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Abstract

The kinematics of the Milky Way (MW) and M31, the dominant galaxies in the Local Group (LG), can be used to
estimate the LG total mass. New results on the M31 proper motion have recently been used to improve that
estimate. Those results are based on kinematic priors that are sometimes guided and evaluated using cosmological
N-body simulations. However, the kinematic properties of simulated LG analogs could be biased due to the
effective power spectrum truncation induced by the small size of the parent simulation. Here we explore the
dependence of LG kinematics on the simulation box size to argue that cosmological simulations need a box size on
the order of 1 Gpc in order to claim convergence on the LG kinematic properties. Using a large enough simulation,
we find M31 tangential and radial velocities relative to the MW to be in the range v 105 km stan 59

94 1= -
+ - and

v 108 km srad 81
68 1= - -

+ - , respectively. This study highlights that LG kinematics derived from N-body simulations
have to be carefully interpreted, taking into account the size of the parent simulation.

Unified Astronomy Thesaurus concepts: Local Group (929); N-body simulations (1083); Milky Way Galaxy
(1054); Andromeda Galaxy (39)

1. Introduction

The kinematics of the dominant galaxies in the Local Group
(LG), the Milky Way (MW) and M31, can be used to estimate
its total mass using a general approach known as the timing
argument (TA; Kahn & Woltjer 1959; Einasto & Lynden-
Bell 1982). Two key measurements to be used as an input in
the TA are the tangential and radial velocities of M31 relative
to the MW. The new results on the M31 proper motion (PM)
provided by the Gaia satellite have spurred new activity to
measure the tangential speed of M31 relative to the MW and
therefore improve the LG total mass constraints (van der Marel
et al. 2019; Salomon et al. 2021, Bensity et al. 2022).

However, translating PM measurements into a relative
tangential velocity requires defining a prior on the tangential
speed vtan. Different priors lead to different PM results. For
instance, van der Marel & Guhathakurta (2008) and van der
Marel et al. (2019) take a flat prior on vtan while Salomon et al.
(2021) take a prior proportional to vtan. These two different
shapes for the prior distribution result in different expectation
values for the tangential speed, which can be interpreted as van
der Marel et al. (2019) having a preference toward lower
tangential speeds than Salomon et al. (2021).

Cosmological N-body simulation in the Lambda cold dark
matter (LCDM) paradigm have been used to inform those priors
(van der Marel & Guhathakurta 2008) and to calibrate possible
biases in the TA (Li & White 2008). Simulations have also
provided a numerically derived prior to place observed LG
kinematics in a cosmological context (Forero-Romero et al. 2011)
and to constrain the total LG mass independently of the analytical
expressions derived from the TA (González et al. 2014).

In general, the results from numerical simulations produce
priors that favors values close to 80 km s−1 for the tangential
speed (Forero-Romero et al. 2011; Carlesi et al. 2016a, 2016b;
Fattahi et al. 2016; Sawala et al. 2016) with some zoom
simulations even favoring values with a median around
50 km s−1 (Garrison-Kimmel et al. 2014; Libeskind et al.
2020).
In this article we show that these results might not be robust

as a consequence of a relatively small simulation box size. Here
we argue that reaching convergence on the kinematic properties
requires simulations on the order of 1 Gpc in box size, which to
this date represents a challenge for numerical models of galaxy
formation in a explicit cosmological context.
As a probe of kinematic convergence we use the LG

barycenter speed. The barycenter speed offers three advan-
tages: it has a robust theoretical prediction as a function of the
simulation box size, it is easy to measure in simulations, and it
has a low uncertainty measurement for our LG. We use the
theoretical baseline for the barycenter speed as an independent
verification of the trends we find in simulations. Finally, we use
a cosmological simulation with a box size close to 3 Gpc to
report the preferred ranges for the radial and tangential speed of
M31 with respect to the MW.
This article is structured as follows. We start in Section 2 by

describing the cosmological simulations we use to measure the
kinematics for LG analogs. We continue in Section 3 with the
detailed description of how we define an LG analog in
simulations. We move into Section 4 to review the expectations
from linear theory for the probability density function for the
barycenter speed. In Section 5 we present and discuss our
results. We close with our conclusions in Section 6.

2. Cosmological Simulations

We use simulations from two different projects: IllustrisTNG
(Nelson et al. 2018; Pillepich et al. 2018; Springel et al. 2018;
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Naiman et al. 2018; Marinacci et al. 2018; Pillepich et al. 2019;
Nelson et al. 2019) and AbacusSummit (Garrison et al.
2018, 2019, 2021; Hadzhiyska et al. 2021; Maksimova et al.
2021). They have different numerical setups and methods to
find dark matter halos, although their cosmological parameters
are similar. In the following we describe the most relevant
features from each project.

2.1. IllustrisTNG

The IllustrisTNG project is a set of gravito-magnetohydro-
dynamical simulations with models for the physics of galaxy
formation and evolution through cosmic time. The simulations
couple dark matter, cosmic gas, luminous stars, and super-
massive black holes in a redshift range from z= 127 to
the z= 0.

The IllustrisTNG simulations were performed on three
different cubic volumes of different size and at three different
resolutions. This gives us a total of nine different simulations
that we use in this work. The simulations for each box size
receive different names: TNG100 and TNG300, where the
number indicates the box size of 106.5 and 302.6 in units of
Mpc, respectively. All these simulations use the same
cosmological parameters from the Planck 2015 results (Planck
Collaboration et al. 2016) with a present time Hubble
parameter of H = 67.74 km s−1 Mpc−1, present time dark
energy density ΩΛ= 0.6911, present time matter density
Ωm= 0.3089, power spectrum normalization σ8= 0.8159,
and spectral index ns = 0.9667. Table 1 lists the particle mass
resolution for all the simulations.

As a proxy for an MW/M31 galaxy we use the main
substructure inside the dark matter halo detected with the
friend-of-friends algorithm. We use masses defined by
spheres that enclose Δc times the critical density of the
universe, where Δc is derived from the fitting formula in
Bryan & Norman (1998). However, we use the maximum
circular velocity as a selection criterion, which has a weak
dependence on different overdensity criteria to define the
halo boundary (Klypin et al. 2011). Our results use the
snapshot at a redshift of z = 0.1 in order to allow a
comparison against the results from AbacusSummit.

2.2. AbacusSummit

AbacusSummit is a suite of large dark matter only
simulations. From this project we use a total of seven different
simulations.
Five of the boxes were generated with the same global

cosmological and numerical parameters, but only differ on the
initial seed for the initial conditions. They have a box size of
Lbox= 2967 Mpc on a side. In that volume the dark matter
distribution was sampled with 69123 particles, which corre-
sponds to a particle mass of 2× 109 h−1Me. We refer to these
boxes as AbacusBase.
Two more boxes have a box size of Lbox= 1483 Mpc on a

side, one of them sampled with 63003 particles (about
6× 108 h−1 Me per particle) and the other with 34563 particles
(2× 109 h−1 Me per particle). We refer to these two boxes as
AbacusHigh and AbacusHighBase, respectively.
The cosmological parameters on all these simulations follow

the Planck 2018 cosmology (Planck Collaboration et al. 2020)
with a present time Hubble parameter of H = 67.36 km s−1

Mpc−1, present time dark energy density ΩΛ= 0.685, present
time matter density Ωm= 0.315, power spectrum normalization
σ8= 0.811, and spectral index ns = 0.96.
For our analysis we use the halo catalogs built on the

snapshot at redshift of z = 0.1 using the CompaSO algorithm
(Hadzhiyska et al. 2021). We use as a selection criterion the
maximum circular velocity computed on the dominant
substructure inside the Level1 halo defined by CompaSO.
We use the masses for Level1 halos, which correspond to the
same definition we use for IllustrisTNG halos.

3. Local Group Analog Definitions

We aim at finding pairs of dark matter halos that broadly
resemble the LG’s mass and isolation. We follow similar
conditions as used by Forero-Romero et al. (2011). We start by
selecting all halos with maximum circular velocities
V 200 km smax

1- . Then, we use these halos to find what we
call an isolated pair. Isolated pairs are two halos, A and B, that
are mutually their nearest halo. We use a convention where A
refers to the least massive halo in the pair. Furthermore, halos A
and B do not have any other third halo more massive than halo
B closer than 3 times the pair separation. Finally, we only keep
pairs where both halos have maximum circular velocities in the
range V200 km s 260 km s1

max
1- -  ; separations are less

than 1.5 Mpc and negative radial velocity after the Hubble-
Lemait̂re expansion term is taken into account.
These selection criteria do not exclude the possibility that a

group or cluster halo could be found near the pair, which could
represent a significant perturbation not present in the observed
LG. To estimate the impact of such configurations we look for
pairs with a halo within 5 times the pair separation with Vmax
greater than 300 km s−1. We find that this situation affects less
than 1% of the pairs. This presents negligible consequences for
the statistical results presented in the paper.

4. Kinematics from Linear Theory

Sheth & Diaferio (2001) used linear theory extrapolated
from Gaussian initial conditions to explicitly show that (if the
ranges of halo masses and local background density are
narrow) the velocity components for a halo population should
follow a normal distribution. As a consequence, the peculiar
speed should follow a Maxwell–Boltzmann (MB) distribution.

Table 1
Summary of All Results for the Characteristic Speed in the Maxwell–

Boltzmann Distribution for the Different Simulations Explored in This Paper

Simulation Name σb (km s−1) bDs (km s−1) mp (10
7 Me) Np

TNG100_1 155 17 0.7 13
TNG100_2 122 28 6 6
TNG100_3 165 21 48 6
TNG300_1 226 7 6 184
TNG300_2 220 8 47 133
TNG300_3 246 16 380 67
AbacusHigh 295.1 0.8 90 32896
AbacusHighBase 296.2 0.7 300 33936
AbacusBase 298.9 0.3 300 269543

Note. First column: simulation identifier. Second column: the characteristic
velocity. Third column: the uncertainty on the characteristic velocity. Fourth
column: the mass of a single computational dark matter particle in the
simulation. Fifth column: the number of LG analogs found in the simulation.
The results for AbacusBase correspond to the mean value over the five
simulations.
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Although Sheth & Diaferio (2001) did not consider the case
of halo pairs, we argue that the barycenter velocity, being the
sum of normally distributed variables (i.e., the velocity
components of each pair member), will also have normally
distributed components, which translates into an MB distribu-
tion for the barycenter speed. We show in the next section that
it is indeed the case.

The normalized probability density function for vb can thus
be the written as

P v
v e2

, 1b
b

v

b

2 2

3

b b
2 2

p s
=

s-
( ) ( )

( )

where the scale σb is a parameter with velocity dimensions that
uniquely determines the distribution.

The cumulative distribution function (CDF) can then be
written as

P v
v v e

erf
1

2

2
, 2b

b

b

b
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2 2
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where xerf( ) is the error function.
The linear extrapolation by Sheth & Diaferio (2001)

provides the following expression to compute σb for halos of
mass m

m H 1 , 3b m0
0.6

1
0
4

1
2

1
2

s s
s

s s
= W --

-

( ) ( )

where H0 is the Hubble parameter at present time, Ωm is the
matter density parameter at present time, and σj are moment
integrals of the matter power spectrum, P(k),

m dkk P k W kR m
1

2
, 4j

j2
2 0

2 2 2òs
p

=
¥

+( ) ( ) ( ( )) ( )

where W(x) is the Fourier transform of the window function,
and R(m) is the virial radius associated with a halo of mass m at
a given redshift z.

Having a finite box size in a simulations means that the
power spectrum is effectively truncated to P(k)= 0 for
k< 2π/Lbox. In the next section we show that this truncation
adequately reproduces the barycenter speed trends as a function
of the simulation box size.

Here we use a top-hat filter in real space, for which
W x x x x x3 sin cos3= -( ) ( )( ( ) ( )). For the typical halo size, R
(m), we pick a value of 0.25Mpc. Considering larger different
values for R(m) does not have a significant impact on the
results. We use the linearly extrapolated power spectrum down
to z = 0.1 with the analytical transfer function by Eisenstein &
Hu (1998) and Planck 2015 cosmological parameters.

5. Results and Discussion

Figure 1 shows the barycenter speed CDF computed from
different simulations together with its best MB fit, showing that
the CDF for vb is well approximated by an MB CDF, as
expected. As a reference value we plot the observed barycenter
speed for our LG . This value is well determined by the dipole
anisotropy in the cosmic microwave background (Fixsen et al.
1996) with a value of 620± 15 km s−1 derived from a careful
review of the dynamics of the relative movement of the Sun
respect to the LG and data from the Planck satellite (Planck
Collaboration et al. 2020). For the largest simulations in our
sample we estimate that the percentage of LG analogs with a

barycenter speed equal or larger than the observed value is
pLG= (21± 3)%.
Figure 1 clearly shows that the peculiar velocities in an N-

body cosmological simulation have a strong dependence on the
parent box size. Larger box sizes allow the development of
dark matter halos with larger peculiar speeds. Using simula-
tions with small box sizes could give the erroneous impression
of LG analogs with small peculiar speeds that could not
reproduce the observed value for our LG. What would be the
box size beyond which the barycenter speed distribution is
expected to converge?
To answer this question, first we estimate σb as a function of

the box size for all the simulation we have available. Then we
compare those numerical results against the expectations from
linear theory to argue that for box sizes of at least 1 Gpc one
should expect the desired convergence.
Table 1 presents our σb estimates for the simulations we have

at hand where we observe that the dominant influence on σb
comes from the simulation box size. This is more evident in
Figure 2, where we compare σb as a function of the inverse box
size both from the simulations and the linear theory expecta-
tions (dashed line) after imposing a power spectrum truncation
to mimic the effect of a finite box size. To compute the results
from Equation (3) we use 104 Mpc as the largest box size.
Considering larger box sizes does not have a significant impact
on those results.
We observe that linear theory successfully accounts for the

overall σb dependence on Lbox, although it slightly over-
estimates the results from N-body simulations as already shown
by Sheth & Diaferio (2001). The value that we obtain from
linear theory for σc in the limit of infinite box size is
300 km s−1.
Figure 2 also shows the best least-squares fit to the

simulation data. We use the function

A

Bx1
, 5b C

s =
+ ( )

( )

with x= 1/Lbox and A> 0, B> 0, C> 1. The advantages of
this functional form are that in the limit of x toward zero, σb
tends to a finite value with a null derivative.

Figure 1. Cumulative distribution for the barycenter speed from different
cosmological simulations (continuous line) together with its best Maxwell–
Boltzmann fit (dashed line). Larger box sizes correspond to distributions
skewed toward higher speeds. The vertical stripe indicates the observational
value for our LG.
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The best fit has A= 304± 12 km s−1, B= 117± 12 Mpc,
and C= 1.2± 0.2. This yields σb= 304± 12 km s−1 in the
limit of infinite box size, consistent with the value derived from
the AbacusBase simulations (298.9± 0.3 km s−1) and linear
theory (300 km s−1) showing that a converged estimate of the
peculiar speed distributions from simulations requires a box
size on the order of 1 Gpc.

So far, these results establish that (a) the peculiar velocity
distribution strongly depends on the parent box size and (b) one
could expect convergence of the barycenter kinematics for box
sizes on the order of 1 Gpc. However, the question of what is
the box size influence on the tangential and radial M31 speed
relative to the MW remains open.

We address that question in Figure 3. Using all the available
simulations, we compute the median in the radial and tangential
speed distributions. We estimate the uncertainty from 1000
bootstrapping iterations. There, we find a strong dependence of
the median on the box size. These results show a maximum
median speed for the box sizes above 1 Gpc and suggest a
minimum for the smallest box sizes. With the caveat of having
large error bars for the smallest box sizes due to the low
number of LG analogs found in those volumes.

Finally, we use all pairs from the AbacusBase simulations to
present in Figure 4 the full CDF for the tangential and radial
speed. These volumes are large enough to provide a robust
estimate for those CDFs. Above box sizes of 1 Gpc we do not
expect strong fluctuations for the peculiar speed distributions
that are in turn used to measure the relative tangential and
radial speeds.

From these results we find the tangential and radial M31
velocities relative to the MW to be in the range
v 105 km stan 59

94 1= -
+ - and v 108 km srad 81

68 1= - -
+ - , where the

central value corresponds to the median and the uncertainties
are computed to match the 16th and 84th percentiles, with
negative velocities standing for infalling motion.

These results support the statement that tangential velocity
estimates from simulations with box sizes on the order of
100Mpc might underestimate the median of the true prior
distribution expected from LCDM. This includes zoom

simulations of constrained realizations with a parent N-body
simulation built to reproduce the observed large-scale structure
around the LG. (Forero-Romero et al. 2011; Carlesi et al.
2016a, 2016b; Fattahi et al. 2016; Sawala et al. 2016).
For instance, three LG pairs from constrained simulations, in

the CLUES project, with a box size of 87Mpc on a side have
radial and tangential speeds lower than 70 and 50 km s−1,
respectively (Forero-Romero et al. 2013). Twelve LG pairs
from the ELVIS project that correspond to zoom simulations
from a parent cosmological box of 70.4Mpc show median
values for the radial and tangential speed of 57 and 43 km s−1,
respectively (Garrison-Kimmel et al. 2014). The 13 inter-
mediate resolution LG pairs from the HESTIA project that
come from constrained realizations simulated on a box of
147.5Mpc on a side (Libeskind et al. 2020) present median
radial and tangential speeds of 61.7 and 48.3 km s−1,
respectively. All these values are consistently lower than our
estimates from simulations with converged kinematics.

6. Conclusions

In this paper we presented a study of simulated LG
kinematics from cosmological N-body simulations as a
function of the simulation box size. Combining the results
from different simulations we showed that there is a strong
dependence of the LG barycenter speed as a function of the
simulation box size. Larger box sizes correspond to wider
speed distributions.
We use linear theory to show that this trend can be

understood in terms of the power spectrum truncation due to a
finite box size. Using these results from simulations and linear
theory we find that converged results for the barycenter speed
can be expected for box sizes on the order of 1 Gpc and above.
We also study the changes in the tangential and radial

velocity of M31 relative to the MW as a function of the box
size. There we also find a strong dependence whereby the
largest box sizes correspond to the larger tangential and radial
speeds. From the simulations with the largest box size (3 Gpc)
in our sample we estimate the tangential and radial M31
velocities relative to the MW to be in the range vtan =
105 km s59

94 1
-
+ - and v 108 km srad 81

68 1= - -
+ - .

These findings suggest that LG kinematics derived from
cosmological simulations with box sizes on the order of a few
100Mpc might favor low tangential speed values as a
consequence of a relatively small box size. In that event, one
has to be cautious in the comparison of the tangential velocities
in simulations against observations, keeping in mind the
influence of the simulation box size.
Numerical studies performed to understand the LG forma-

tion and evolution in a cosmological context, that want to claim
convergence on the LG kinematics, will have to tackle the
computational challenge imposed by a box size that must be on
the order of 1 Gpc, while having enough resolution to correctly
describe scales on the order of 100 kpc. Recent results based on
a constrained simulation with 1 Gpc box size on a side,
performed to study the LG, are the first ones to go in that
direction (McAlpine et al. 2022).
We thank the anonymous referee for very constructive

comments that significantly improved the paper. We also thank
the Vice Presidency of Research and Creation’s Publication
Fund at Universidad de los Andes for its financial support.

Figure 2. Dependence of the speed scale σb as a function of the inverse of the
simulation box size. The symbols present the results from simulations. The
dashed line corresponds to the linear theory predictions described in
Equation (3), in this case the box size indicates the wavelength cut below
which the power spectrum is suppressed. The continuous line corresponds the
function in Equation (5) with the parameters that best fit the simulation results.
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