
solvers clearly demonstrates that, due to the non-convex nature of the original opti-
mization model (see Equations (1)–(9)), both solvers got stuck in local optima. This
evinces the needed for using efficient solution methods to deal with the problem of
optimal reactive power compensation in distribution networks.
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iii. Regarding the final nodes selected for the optimal siting of D-STATCOMs, the SSA
and BONMIN approaches, as well as the proposed methodology, identified node 30 as
the most promising node to place a D-STATCOM larger than those in the remaining
nodes. In addition, when comparing the SSA approach with the proposed MIC-NLP
method, the main difference between both solutions is the variation in the location
of a D-STATCOM (namely from node 13 to node 14). Note that the total reactive
power installation required by the SSA approach was 891.99 kvar, while the proposed
approach installed about 869.83 kvar, which implies that, by injecting less reactive
power better selected in nodes, it is possible to reach better objective function values.

To illustrate the main advantage of using D-STATCOMs in distribution networks, i.e.,
the possibility of injecting variable reactive power in all daily operation time steps as a
function of the demand behavior, Table 6 presents the solution for all the locations provided
in Table 5. Note that, in this simulation case, the nodes for the D-STATCOMs reported in
the second column of Table 5 are fixed as inputs for the NLP model (1)–(9).

Table 6. Optimal solutions reached by the comparison and proposed optimization methods with
variable reactive power injection in a radial grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/Year) Red. (%)

Ben. Case - - 130,613.90 0.00
COUENNE

[
5 6 11

] [
0.0000 0.58657 0.30960

]
115,606.43 11.49

BONMIN
[
8 25 30

] [
0.30077 0.09308 0.66973

]
107,902.99 17.39

SSA
[
13 25 30

] [
0.24895 0.10020 0.68940

]
106,579.39 18.40

MIC-NLP
[
14 25 30

] [
0.24092 0.10118 0.69257

]
106,550.69 18.42

The results in Table 6 show that:

i. For all solution methodologies, when the reactive power injection is variable for a daily
operation scenario, improvements were found with respect to the fixed operation cases
(Table 5). Note that the SSA approach found additional reductions of USD 1669.67,
and the proposed MIC-NLP approach found additional reductions of USD 1665.25.
This means that both approaches evidence that variable reactive power injection in
the distribution grid allows for additional improvements regarding the final objective
function value in comparison with the fixed-operation case.

ii. D-STATCOM sizing increases when variable reactive power injection is considered.
The nominal size of all the D-STATCOMs in the fixed-injection scenario was 891.99 kvar,
which increased to 1038.55 kvar for the variable operation case. For the proposed
approach, when the fixed case is considered, the total size of the D-STATCOMs was
869.83 kvar, which increased to 1034.67 kvar. These results are expected since, for a
dynamic behavior, an additional reserve of power injection is required for periods of
time with maximum demand behavior. Moreover, note that the solution provided by
the proposed MIC-NLP approach uses less installed capabilities when compared to
the SSA approach. However, a better objective function value was found. This demon-
strates that the selection of the set of nodes for locating D-STATCOMs is essential to
finding the optimal solution, which mainly depends on the strong nonlinear relation
between the decision variables (both binary and continuous ones).

6.2. Solution for the IEEE 33-Bus Grid with a Meshed Configuration

To evaluate the numerical performance of the proposed approach in the meshed
configuration, the addition of three lines to the radial configuration presented in Figure 2
was considered. These lines are between nodes 10 and 22, 18 and 33, and 25 and 29, with
resistances and reactances of (2 + j2) Ω, (0.50 + j0.50) Ω, and (0.50 + j0.50) Ω, respectively
(the schematic meshed configuration for the IEEE 33-bus grid with meshed structure is
presented in Figure 3).
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Figure 3. Schematic meshed configuration of the IEEE 33-bus grid with load classifications.

Table 7 presents the numerical results for the SSA approach, the GAMS solvers, and
the proposed MIC-NLP approach considering fixed reactive power injection.

Table 7. Optimal solutions reached by the comparison and proposed optimization methods with
fixed reactive power injection in a meshed grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/Year) Red. (%)

Ben. Case - - 86,914.74 0.00
COUENNE

[
5 6 11

] [
0.0000 0.32577 0.23872

]
83,254.95 4.21

BONMIN
[
15 16 17

] [
0.11818 0.00391 0.34700

]
81,171.76 6.61

SSA
[
14 30 32

] [
0.14620 0.39440 0.20230

]
77,870.17 10.41

MIC-NLP
[
14 30 32

] [
0.11554 0.46481 0.15147

]
77,834.42 10.45

The results in Table 7 show that:

i. The proposed MIC-NLP approach reaches the best objective function value, with a re-
duction of about 10.45% with respect to the benchmark case, by locating D-STATCOMs
at nodes 10, 30, and 32, with a total size of 731.82 kvar. Note that this solution is only
followed by the results reached with the SSA approach, which achieved a reduction of
10.41% by locating the D-STATCOMs at the same nodes as our proposal, with a total
size of 742.90 kvar. The difference between both solutions is given by the combinatorial
nature of the SSA approach, with which it is not possible to ensure that the global
optimum is found, unlike the proposed MIC-NLP methodology.

ii. Owing to the non-convex nature of the exact MINLP model (as in the radial case), the
GAMS solvers COUENNE and BONMIN got stuck in local optima, with reductions of
4.21% and 6.61% regarding the benchmark case, respectively. The proposed approach
improved these solutions by about 6.24% and 3.84%, respectively, which demon-
strates the need for presenting efficient approaches to locate and size D-STATCOMs in
distribution networks.

iii. As expected for meshed configurations, the reductions regarding annual energy losses
costs were considerably lower when compared to the radial case for all the analyzed
solution methods. This is explained by the meshed configuration of the network,
which allows for better flow redistribution along the distribution lines, thus reducing
energy losses and improving voltage profiles [40].

To confirm the applicability of using the proposed approach for dispatching variable
reactive using D-STATCOMs in meshed grid configurations, the nodal locations provided
in Table 7 were fixed in the MINLP model and evaluated as listed in Table 8.
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Table 8. Optimal solutions reached by the comparison and proposed optimization methods with
variable reactive power injection in a meshed grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/Year) Red. (%)

Ben. Case - - 86,914.74 0.00
COUENNE

[
5 6 11

] [
0.00000 0.32578 0.23872

]
83,254.95 4.21

BONMIN
[
15 16 17

] [
0.11835 0.00396 0.37393

]
81,118.73 6.67

SSA
[
14 30 32

] [
0.11578 0.49915 0.17417

]
77,697.53 10.60

MIC-NLP
[
14 30 32

] [
0.11578 0.49915 0.17417

]
77,697.53 10.60

The results in Table 8 show that:

i. As expected, with variable reactive power injection, the MIC-NLP and the SSA
approach found the same optimal solution, as the set of nodes selected for the D-
STATCOMs was the same. In this scenario, the net savings obtained by implementing
the D-STATCOMs were USD 9217.21 with respect to the benchmark case.

ii. The solution reached by the COUENNE solver in both simulation scenarios was the
same in terms of the objective function value (see the second row in Tables 7 and 8),
which demonstrates that this solver remains effectively trapped in local optima due to
the complexity of the solution space for the MINLP formulation.

7. Conclusions and Future Work

The problem regarding the optimal siting and sizing of D-STATCOMs in radial and
meshed distribution networks was addressed in this research by applying a two-stage
optimization approach. In the first stage, the exact MINLP model was reduced to a mixed-
integer convex approximation, which allowed determining the best set of nodes for locating
the D-STATCOMs. In the second optimization stage, the optimal sizes of these devices
were found by solving the nonlinear programming model obtained by fixing all the binary
variables. Numerical results in the IEEE 33-bus grid showed that:

i. For the radial configuration, the proposed model found the best solution, reducing the
expected energy losses costs by about 17.15% for the fixed power injection scenario
and 18.42% for the variable reactive power injection case. These reductions were
possible when the D-STATCOMs were located at nodes 14, 25, and 30. The second
best approach was the SSA method, as recently reported in the scientific literature,
with equivalent reductions of about 17.12 and 18.40%, respectively.

ii. As for the meshed configuration, the proposed optimization approach reduced the
expected energy losses costs by about 10.45% for the fixed reactive power injection
scenario and 10.60% for the variable reactive power injection case. These reductions
confirmed the effectiveness of the proposed two-stage approach in siting and sizing
D-STATCOMs in radial and meshed distribution networks when compared to the
SSA-based solution methodology.

iii. Numerical simulations considering the variable reactive power injection capabilities
of D-STATCOMs confirmed that compensating reactive power using variable injection
allows for better reductions in the final expected costs of energy losses. This is
explained the by the possibility of varying the reactive power injection as a function
of grid requirements, i.e., as a function of residential, industrial, and commercial
load profiles.

As future work, it will be possible to make the following contributions: (i) extending
the proposed MIC-NLP formulation to the problem of optimally siting and sizing renewable
energy resources in distribution grids; (ii) combining D-STATCOMs with renewable energy
resources in order to improve the investment and operating costs for distribution companies
over a planning period between 5 and 20 years; (iii) extending the proposed MIC-NLP
approach to locate and size batteries in distribution networks; and (iv) considering the
seasonal behavior of residential, industrial, and commercial users, as well as the variability
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of renewable generation sources for electrical systems located in countries with significant
weather- or season-related variations in electrical consumption/generation.
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