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Abstract: In this paper, we address the problem of the optimal power dispatch of Distributed
Generators (DGs) in Alternating Current (AC) networks, better known as the Optimal Power Flow
(OPF) problem. We used, as the objective function, the minimization of power losses (Ploss) associated
with energy transport, which are subject to the set of constraints that compose AC networks in an
environment of distributed generation. To validate the effectiveness of the proposed methodology
in solving the OPF problem in any network topology, we employed one 10-node mesh test system
and three radial text systems: 10, 33, and 69 nodes. In each test system, DGs were allowed to inject
20%, 40%, and 60% of the power supplied by the slack generator in the base case. To solve the
OPF problem, we used a master–slave methodology that integrates the optimization method Salps
Swarm Algorithm (SSA) and the load flow technique based on the Successive Approximation (SA)
method. Moreover, for comparison purposes, we employed some of the algorithms reported in
the specialized literature to solve the OPF problem (the continuous genetic algorithm, the particle
swarm optimization algorithm, the black hole algorithm, the antlion optimization algorithm, and
the Multi-Verse Optimizer algorithm), which were selected because of their excellent results in
solving such problems. The results obtained by the proposed solution methodology demonstrate
its superiority and convergence capacity in terms of minimization of Ploss in both radial and mesh
systems. It provided the best reduction in minimum Ploss in short processing times and showed
excellent repeatability in each test system and scenario under analysis.

Keywords: optimal power dispatch; optimal power flow; alternating currents; distributed generators;
power losses; master–slave methodology; salp swarm algorithm

1. Introduction
1.1. General Context

As is well known, access to electricity is a fundamental right and is one of the United
Nations’ Sustainable Development Goals, given its importance in the development of soci-
ety, as electricity provides comfort and a wide range of benefits for people [1–4]. However,
its consumption has risen exponentially in recent years, and its misuse has caused severe
environmental and economic impacts on the planet due to the increased CO2 emissions
and higher operating costs associated with its distribution [5–7]. Different solutions to
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these problems have been sought, including the development of new energy manage-
ment technologies and strategies to increase electricity production around the world, as
well as the development and application of new energy distribution technologies such as
Distributed Generators (DGs) [8] and energy storage elements (e.g., batteries, capacitors,
ultracapacitors, and superinductors) [9]. These solutions have lead us to reconsider the
way conventional energy transport systems operate [10]. For the above reasons, network
operators and researchers in this field have looked for energy alternatives other than fossil
fuels and proposed the use of renewable energies and the integration of DGs into electric
networks to meet energy demands while remaining environmentally friendly [11–13].

The integration of DGs into an Alternating Current (AC) network helps to minimize
the system’s power losses (Ploss), improve the voltage profiles, and reduce the currents
flowing through the distribution lines, which could reduce the gauge of the conductor
being employed, and thus the costs associated with energy distribution within the AC
system, while respecting the technical and operational constraints of this type of electrical
system. The positive or negative effects of installing DGs in electrical networks are closely
related to their level of power injection, which depends on the power demanded by users
and the characteristics of the electrical system itself [11,14,15].

The problem of the optimal power dispatch of DGs in electrical power networks is
known as the Optimal Power Flow (OPF) problem, which entails determining the power to
be injected by each DG to meet the goal established by the network operator. In this study,
we selected the reduction in Ploss as the objective function [16–18]. Importantly, to solve the
OPF problem, it should be divided into two stages. The master stage is the first one. This
is responsible for proposing the optimal power levels to be supplied by each DG in the
AC networks, which are linked to their minimum and maximum power levels. The slave
state is the second one. This is in charge of solving the power flow problem and evaluates
the impact of each solution proposed by the master stage in the objective function and
constraints that represent the problem under analysis. In this way, the slave stage allows us
to determine both the Ploss and the nodal voltages for each of the solutions proposed in the
master stage [15,18,19]. The OPF problem is considered a nonlinear nonconvex problem
that must be solved using methods that produce high-quality solutions in short processing
times. Thus, we propose using numerical methods and optimization algorithms that allow
us to find the global optimum for the objective function of the OPF problem [8,20–23].

1.2. State of the Art

In recent years, various authors have proposed solutions to the OPF problem in AC
networks, with the goal of achieving proper power dispatch into the network and obtaining
benefits from power injection by DGs. Some of the objective functions that have been used
for this purpose are: (i) the minimization of Ploss associated with the optimal location and
sizing of DGs in the network, (ii) the proper management of energy through energy storage
systems, (iii) the reduction of CO2 emissions, and (iv) the minimization of related costs [24].
Considering the intelligent operation of DGs, the OPF problem in AC networks seeks (in
most of the reported cases) to minimize the Ploss associated with energy distribution [14].
To solve this problem, different studies in the specialized literature have proposed using
commercial software, as well as optimization techniques based on sequential programming
that can be replicated using open source software [17]. These solution methodologies
help to determine the power levels to be injected by the DGs in order to minimize Ploss
in AC networks and ensure that the set of constraints that compose the OPF problem are
respected [8,17,22,23].

The authors of [25–27] used commercial software to solve the problem of OPF in
AC grids. In the particular case of [25], the OPF problem was tested in the IEEE 14- and
30-node systems, and a multi-objective mixed integer nonlinear programming model was
proposed. The problem was modeled in the software GAMS (General Algebraic Modeling
System) and solved using DICOPT solver. As objective functions, the authors of such study
considered the reduction in total fuel cost, the minimization of active power losses, and
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the improvement of the system’s loadability. Their proposed model produced excellent
results in terms of solution quality, and was compared with the following techniques:
the Differential Evolution (DE) algorithm, Sequential Quadratic Programming (SQP), and
Particle Swarm Optimization (PSO). Moreover, the authors analyzed processing times, as
well as the reduction in minimum Ploss, but did not evaluate the currents flowing through
the lines (as part of the constraints), the repeatability of the obtained solutions, and the
behavior of the proposed solution methodology in larger networks. In [26], the authors
employed the PSO algorithm and DigSILENT as the solver, with the minimization of Ploss as
the objective function. The simulations were carried out in the 9- and 22-node test systems,
taking into account the costs associated with power generation and the nodal voltages. In
such study, however, the currents flowing through the lines and the processing times and
standard deviations of the proposed solution methodology were not considered. In [27],
the authors used a discrete-continuous programming method, which employs the Chu
& Beasley genetic algorithm to identify the power levels to be injected by the DGs. They
also employed DigSILENT to solve the load flow problem using as objective function the
minimization of Ploss in the 6-, 14-, and 39-node test systems under four different scenarios.
The authors of such study took into account the nodal voltages, the processing times, and
the loadability of the lines, but did not take into account the standard deviations of the
proposed solution technique when executed (the repeatability of the solution was not
analyzed). Additionally, the proposed solution methodology was not compared with other
techniques, which does not allow the impact of its solution to be measured.

Furthermore, open-source software that uses optimization techniques based on se-
quential programming has been widely employed in the specialized literature to solve the
OPF problem in AC networks, avoiding the need for commercial software, which is costly
and highly complex [28–30]. For instance, in [28], the authors employed the Artificial Bee
Swarm Optimization (ABSO) algorithm, with the minimization of Ploss in AC networks
as the objective function, and tested it in the IEEE 18- and 30-node test systems. They
considered the nodal voltages bounds, without analyzing the processing times and stan-
dard deviations of the solution obtained; as well as the currents limits assigned to the lines
(as part of the set of constraints). In [29], a bio-geography-based optimization algorithm
was proposed, having, as the objective function, the minimization of Ploss in the IEEE 30-
and 57-node test systems. In such study, the authors took into account the processing
times to evaluate the efficiency of the proposed solution methodology, but did not analyze
the repeatability of the obtained solutions. Additionally, the currents flowing through the
conductors of the AC network were not considered as part of the set of constraints proposed
in the mathematical formulation. In [30], the PSO algorithm and two of its variants (TPSO
and TCPSO) were used to solve the OPF problem, with the objective function being the
minimization of Ploss in the IEEE 57- and 118-node test systems. In such study, the authors
took into account the nodal voltages (as part of the operational constraints) of the test
systems under analysis, but did not consider the currents flowing through the conducting
lines. Likewise, they did not analyze the processing times and standard deviations of the
methodology they employed. Finally, Table 1 summarizes the commercial and sequential
programming solution methods identified inside the state of the art reported for solving
the problem addressed in this work.

Importantly, if the behavior of the currents flowing through the conductors is not
considered in the proposed mathematical formulations, it is not possible to ensure that
the results obtained by the implemented methodologies will satisfy the technical and
operational constraints of the test systems under analysis. Moreover, after the literature
review, we noticed that, the optimization techniques were not tuned in any of the studies
mentioned above; hence, the conditions for the solution methodologies proposed in each
paper are not guaranteed to be the same [17].
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Table 1. Commercial and sequential programming solution methods reported in literature for solving
the power dispatch problem in AC grids.

Commercial Software

Method Year Reference

Particle Swarm Optimization-
DigSILENT 2009 [26]

GAMS-DICOPT 2012 [25]

Genetic Algorithm-
DigSILENT 2021 [27]

Sequential Programming

Method Year Reference

Bio-geography
Optimization Algorithm 2010 [29]

Artificial Bee Swarm
Optimization Algorithm 2012 [28]

Turbulent Crazy Particle Swarm Optimization 2017 [30]

Continuous Genetic Algorithm 2018 [31]

Particle Swarm Optimization 2018 [32]

Ant Lion Optimizer 2021 [33]

Black Hole 2021 [15]

Multi-Verse Optimizer 2022 [14]

Considering the previous literature review, it was identified that the OPF problem
is a very important problem for power engineering at any voltage level, and it continues
to be an extensively studied problem. For this reason, new methodologies, preferably in
free software, are needed to ensure good numerical results with low computational effort.
Additionally, these methodologies should include, in their mathematical formulation, all the
constraints associated with the operation of AC networks in an environment of distributed
generation, such as active and reactive power balance, power limits associated with the DGs
and conventional generators, and current limits through the power distribution lines of the
systems under analysis. Additionally, to evaluate the repeatability of the proposed solution
methodologies, their results must be statistically analyzed, taking into account the standard
deviations obtained by the methodologies each time they are implemented. Furthermore, it
is necessary to analyze the processing time required by each solution method. The purpose
of these performance indices is to guarantee to the users that the algorithm will provide a
high-quality solution every time it is executed.

In light of these current needs, this paper presents a master–slave methodology that
can be used to solve the OPF problem and that can be replicated in any type of open-source
software. The master stage uses the Salp Swarm Algorithm (SSA) presented in [34], which
was selected because of its excellent performance in solving different research problems and
its different applications in engineering problems focused on renewable energies, power
generation, and distribution systems [22,23,35,36]. The slave stage employs the Successive
Approximation (SA) numerical method proposed in [37], which was selected because of its
outstanding performance in terms of convergence and processing time when solving the
load flow problem. To validate the proposed solution methodology, we use one 10-node
mesh test system and three radial text systems of 10, 33, and 69 nodes. For each test system,
we consider the maximum power allowed for the DGs of 20%, 40%, and 60% of the power
supplied by the slack generator in a scenario with out DGs. Each scenario will be tested
100 times to evaluate standard deviation, repeatability, and average processing time of all
solution methodologies used.
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1.3. Scope and Main Contributions

In this study, we address the OPF problem in AC networks in an environment of DG
and solve it using a master–slave methodology based on sequential programming to avoid
the need for commercial software. Such methodology uses the SSA in the master stage
to determine the power levels to be injected by the DGs and the SA numerical method
in the slave stage to evaluate the load flows, and thus analyze the impact of the power
configurations suggested by the master stage on the Ploss and the limits of the problem.
The purpose of this is to present a hybrid methodology that is highly efficient in terms of
solution quality and processing times and with an adequate repeatability every time it is
implemented. The following are the main contributions of this study to the electrical power
literature field:

• A new solution methodology for solving the AC OPF problem based on a master–slave
strategy by considering the reduction of power loss as objective function and all sets
of constraints that make up the operation of a AC grid under a distributed generation
environmental.

• An OPF solution approach that solves different distribution network topologies (radial
and meshed) and improves recent literature reports based on combinatorial optimiza-
tion algorithms such as continuous genetic algorithm, Multi-Verse Optimizer, black
hole optimization, particle swarm optimization, and ant lion optimization.

• The implementation of a global parameter-tuning optimization algorithm to guarantee
the same conditions for each technique being employed in terms of solution quality,
repeatability, and processing times.

Note that to validate the proposed optimization method, we selected the 10-bus grid
and the IEEE 33- and IEEE-69 bus systems, since these are distribution networks typically
employed for evaluating optimization models in AC distribution networks. Some of the
studies in which these test feeders have been employed include: (i) power flow studies [38];
optimal placement and sizing-dispersed generation [39]; optimal siting and sizing capacitor
banks [40]; optimal location of series reactive power compensators [41]; and optimal grid
reconfiguration problems [42], among others. In addition, the proposed OPF solution
approach is tested, considering that the DGs can inject 20%, 40%, or 60% of the total power
injected by the slack where no DGs are connected to the distribution grid. These values
were selected since previous literature reports have used these values to make multiple
validations in OPF solution methodologies with excellent numerical results and multiple
scenarios for making cross-validation [17].

1.4. Structure of the Paper

The rest of this paper is organized as follows. Section 2 explains the mathematical
formulation and the set of constraints that compose the OPF problem, with the objective
function being the minimization of Ploss associated with energy distribution in AC networks.
Section 3 reports the proposed master–slave methodology, which uses the SSA in the
master stage and the SA numerical method in the slave stage. Section 4 shows the methods
employed for comparison, as well as the parameters that allow each algorithm to find the
best possible solution to the OPF problem. Section 5 details the radial and mesh test systems
employed for the simulations. Section 6 presents the results obtained by the proposed
optimization algorithm and the techniques used for comparison in the test systems under
analysis. Finally, Section 7 draws the conclusions and proposes future lines of work.

2. Mathematical Formulation

This section shows the mathematical model used to solve the OPF problem in AC
networks in an environment of distributed generation. This model employs as an objective
function the minimization of Ploss in AC networks, and considers the set of constraints that
make up the problem. We selected such objective function because it is widely used to
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evaluate the efficiency, solution quality and convergence capability of the optimization
algorithms that solve the OPF problem in AC networks [25,27–30].

2.1. Objective Function

The Equation (1) presents the selected objective function, which is entrusted to mini-
mize the active power losses associated with the distribution of electric energy inside the
AC networks.

minPloss = Real{vTYLv} (1)

In Equation (1), the variable Ploss symbolizes the active power losses. YL is a square
symmetric matrix that is composed by the admittances of the lines that interconnect the
nodes in the system; and v is a vector that contains all voltage nodes.

2.2. Set of Constraints

The equations from Equations (2)–(6) described all technical limits of an AC network
under an environmental of the distributed generation.

SCG + SDG − SD = D(v)[YL + YN ]v (2)

Smin
DG ≤ SDG ≤ Smax

DG (3)

vmin ≤ v ≤ vmax (4)

IB < Imax
B (5)

1TSDG ≤ α1T Real{SD} (6)

Equation (2) presents the total power balance in the AC grid, where SCG, SD and PDG
are the complex power provided by the slack generator, the complex power demanded by
the loads, and the active complex power supplied by the DGs into the system, respectively.
YN and D(v) are the nodal admittances matrix, and the symmetric matrix that contains
the complex voltages of the network in its diagonal. Equation (3) denotes the power limits
fixed for each DG installed in the network, where Smin

DG and Smax
DG are the minimum and

maximum power injected for each DG with respect to the active power allowed by the
slack generator. It is good notice that, in this mathematical formulation, it is considered
that the DGs just supply active power into the AC grid. Equation (4) expresses the voltage
bounds for each node in the system, where vmin is the minimum and vmax the maximum
voltage. Equation (5) describes the maximum current that can flow through the lines of the
system, where IB is the maximum current flowing through the lines of the AC network,
and Imax

B is the maximum current that the conductor used for the electrical system can
support; by considering a non-telescopic grids. Equation (6) denotes the maximum active
power percentage fix for each DG, where 1T denotes a vector filled with ones, and α is the
allowable penetration in percentage, which, in this study, can take a value of 20%, 40%, or
60%. Real{SD} in this equation, corresponds to the real part of the complex demand power
vector (SD), which is associated with the active power generated by the DGs installed in
the network.

In addition to these equations, we present Equation (7), which is used to guarantee
that each constraint of the OPF problem is respected, as it penalizes the algorithm if the
limits established in Equations (2)–(6) are violated. As a result, an adaptation function
is generated for the problem, which allows the algorithm to explore infeasible regions in
order to improve the quality of its solution and reduce its processing time [17].
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min z =



Ploss + β11Tmax{0, v− vmax}
+β21Tmin{0, v− vmin}

+β31Tmin{0, SCG − Smin
CG }

+β41Tmax{0, SDG − Smax
DG }

+β51Tmin{0, SDG − Smin
DG}

+β6max{0, 1TSDG − α1T Real{SD}}

 (7)

In the Equation (7), penalty coefficients were determined using a heuristic strategy: by
assigning the same penalty factor (1000) from β1 to β6. When the whole set of constraints
is satisfied, the adaptation function takes the same value of the objective function, so z
becomes Ploss.

3. Proposed Solution Methodology

As observed in the mathematical formulation, the OPF problem is of a nonlinear,
nonconvex nature, which implies that it must be solved using specialized commercial
software or optimization algorithms and numerical methods. In this paper, we propose
using numerical methods and optimization algorithms that can be replicated in open-source
software, thus limiting the use of commercial software. To solve the OPF problem, we
propose dividing it into two stages. The first stage (master stage) uses the SSA [34,43] to
determine the level of active power to be injected by each DG into the AC network. The
second stage (slave stage) employs the SA numerical method [38] to run the load flow for
each solution proposed by the master stage and calculate the Ploss based on the power levels
defined by the optimization algorithm. The proposed master–slave (SSA–SA) methodology
is further described below.

3.1. Master Stage: Salp Swarm Algorithm (SSA)

The SSA is a bio-inspired optimization technique employed to solve discrete and
continuous problems. This technique is based on the foraging behavior of salps, which
pump water through their internal feeding filters to feed on phytoplankton while moving
in swarms (in the form of a chain) in a coordinated and fast manner. This behavior can be
modeled mathematically to be used as an optimization method [34].

Figure 1 presents the flowchart that describes the stages required for the computational
development to obtain a solution to the OPF in AC networks through the SSA. All the steps
developed within this algorithm are described below:

Generating the Initial Population

Initially, within the proposed SSA algorithm, the data must be read and then assigned
the initial conditions that represent the problem under study. These conditions include,
among others, the parameters of the electrical system, algorithm parameters for optimiza-
tion and stop criteria of the SSA. It is important to highlight that for the parameterization
of the optimization method, a PSO was used to tune and adjust the parameters of the
algorithm to the needs of the problem under study. In other words, this is carried out
with the aim of guaranteeing the equality of conditions between the validation methods
and ensuring that each optimization algorithm obtains the best solution for the selected
objective function) [24].
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Start

Read data and asign initial conditions

Generate the initial population of
Salps 

Calculate objective function for each
Salp

Select the leading Salp solution and its
position; and position the follower salps

Stop

Master Stage

No

Yes

Update the population and incumbent

Slave Stage

Present the results obtained

Have any stopping
criteria been met?

Figure 1. Hybrid SSA-SA optimization algorithm diagram.

After loading the parameters and main data of the problem, the initial population is
generated, taking into consideration the restrictions of the problem and a random variable
to form the chain of Salps. Within this population, each individual corresponds to a salp,
which is composed of the possible power supply by each DGs located in the AC network.
To generate each component of the salts that are part of the initial population (Salps(i,j)),
Equation (8) is used, where i represents the number of Salps to be used within the solution
space and j represents the number of variables to be determined (the powers to be injected
by each of the DGs installed within the CA network). Equation (8) is focused on the creation
of Salps particles and allows larger regions of the search space to be explored, which
generates the values contained within each Salp chain from the upper and lower limits
(ub) and (lb), which correspond to the maximum and minimum power levels allowed in
each DG within the electrical grid. It is important to highlight that the diversity among the
individuals of the population is achieved through the implementation of random values
(rand) between [0–1]. These random numbers multiplied by the difference of the limits
allow a larger distribution of the particles to be generated within the search space.

Salps(i,j) =
((

ub(1,j) − lb(1,j)

)
∗ rand(i,j)

)
+ lb(1,j) (8)
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After the creation of the initial population of Salps, it is necessary to evaluate their
impact on the objective function and the restrictions of the problem. To perform this task,
the ability of the (Salps(i,j)) within the objective function is evaluated for each Salp chain
(adaptation function) by using the slave stage. Then, each of the obtained values are stored
in Equation (9), which is in a matrix of size nx1 called MOSalp(n,1)

; this matrix stores the
impact of each of the Salps in the adaptation function; we use these values to carry out the
advance strategy of the algorithm. The algorithm advance considering the best solution
achieved by each Salp and the best solution of the chain (incumbent).

MOSalps(n,1)
=


f ([S1,1, S1,2, · · · , S1,d])
f ([S2,1, S2,2, · · · , S2,d])

...
f ([Sn,1, Sn,2, · · · , Sn,d])

 (9)

Once the evaluation of the adaptation function of the initial population has been
carried out, Equation (10) stores the incumbent of the problem as the leading Salp (X)
or individual of the population that presents the best fitness function, which is the X
that presents the best solution within the chain of Salps(i,j); becoming the Salp leader of
the problem, while the rest of the individuals that make up the chains of Salps will be
called followers.

X = S1 (10)

It should be noted that the value obtained by the leading Salp will be stored in
Equation (11), where it refers to phytoplankton (incumbent F) and it is represented as an
information vector of size 1xd, which allows the storage of said Salps chain information.

F(1,j) = X (11)

After selecting the incumbent of the problem in the Iterative process of the SSA,
the process starts with the advancing of the algorithm through the displacement of the
leading Salp to half of the individuals corresponding to the chain of Salps, which allows the
generation of new populations and the improvement of the incumbent F within the iterative
process. It should be noted that the advance mechanism is given by a random variable
that guarantees exploration of the region surrounding the incumbent, this with the aim
of safely exploring the solution space. Equation (12), represents the advancement method
of half of individuals updating the Salps(i,j). Where C1, is a coefficient that controls the
exploration and exploitation of the solution and the displacement of Salps, l and L represent
the current iteration and the maximum number of iterations, respectively. Parameters C2
and C3 are random values given between [0, 1]. It should be noted that the parameter C3
is used as a condition for addition or subtraction between the values calculated from the
best population F(i,j) and the maximum and minimum limits given by the constraints of
the problem.

Salps(i,j) =

F(1,j) + C1 ∗
((

ub(1,j) − lb(1,j)

)
∗ C2 + lb(1,j)

)
C3 ≤ 0.5

F(1,j) − C1 ∗
((

ub(1,j) − lb(1,j)

)
∗ C2 + lb(1,j)

)
C3 > 0.5

(12)

To complete the advance method, it is necessary to update the rest of the individuals in
the Salps chain (from the middle plus one to the end of the population), using Equation (13).
This equation allows information to be shared between Salps with the best response and
those with the worst in the population of the chain of Salps. This equation is used in order
to obtain a higher probability of generating new locations within the solution space.

Si =
1
2

(
Si − S(i−1)

)
(13)
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The particle advance method is repeated until the stopping criteria established for the
algorithm are reached. The optimal solution of the problem is provided by the leader Salp
F(1,j) and X obtained when the iterative process ends. Finally, for the master stage (SSA),
two stopping or convergence criteria were used to control the exploration and processing
times of the algorithm:

The first criterion ends the process when a maximum number of iterations is reached.
While the second stop criterion terminates the algorithm after reaching a certain number of
iterations without obtaining improvements in the response or without obtaining a better
response. This is done in order to avoid scans that only affect the convergence times of
the algorithm.

3.2. Slave Stage

To perform the calculation of the power flow, it is necessary to apply the SA method to
determine the voltages profile in the electrical system by considering the power demanded
and supplied by the loads and DGs. These voltages profiles will be used inside the objective
function to calculate the Ploss, and with this information and the penalty calculated with
the voltages profiles too, we will calculate the adaptation function used inside the master
stage. The selection of the SA [38] in this paper is due to its ability to solve the load flow in
any type of electrical network (meshed and radial), and the excellent results reported by
the author for this power flow method in terms of convergence and processing time. This
method is based on the following equation:

Ydd · vd = −D−1
d (v∗d)S

∗
d −Ydg · vg, (14)

In this equation, Ydd and Ydg represent the components of the nodal admittance related
to the load and generator nodes, respectively. Furthermore, the voltage related to the Slack
generator is defined as vg, and vd is a vector that contains the voltages at the demand nodes.
Given this equation, a mathematical development can be performed in order to obtain the
equation that allows us to determine the nodal voltages at the demand nodes:

vd = −Y−1
dd [D−1

d (v∗d)S
∗
d −Ydg · vg]. (15)

To compute the voltages in the nodes other than the slack node in an iterative manner
and with an almost-null convergence error, a t counter must be used. Such counter is thus
added to Equation (15). As a result, the following equation can be used to calculate the
voltage profiles:

vt+1
d = −Y−1

dd [D−1
d ((v∗d)

t)S∗d −Ydg · vg]. (16)

4. Optimization Algorithms Employed for Comparison and Parameters

To evaluate the robustness, convergence capacity, and quality of the solution provided
by the methodology proposed in this paper, we employed the most widely used techniques
in the literature field to solve the OPF problem in AC networks: the Black Hole (BH) [44], the
Ant Lion Optimization (ALO) [33], the Multi-Verse Optimizer (MVO) [45], the Continuous
Genetic Algorithm (CGA) [46] and the Particle Swarm Optimization (PSO) [46]. In addition,
the selection of these optimization methodologies was based on the excellent performance
in terms of quality of the solution and processing times reported by the authors. Each one
of them was employed as a master–slave, using the SA as slave stage in all scenarios.

The simulations were performed in the 10-, 33-, and 69-node radial test systems and
in the 10-node mesh test system [17,37,47]. These test systems were selected with the
aim of evaluating the convergence capacity and quality of the solution provided by each
optimization algorithm in networks of any size with both radial and mesh topologies.

To guarantee a fair comparison between the optimization algorithms used, it is nec-
essary to perform a tuning of each optimization methodologies with the aim of finding
the optimization parameters that allow us to obtain the best results for the problem stud-
ied. Given this, a PSO algorithm [46] is used, to perform such tuning. This PSO uses a
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population of 10 individuals and 300 iterations. The ranges used to tune all parameters
were: number of particles or individuals over a range of [1–100], the maximum number
of iterations [1–1000] and a non-improvement or convergence counter with a range of
[1–1000]. The parameters obtained for each algorithm are presented in Table 2, which is
ordered as follows from left to right: the first column shows the optimization algorithm, the
second column shows the number of individuals, the third column shows the maximum
number of iterations, and finally, the fourth column shows the number of non-improvement
iterations. These parameters allow each algorithm to find the best possible solution for the
OPF problem in AC networks.

Table 2. Parameters of the continuous methods employed here in the master stage.

Parameters

Method Number of
Particles

Maximum
Iterations

Non-Improvement
Iterations

SSA 78 433 154
MVO 80 432 300
PSO 58 723 252
ALO 62 992 725
BH 83 667 340

CGA 57 551 551

5. Test Scenarios and Considerations

To assess the impact and convergence capacity of each optimization algorithm, as well
as the precision and repeatability of their solution to the OPF problem in AC grids with
mesh and radial topologies, we employed one 10-node mesh test system and three radial text
systems with 10, 33, and 69 nodes, respectively. These test systems were selected because they
are widely employed in the specialized literature to solve the OPF problem [8,17,28,48]. Each
test system features a single slack generator and no DGs in the base case.

5.1. Radial Test Systems

This subsection describes the radial test systems employed in this study to carry out
the simulations.

5.1.1. 10-Node Radial Test System

Figure 2 shows the electrical diagram of a 10-node radial test system, which has 9 lines
and 10 nodes (see Table 3 without considering information regarding lines 5–10, and 8–10,
respectively.). In the base case, this system employs a base voltage of 23 kV and a base
apparent power of 100 kVA. The power losses of this system amount to 223.4181 kW, and
the slack generator injects a complex power of (12591.4181-4493.9356i) kVA. The electrical
parameters of this system were taken from [38], and the DGs were located at nodes 5, 9
and 10, allowing them to inject 20%, 40%, and 60% of the active power supplied by the
slack generator in the base case. For all the DGs, the minimum power to be injected was
0 kW for all the three penetration levels of distributed generation, and the maximum power
to be injected was 2518.2836 kW, 5036.5673 kW and 7554.8509 kW for the 20%, 40% and
60% penetration levels, respectively. After running a load flow analysis for this system, the
maximum operating current was 581.2757 A. Hence, a 1250-kcmil conductor operating at
75 ºC was selected, which was located in all the segments of the network. This conductor
can support a maximum current of 590 A. Additionally, the voltage at which this system
operates should be within +/−10% of the nominal voltage.



Sustainability 2022, 14, 13408 12 of 32

Slack
AC

1 2 3

6

4

10

7

5

8

9

Figure 2. Electrical configuration of the 10-node radial test system.

Table 3. Electrical parameters of the 10-node mesh system.

Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr]

1 2 0.1233 0.4127 1840 460
2 3 0.2467 0.6051 980 340
2 4 0.7469 1.2050 1790 446
4 5 0.6984 0.6084 1598 1840
2 6 1.9837 1.7276 1610 600
6 7 0.9057 0.7886 780 110
7 8 2.0552 1.1640 1150 60
7 9 4.7953 2.7160 980 130
3 10 5.3434 3.0264 1640 200
5 10 0.1426 0.4522 - -
8 10 0.2018 0.5214 - -

5.1.2. 33-Node Radial Test System

Figure 3 illustrates the 33-node radial test system, which consists of 32 lines and
33 nodes, and the way its components are interconnected. In a scenario with no DGs, this
system employs a base voltage of 12.66 kV and a base power of 100 kVA. Additionally,
the power losses of this system amount to 210.9785 kW, and the slack generator injects a
complex power of (3925.9785 + 2443.1281i) kVA. The electrical variables that make up this
system were taken from [47], and the DGs that were allowed to inject power were defined
as in [17] and located at nodes 12, 15 and 31. As in the 10-node radial test system, the DGs
were allowed to inject 20%, 40%, and 60% of the power supplied by the slack generator. For
all the DGs, the minimum power to be injected was 0 kW for each penetration level, and
the maximum power to be injected was 785.1957 kW, 1570.3914 kW, and 2355.5871 kW for
the 20%, 40%, and 60% penetration levels, respectively. After running a load flow analysis
using the SA numerical method, the maximum current was 365.2518 A. Hence, a 700 kcmil
conductor operating at 60ºC was employed in each segment of the network, which allows a
maximum current of 385 A. As in the previous test system, the voltage at which this system
operates should be within +/−10% of the nominal voltage.

Slack
AC

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26 27 28 29 30 31 32 33

Figure 3. Electrical configuration of the 33-node radial test system.

5.1.3. 69-Node Radial Test System

Figure 4 shows how the components of the 69-node radial test system, which consists
of 68 lines and 69 nodes, are interconnected. This system employs a base voltage of
12.66 kV and an apparent base power of 100 kVA. In addition, the active power losses of
this system amount to 242.1523 kW, and the slack generator supplies a complex power of
(4132.8423 + 2803.0132i) kVA. The electrical parameters of this system were taken from [47],
and the DGs were located as in [17] at nodes 26, 61, and 66. As in the previous two test
systems, three penetration levels of distributed generation (20%, 40%, and 60%) were
considered for this system. For all the DGs, the minimum power to be injected was 0 kW,
and the maximum power to be injected was 826.5685 kW, 1653.1369 kW and 2479.7054 kW
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for the 20%, 40% and 60% penetration levels, respectively. After running a load flow
analysis, the maximum current was 394.4489 A. Hence, a 50 kcmil conductor operating at
60ºC was used, which was located in each section of the network, allowing a maximum
current of 400 A. As in the previous two test systems, the voltage at which this system
operates should be within +/−10% of the nominal voltage.

Slack
AC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51

52

28 29 30 31 32 33 34 35

Figure 4. Electrical configuration of the 69-node radial test system.

5.2. Mesh Test System

This subsection describes the mesh test system used in this study to perform the
simulations.

10-Node Mesh Test System

Figure 5 depicts the 10-node mesh test system, which is a variation of the 10-node
radial test system presented in the previous subsection. However, in this case, it has
10 nodes and 11 lines (see Table 3). The information about the distribution lines and loads
of this system was taken from [38]. In this system, the slack generator supplies complex
power of (12,558.3237–4480.7386i) kVA, and the power losses amount to 190.3237 kW. For
all the DGS, the minimum power to be injected was 0 kW, and the maximum power to be
injected was 2511.6647 kW, 5023.3295 kW and 7534.9942 kW for the 20%, 40%, and 60%
penetration levels, respectively. The maximum current flowing through the segments of
the system was 579.7276 A. Hence, a 1250 kcmil conductor operating at 75 ºC was selected,
which supports a maximum current of 590 A and was located in each segment of the
network. As in the previous test systems, the voltage at which this system operates should
be within +/−10% of the nominal voltage.

Slack
AC

1 2 3

6

4

10

7

5

8

9

Figure 5. Electrical configuration of the 10-node mesh test system.

6. Simulations and Results

This section presents the results of the simulations carried out to solve the OPF problem
in AC networks. All the simulations were performed in Matlab® (version 2021b) running
on a laptop with an Intel® CoreTM i5-8250U@1.60GHz 1.80 GHz processor, 4 GB of RAM,
a 225-GB solid-state drive, and Windows 11. To evaluate the repeatability and standard
deviation of each technique and guarantee the same conditions for all, the techniques were
tuned and executed 100 times.

6.1. Radial Test Systems

This subsection analyzes the results obtained by each optimization method employed
to solve the OPF problem in AC grids with a radial topology.

6.1.1. 10-Node Radial Test System

Table 4 shows the results reached by each optimization method in the 10-node radial
test system. From left to right, this table details the optimization algorithms used to solve
the OPF problem; the nodes where the DGs are located and the active power they inject
into the network (kW) while respecting the set of constraints of the problem; the minimum
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Ploss (kW) and the percentage of reduction with respect to the base case (%); the average
Ploss (kW) and the percentage of reduction with respect to the base case (%); the processing
time employed by each algorithm to solve the OPF problem (s); the standard deviation
(STD) of each optimization algorithm (%); the worst potential difference in the system
(p.u.) and the node where it occurs; and in the last column, the maximum current in the
solution provided by each optimization algorithm (A). Importantly, this table also reports
the behavior of the system in the base case, in which the Ploss amount to 223.4181 kW and
the maximum current supported by the conductor selected for this system is 590 A.

Table 4. Results of the simulations in the 10-node radial test system.

10-Node Radial Test System

Method
Node/

Power [kW]

Power Losses
Vworst [pu]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 223.4181 - - - 0.9–1.1 590

20% penetration

SSA

5/0.05

116.9218/47.6668 116.9237/47.6660 3.49 0.0025 0.9723/8 433.33219/1589.82

10/928.41

MVO

5/0.05

116.9220/47.6667 116.9250/47.6654 3.75 0.0049 0.9723/8 433.33249/1589.82

10/928.41

PSO

5/0

116.9218/47.6668 117.2119/47.5370 4.50 1.3279 0.9723/8 433.33219/1589.55

10/928.73

ALO

5/0.51

116.9473/47.6554 117.9188/47.2206 6.66 0.7210 0.9723/8 433.38279/1586.68

10/929.96

BH

5/96.28

117.9244/47.2181 121.5254/45.6063 3.35 1.7463 0.9729/8 433.59389/1696.06

10/720.92

CGA

5/18.86

117.0415/47.6132 117.4801/47.4169 3.29 0.1733 0.9725/8 433.41029/1619.67

10/878.08

40% penetration

SSA

5/1620.63

80.7608/63.8522 80.7610/63.8521 3.47 0.0003 0.9751/8 322.26939/1970.64

10/1445.29

MVO

5/1619.69

80.7608/63.8522 80.7619/63.8517 3.68 0.0009 0.9752/8 322.26949/1971.25

10/1445.62
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Table 4. Cont.

10-Node Radial Test System

Method
Node/

Power [kW]

Power Losses
Vworst [pu]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 223.4181 - - - 0.9–1.1 590

PSO

5/1620.68

80.7608/63.8522 80.9785/63.7547 4.25 0.9097 0.9751/8 322.26939/1970.20

10/1445.69

ALO

5/1570.43

80.7922/63.8381 81.8538/63.3629 6.61 1.7971 0.9752/8 322.29369/1979.08

10/1486.52

BH

5/1606.93

80.9765/63.7556 82.4371/63.1019 3.29 1.0840 0.9751/8 323.34919/1969.06

10/1435.96

CGA

5/1642.03

80.7807/63.8433 81.0075/63.7417 3.30 0.1791 0.9751/8 322.34649/1959.77

10/1433.01

60% penetration

SSA

5/2992.59

72.1260/67.7170 72.1260/67.7170 3.51 4.23×10−11 0.9771/8 235.14099/2235.17

10/1804.13

MVO

5/2992.61

72.1260/67.7170 72.1260/67.7170 3.88 9.38×10−07 0.9771/8 235.13829/2235.19

10/1804.14

PSO

5/2992.59

72.1260/67.7170 72.1260/67.7170 2.39 1.22×10−10 0.9771/8 235.14099/2235.17

10/1804.13

ALO

5/2993.04

72.1308/67.7149 72.7952/67.4175 6.70 1.6134 0.9770/8 236.20869/2219.08

10/1795.22

BH

5/2941.39

72.1498/67.7064 73.1556/67.2562 3.78 1.1291 0.9773/8 236.37679/2267.73

10/1794.37

CGA

5/3020.79

72.1345/67.7132 72.1848/67.6907 3.46 0.0610 0.9772/8 234.34599/2245.92

10/1783.47

From the information presented in Table 4, it is possible to identify the differences
between the proposed methodology (SSA) and the optimization techniques selected for
comparison. Using these results, we constructed Figures 6–8, which compare the results
obtained by the different techniques used for comparison purposes to those of the SSA.

Figure 6 depicts the minimum Ploss reduction obtained by each technique at the three
penetration levels of distributed generation: 20%, 40%, and 60%. In relation to the first
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penetration level (20%), the SSA and PSO obtained the best results in term Ploss reduction
with a reduction of 47.6668% when is compared with the base case (an scenario without
DGs), outperforming the MVO by 0.0001%, the ALO by 0.0114%, the CGA by 0.0536%, and
BH by 0.4488%. With respect to penetration level of 40%, the SSA and PSO obtained the
best solution, with a minimum Ploss reduction of 63.8522%, improving the results obtained
by the MVO, the CGA, the ALO, and BH in 2× 10−5%, 0.0089%, 0.0141%, and 0.0965%,
respectively. Finally, for the third scenario (60%), the SSA, the MVO, and PSO achieved the
best solution in relation to the minimum Ploss with a value of 72.1260%; outperforming the
ALO by 0.021%, the CGA by 0.0038%, and BH by 0.0107%.

Figure 6. Percentage of reduction in minimum power losses obtained by the SSA in the 10-node
radial test system compared to that of the other methodologies.

Figure 7 depicts the average Ploss reduction reached by each optimization algorithm
for the three penetration levels used. For the penetration level of 20%, the SSA achieved
the best average reduction of Ploss in relation to the base case with a value of 47.6660%; by
improving the results obtained by the comparison methods in a 0.5767%. In the particular
case of the penetration level of 40%, the SSA obtained the best average Ploss reduction with
a percent of 63.8521%, outperforming the MVO by 0.0004%, PSO by 0.0973%, the CGA by
0.1104%, the ALO by 0.4892%, and BH by 0.7502%. Finally, for the penetration level of 60%,
the SSA, PSO, and the MVO exhibited an average Ploss reduction of 67.1260%, improving
the results obtained by the ALO, the CGA, and BH in an average percentage of 0.0055%.

Figure 8 presents the STD reached by each optimization algorithm at the three percent-
ages of penetration used. From this figure, one may determine how precise the algorithms
are at finding a solution to the OPF problem in AC networks. At 20% penetration, the
SSA obtained the best STD (0.0025%), outperforming the MVO by 0.0024%, the CGA by
0.1709%, the ALO by 0.7186%, PSO by 1.3254%, and BH by 1.7438%. At 40% penetration,
the SSA presented the best STD with a value of 3.47%, outperforming the MVO, the CGA,
PSO, BH and the ALO by 0.0006%, 0.1787%, 0.9093%, 1.0836%, and 1.7968%, respectively.
Finally, at 60% penetration, the SSA exhibited a STD of 4.23× 10−11, outperforming the
other techniques by an average percentage of 0.5607%.
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Figure 7. Percentage of reduction in average power losses obtained by the SSA in the 10-node radial
test system compared to that of other methodologies.

Figure 8. Percentage of standard deviation obtained by the SSA in the 10-node radial test system
compared to that of the other methodologies.

According to these results, the SSA provided the best solution to the OPF problem in
small networks, in terms of both minimum Ploss reduction and average Ploss reduction. It
also obtained an excellent STD, which guarantees that a high-quality solution can be found
every time the algorithm is executed.

6.1.2. 33-Node Radial Test System

Table 5 shows the results obtained by each optimization technique in the 33-node
radial test system. Based on the information reported in this table, which is organized
the same way as Table 4, we constructed Figures 9–11, which compare the minimum Ploss
reduction, the average Ploss reduction, and the STD obtained by the optimization algorithms,
respectively. Importantly, this table also includes (in its upper part) the Ploss in the base
case, i.e., 210.9785 kW, and the maximum current that can be supported by the conductor
distributed throughout the network, i.e., 385 A.
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Table 5. Results of the simulations in the 33-node radial test system.

33-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u.]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 210.9785 - - - 0.9–1.1 385

20% penetration

SSA

12/48.44

127.4984/39.5680 127.5044/39.5652 10.17 0.0077 0.9377/33 241.493115/396.14

31/340.61

MVO

12/44.88

127.4984/39.5680 127.4994/39.5676 11.18 0.0009 0.9377/33 241.493115/398.94

31/341.37

PSO

12/45.68

127.4984/39.5680 127.8911/39.3819 11.97 0.5240 0.9377/33 241.493115/398.71

31/340.81

ALO

12/55.13

127.5029/39.5659 127.6270/39.5071 17.44 0.0910 0.9376/33 241.497015/391.34

31/338.68

BH

12/88.70

127.6257/39.5077 128.4504/39.1168 9.19 0.4042 0.9358/18 241.514215/333.88

31/362.48

CGA

12/76.31

127.5192/39.5582 127.6041/39.5180 9.27 0.0439 0.9376/33 241.499615/370.19

31/338.64

40% penetration

SSA

12/409.59

90.3771/57.1629 90.3779/57.1625 9.68 0.0012 0.9594/33 176.539215/397.41

31/763.40

MVO

12/409.59

90.3771/57.1629 90.3777/57.1626 10.73 0.0008 0.9594/33 176.539215/397.41

31/763.40

PSO

12/410.02

90.3771/57.1629 90.7890/56.9677 11.47 1.1588 0.9594/33 176.539215/397.60

31/762.78

ALO

12/429.24

90.3861/57.1586 90.5850/57.0644 17.30 0.2181 0.9591/33 176.542215/388.74

31/752.38

BH

12/348.19

90.5000/57.1047 91.7172/56.5277 9.04 0.7770 0.9594/33 176.753615/455.18

31/764.43
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Table 5. Cont.

33-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u.]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 210.9785 - - - 0.9–1.1 385

CGA

12/432.88

90.4019/57.1511 90.4811/57.1136 9.48 0.0535 0.9591/33 176.593315/384.37

31/752.48

60% penetration

SSA

12/596.31

85.7789/59.3423 85.7789/59.3423 9.97 8.65×10−11 0.9700/33 114.265615/397.74

31/980.32

MVO

12/596.31

85.7789/59.3423 85.7789/59.3423 10.68 6.11×10−07 0.9700/33 144.265615/397.76

31/980.31

PSO

12/596.32

85.7789/59.3423 85.7789/59.3423 6.63 8.00×10−06 0.9700/33 144.265715/397.74

31/980.32

ALO

12/604.99

85.7813/59.3412 86.0098/59.2329 18.03 0.3471 0.9699/33 144.645315/388.35

31/976.24

BH

12/598.86

85.8045/59.3302 86.3709/59.0618 9.80 0.6068 0.9694/33 146.365515/380.11

31/968.85

CGA

12/594.56

85.7803/59.3417 85.7999/59.3324 10.07 0.0168 0.9699/33 144.777815/395.17

31/978.16

Figure 9 depicts the difference between each optimization technique used for compari-
son and the proposed methodology in terms of minimum Ploss reduction at penetration
levels of 20%, 40% and 60%, respectively. In the first penetration level (20%), the SSA, the
MVO, and PSO exhibited the same minimum power loss reduction (39.5680%), outper-
forming the ALO, the CGA and BH by 0.0021%, 0.0098% and 0.0603%, respectively. For
the second penetration level (40%), the SSA achieved the best minimum Ploss reduction,
outperforming the MVO by 1× 10−5%, PSO by 2× 10−5%, the ALO by 0.0043%, the CGA
by 0.0118% and BH by 0.0583%. Finally, at the third penetration level (60%), the SSA, the
MVO, and PSO reached the best minimum Ploss reduction with 59.3423%, outperforming
the CGA by 0.0007%, the ALO by 0.0011%, and BH by 0.0121%.



Sustainability 2022, 14, 13408 20 of 32

Figure 9. Percentage of reduction in minimum power losses obtained by the SSA in the 33-node
radial test system compared to that of the other methodologies.

To continue with the analysis, Figure 10 illustrates the difference between the SSA
and the other optimization techniques in terms of average Ploss reduction at the three
penetration levels of distributed generation. At 20% penetration, the SSA presented a
reduction in average Ploss of 39.5652%. It was outperformed by the MVO by 0.0024%,
but it outperformed the CGA, the ALO, PSO, and BH by 0.0473%, 0.0581%, 0.1833% and
0.4484%, respectively. At 40% penetration, the SSA achieved a reduction in average Ploss of
57.1625%. It was outperformed by the MVO by an almost negligible difference (0.0001%)
and outperformed the CGA by 0.0490%, the ALO by 0.0982%, PSO by 0.1949% and BH
by 0.6349%. Finally, at 60% penetration, the SSA, the MVO and PSO obtained the same
reduction in average Ploss (59.3423%), outperforming the CGA, the ALO and BH by 0.0100%,
0.1094% and 0.2806%, respectively.

Figure 10. Percentage of reduction in average power losses obtained by the SSA in the 33-node radial
test system compared to that of the other methodologies.
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Figure 11 presents the STD reached by each optimization methodology at the three
penetration levels used for the distributed generation. For 20% penetration level, the
SSA presented a STD of 0.0077%. It was outperformed only by the MVO by 0.0068%. By
reducing the STD with respect to the CGA, ALO, BH and PSO in 0.0362%, 0.0833%, 0.3965%
and 0.5163%, respectively. When the 40% penetration level was analyzed, the proposed
algorithm reached a STD of 0.0012%. It was outperformed by the MVO again by just
0.0003% and outperformed the CGA by 0.0523%, the ALO by 0.2169%, BH by 0.7758% and
PSO by 1.1576%. Finally, at 60% penetration level, the SSA, the MVO and PSO presented
the same STD (8.65× 10−11), outperforming the CGA by 0.0168%, the ALO by 0.3471% and
BH by 0.6068%.

Figure 11. Percentage of standard deviation obtained by the SSA in the 33-node radial test system
compared to that of the other methodologies.

According to these results, the solution methodology proposed in this study is the most
suitable in terms of minimum Ploss reduction. It also showed an outstanding performance
in reducing the average Ploss, as it outperformed most of the other techniques and was only
outperformed by the MVO.

6.1.3. 69-Node Radial Test System

Table 6 shows the results reached by each algorithm in the 69-node radial test system.
This table, which is organized the same way as Tables 4 and 5, also includes (in its upper
part) the Ploss of the system in the base case, i.e., 242.1523 kW, and the maximum current that
can be supported by the conductor selected for this system (a 50 kcmil conductor operating
at 60 ºC), i.e., 400 A. Based on the information reported in this table, we constructed
Figures 12–14, which illustrate the minimum Ploss reduction, the average Ploss reduction
and the STD obtained by the optimization algorithms, respectively.
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Table 6. Results of the simulations in the 69-node radial test system.

69-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [pu]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 242.1523 - - - 0.9–1.1 400

20% penetration

SSA

26/0

133.5626/44.8435 133.6548/44.8055 44.62 0.1034 0.9397/64 252.639161/580.52

66/246.05

MVO

26/0.01

133.5632/44.8433 133.5687/44.8410 44.84 0.0033 0.9385/69 252.581761/583.13

66/243.43

PSO

26/0

133.5626/44.8435 134.1547/44.5990 57.16 1.5020 0.9385/69 252.581761/580.16

66/246.41

ALO

26/0

133.6333/44.8143 134.6068/44.4123 76.89 0.5786 0.9390/69 252.632361/546.38

66/279.62

BH

26/9.55

133.9468/44.6849 137.8053/43.0915 38.64 1.4990 0.9378/69 252.682561/595.61

66/220.52

CGA

26/4.08

133.6923/44.7900 134.2007/44.5800 43.18 0.1652 0.9381/69 252.592161/595.66

66/226.83

40% penetration

SSA

26/152.93

86.4573/64.2963 86.4593/64.2955 42.06 0.0036 0.9634/69 183.572861/1254.04

66/246.17

MVO

26/152.51

86.4574/64.2963 86.4585/64.2958 45.11 0.0017 0.9638/69 183.571261/1253.71

66/246.91

PSO

26/152.72

86.4574/64.2963 86.6493/64.2170 56.62 0.6638 0.9638/69 183.571161/1252.84

66/247.57

ALO

26/152.77

86.4817/64.2862 87.0658/64.0450 81.02 0.6258 0.9639/69 183.630961/1243.67

66/255.96
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Table 6. Cont.

69-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [pu]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 242.1523 - - - 0.9–1.1 400

BH

26/208.65

86.9818/64.0797 90.4786/62.6357 45.23 1.9240 0.9632/69 183.943461/1110.03

66/330.27

CGA

26/144.73

86.4671/64.2923 86.6006/64.2371 37.99 0.0974 0.9638/69 183.575461/1274.50

66/233.87

60% penetration

SSA

26/382.16

76.9578/68.2193 76.9578/68.2193 43.89 5.42×10−09 0.9784/69 134.092561/1641.63

66/246.24

MVO

26/382.16

76.9578/68.2193 76.9578/68.2193 44.49 1.31×10−06 0.9784/69 134.095161/1641.63

66/246.21

PSO

26/382.17

76.9578/68.2193 76.9578/68.2193 55.59 1.46×10−08 0.9784/69 134.092661/1641.64

66/246.23

ALO

26/386.59

76.9593/68.2186 77.3907/68.0405 86.72 0.7409 0.9785/69 133.668961/1637.61

66/251.20

BH

26/358.03

76.9986/68.2024 79.0719/67.3462 43.35 1.8238 0.9778/69 136.519561/1653.47

66/227.85

CGA

26/382.31

76.9593/68.2186 76.9859/68.2077 38.06 0.0237 0.9784/69 134.443761/1629.83

66/253.45

Figure 12 shows the difference between the SSA and the other optimization techniques
in terms of minimum Ploss reduction at the three penetration levels of distributed generation.
At 20% penetration, the SSA and PSO presented the same reduction in minimum Ploss
(44.8435%), outperforming the MVO, the ALO, the CGA and BH by an average percentage
of 0.0604%. At 40% penetration, the minimum Ploss obtained by the SSA was 86.4573 kW,
for a reduction of 64.2963% with respect to the base case. It outperformed the MVO and
PSO by 2× 10−5, the CGA by 0.0040%, the ALO by 0.0101% and BH by 0.2166%. Finally, at
60% penetration, the SSA, the MVO and PSO exhibited the same reduction in minimum
Ploss (68.2193%), outperforming the CGA and the ALO by 0.0006% and BH by 0.0168%.
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Figure 12. Percentage of reduction in minimum power losses obtained by the SSA in the 69-node
radial test system compared to that of the other methodologies.

Regarding average Ploss, Figure 13 compares the average Ploss reduction obtained
by each optimization algorithm at the three penetration levels of distributed generation.
At 20% penetration, the SSA achieved a reduction in average Ploss of 44.8055%. It was
outperformed by the MVO by 0.0355%, but it outperformed the other techniques by an
average percentage of 0.6348. At 40% penetration, the SSA presented a reduction in average
Ploss of 64.2955%. It was outperformed by the MVO by an almost negligible difference
(0.0003%) and outperformed the CGA by 0.0584%, PSO by 0.0785%, the ALO by 0.2505%
and BH by 1.6598%. Finally, at 60% penetration, the SSA, the MVO and PSO exhibited the
same reduction in minimum Ploss (68.2193%), outperforming the CGA, the ALO, and BH
by 0.0116%, 0.1788%, and 0.8731%, respectively.

Figure 13. Percentage of reduction in average power losses obtained by the SSA in the 69-node radial
test system compared to that of the other methodologies.

To finish the simulations of the 69-node radial test system, Figure 14 presents the
STD reached by each method at the distribution generation penetration levels of 20%,
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40% and 60%. For the penetration level of 20%, the SSA obtained a STD of 0.1034%. It
was outperformed by the MVO by 0.1001% by reducing the STD in relation to the other
comparison methodologies in 0.8328%. In relation to the penetration level of 40%, the
MVO exhibited a STD of 0.0017%, outperforming the SSA by only 0.0019%. In this scenario,
the SSA was followed by the CGA, the ALO, PSO and BH, with a difference in STD with
respect to the SSA of 0.0939%, 0.6222%, 0.6602 and 1.9205%, respectively. Finally, at the
last penetration level (60%), the SSA, the MVO, and PSO reached the same STD (around
1× 10−6). The SSA outperformed the other algorithms by an average percentage of 0.8628%.

Figure 14. Percentage of standard deviation obtained by the SSA in the 69-node radial test system
compared to that of the other methodologies.

After a general analysis of these results, the SSA proved to be the most suitable
algorithm in terms of minimum Ploss reduction. It also produced excellent results in terms
of average Ploss reduction, and it was only outperformed by the MVO. Moreover, it obtained
an excellent standard deviation, which guarantees that a high-quality solution can be found
every time the algorithm is executed.

6.2. Mesh Test Systems

This subsection studies the results reached by each optimization method employed to
solve the OPF problem in AC grids with a mesh topology.

10-Node Mesh Test System

Table 7 presents the results reached by each method used to solve the OPF problem
in the 10-node mesh test system. Based on the information reported in this table, which
is organized the same way as Tables 4–6, we constructed Figures 15–17, which compare
the minimum Ploss reduction, the average Ploss reduction, and the STD obtained by the
optimization techniques, respectively. After running a load flow analysis for this system,
the Ploss in the base case was 190.3237 kW.
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Table 7. Results of the simulations in the 10-node mesh test system.

10-Node Mesh Test System

Method Node/
Power [kW]

Power Losses
Vworst [pu]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 190.3237 - - - 0.9–1.1 590

20% penetration

SSA

5/0

104.7510/44.9617 104.7707/44.9513 4.16 0.0446 0.9793/8 433.09079/1039.33

10/1472.33

MVO

5/0

104.75110/44.9616 104.7540/44.9601 4.09 0.0021 0.9793/8 433.09079/1039.96

10/1471.71

PSO

5/0.02

104.7511/44.9616 105.3226/44.6613 4.72 1.8071 0.9793/8 433.09079/1038.24

10/1473.40

ALO

5/32.05

104.7986/44.9367 105.0366/44.8116 6.53 0.1796 0.9793/8 433.11539/1012.16

10/1466.94

BH

5/1.87

104.9699/44.8467 105.9958/44.3076 3.48 0.5380 0.9793/8 433.48999/1037.61

10/1463.23

CGA

5/18.12

104.8075/44.9320 105.0660/44.7962 3.40 0.1174 0.9793/8 433.11639/1087.18

10/1405.83

40% penetration

SSA

5/587.06

58.4855/69.2705 58.5107/69.2573 3.94 0.0580 0.9838/7 321.87639/1222.72

10/3213.55

MVO

5/586.03

58.4855/69.2705 58.4882/69.2691 3.81 0.0058 0.9838/7 321.87649/1224.24

10/3213.06

PSO

5/611.96

58.4859/69.2703 64.6277/66.0433 4.38 24.2119 0.9838/7 321.87649/1227.34

10/3184.03

ALO

5/526.13

58.4985/69.2637 58.6598/69.1789 6.37 0.2907 0.9838/7 321.91429/1215.08

10/3281.26

BH

5/1253.67

58.6297/69.1947 60.1293/68.4068 3.45 1.2234 0.9838/7 321.88919/1241.74

10/2527.77
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Table 7. Cont.

10-Node Mesh Test System

Method Node/
Power [kW]

Power Losses
Vworst [pu]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs - 190.3237 - - - 0.9–1.1 590

CGA

5/813.33

58.5195/69.2526 58.6400/69.1894 3.44 0.1372 0.9838/7 321.87629/1215.85

10/2994.17

60% penetration

SSA

5/2447.21

39.3867/79.3054 39.3886/79.3044 3.91 0.0081 0.9874/6 211.84329/1395.92

10/3691.86

MVO

5/2440.87

39.3867/79.3054 39.3874/79.3050 3.88 0.0018 0.9874/6 211.84329/1396.49

10/3697.63

PSO

5/2448.40

39.3867/79.3054 40.7435/78.5925 4.31 10.3116 0.9874/6 211.84329/1396.09

10/3690.50

ALO

5/2445.34

39.3976/79.2997 39.6632/79.1601 6.56 0.6903 0.9874/6 212.03559/1399.98

10/3685.25

BH

5/3065.27

39.5207/79.2350 40.6407/78.6465 3.40 1.5767 0.9873/6 212.08469/1368.25

10/3096.05

CGA

5/2378.87

39.3908/79.3033 39.4689/79.2622 3.56 0.1044 0.9874/6 211.89159/1399.13

10/3755.89

Figure 15 shows the difference between the proposed methodology and the other
optimization techniques in terms of minimum Ploss reduction at the three levels of penetra-
tion of distributed generation. At 20% penetration, the SSA achieved the best reduction
in minimum Ploss (44.9617%), outperforming the MVO, PSO, the ALO, the CGA and BH
by 1× 10−5%, 5× 10−5%, 0.0250%, 0.0297% and 0.115%, respectively. At 40% penetration,
the SSA provided the best solution, with a reduction of 69.2705% in minimum Ploss, out-
performing all the other techniques by an average percentage of 0.0202%. Finally, at 60%
penetration, the SSA and PSO presented the best reduction in minimum Ploss (79.3054%),
outperforming the MVO by 1× 10−5, the CGA by 0.0022%, the ALO by 0.0057% and BH
by 0.0704%.

As for minimum Ploss, Figure 16 compares the average Ploss reduction reached by the
SSA and the other methodologies at the penetration levels of 20%, 40% and 60%. At the
first penetration level, the SSA achieved a reduction in average Ploss of 69.2573%. It was
outperformed by the MVO by 0.0088%, but it outperformed the ALO, the CGA, PSO and
BH by 0.1397%, 0.1551%, 0.2900% and 0.6437%, respectively. At the second penetration
level, the SSA reduced the average Ploss by 69.2573%. It was outperformed by the MVO by
0.0118%, but it outperformed the CGA, the ALO, BH and PSO by an average percentage
of 1.0527%. Finally, at the last penetration level, the SSA was outperformed by the MVO
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by just 0.0006%, but it outperformed the other optimization techniques by an average
percentage of 0.3891%.

Figure 15. Percentage of reduction in minimum power losses obtained by the SSA in the 10-node
mesh test system compared to that of the other methodologies.

Figure 16. Percentage of reduction in average power losses obtained by the SSA in the 10-node mesh
test system compared to that of the other methodologies.

To complete the analysis of the 10-node mesh test system, Figure 17 compares the
STD reached by each algorithm with that obtained by the SSA. At 20% penetration, the
SSA presented a STD of 0.0446%. It was outperformed by the MVO by 0.0425%, but it
outperformed the CGA, the ALO, BH and PSO by 0.0728%, 0.1350%, 0.4934% and 1.7425%,
respectively. At 40% penetration, the SSA obtained a STD of 0.058%. It was outperformed
by the MVO by 0.0522%, but it outperformed the other optimization techniques by an
average percentage of 6.4658%. Finally, at 60% penetration, the SSA ranked second, with a
STD of 0.0081%. It was outperformed by the MVO by 0.0063%, but it outperformed the
other optimization algorithms by an average percentage of 3.1708%.
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Figure 17. Percentage of standard deviation obtained by the SSA in the 10-node mesh test system
compared to that of the other methodologies.

After a general analysis of these results, the SSA achieved the best reduction in
minimum Ploss in the 10-node mesh test system in a very short processing time and with a
remarkable STD. It was only outperformed by the MVO in terms of STD.

According to the results presented in this section, the SSA showed an outstanding
performance in terms of minimum Ploss, as, in most cases, it provided the best solution and
reduction in a short processing time. In terms of STD, it provided the best solution in some
scenarios and ranked second in the other scenarios, in which it was only outperformed by
the MVO. For these reasons, we may conclude that the SSA is the most suitable algorithm
to solve the OPF problem in AC networks with both radial and mesh topologies.

7. Conclusions

The OPF problem in AC distribution networks with high penetration of dispersed
generation was addressed in this research through application of a master–slave optimiza-
tion methodology. The master stage was entrusted with determining the amount of power
injection of each DG connected to the AC grid using a continuous codification by applying
the SSA. The slave stage dealt with the solution of the power flow problem by using the
successive approximation method that evaluates the feasibility of the power injected in
all the power sources in terms of voltage regulation, current limits and power generation
capacities. The objective of the OPF problem was the reduction of the grid power losses for
a particular load condition, which allowed confirmed the effectiveness of the SSA approach
when was compared with recent literature reports.

Comparative analysis with different literature algorithms such as PSO, CGA, BH,
MVA and ALO, which are efficient optimization techniques to deal with large-scale com-
plex continuous optimization problems in the 10-, 33- and 69-bus grids with radial and
meshed configurations demonstrated that the proposed SSA approach has better numerical
performance for all the scenarios of power injection considered, i.e., 20%, 40%, and 60% of
the power supplied by the main generator in an environment without DGs. Note that to
ensure a fair comparison between all the presented algorithms, all of them were evaluated
100 consecutive times and tuned appropriately.

i. In the case of radial networks, the SSA proved to be superior in terms of minimum
Ploss reduction, as it outperformed the other optimization algorithms by an average
percentage of 0.0433%, 0.0107%, and 0.0327% in the 10-, 33- and 69-node radial test
systems, respectively. It produced such good results in short processing times and
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with low standard deviations: an average processing time of 3.49 s, 9.94 s, and 43.52 s
in the 10-, 33- and 69-node radial test systems, respectively, and an average STD of
0.013% at the three penetration levels of distributed generation (20%, 40% and 60%).
This demonstrates the superiority and convergence capacity of the SSA, which is why
we may conclude that it is the most suitable optimization algorithm to solve the OPF
problem in radial networks of any size.

ii. In the case of mesh networks, the SSA also proved its superiority, as it provided the
best solution in terms of minimum Ploss reduction in every test scenario, with an
average reduction of 64.5125%, outperforming the other algorithms by an average
percentage of 0.034%. It produced such results in processing times of around 0.058 s
and with an average STD of 0.0369%. This demonstrates the superiority of the SSA
in providing the best solution in terms of minimum Ploss reduction in very short
processing times. Thus, we may conclude that it is the most suitable optimization
algorithm to solve the OPF problem in mesh networks.

Future research could implement the methodology proposed in this paper to solve the
OPF problem for a 24 h load flow, considering the integration of energy storage elements
in the electrical network. Furthermore, the proposed solution methodology could be
employed to solve the OPF problem using other objective functions, such as the reduction in
the operating costs of the network, the minimization of CO2 emissions (using photovoltaic
panels as DGs) and the improvement of the operating conditions of AC networks. Finally,
we recommend future studies to propose parallel processing tools, which could significantly
reduce the processing times required by the optimization algorithms to find the best solution
to the OPF problem.
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