iﬁ% electronics

Article

Optimal Pole-Swapping in Bipolar DC Networks Using
Discrete Metaheuristic Optimizers

Oscar Danilo Montoya 12*

check for
updates

Citation: Montoya, O.D.;
Medina-Quesada, A.; Hernéndez, J.C.
Optimal Pole-Swapping in Bipolar
DC Networks Using Discrete
Metaheuristic Optimizers. Electronics
2022, 11, 2034. https:/ /doi.org/
10.3390/ electronics11132034

Academic Editor: Nikolaos M.

Manousakis

Received: 8 June 2022
Accepted: 27 June 2022
Published: 29 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Angeles Medina-Quesada 3© and Jesus C. Hernandez >*

Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingenieria, Universidad Distrital
Francisco José de Caldas, Bogot4 110231, Colombia

Laboratorio Inteligente de Energia, Facultad de Ingenierfa, Universidad Tecnolégica de Bolivar,
Cartagena 131001, Colombia

Department of Electrical Engineering, University of Jaén, Campus Lagunillas s/n, Edificio A3,

23071 Jaén, Spain; aquesada@ujaen.es

*  Correspondence: odmontoyag@udistrital.edu.co (O.D.M.); jcasa@ujaen.es (J.C.H.)

Abstract: Bipolar direct current (DC) networks are emerging electrical systems used to improve
the distribution capabilities of monopolar DC networks. These grids work with positive, negative,
and neutral poles, and they can transport two times the power when compared to monopolar DC
grids. The distinctive features of bipolar DC grids include the ability to deal with bipolar loads
(loads connected between the positive and negative poles) and with unbalanced load conditions,
given that the loads connected to the positive and neutral poles are not necessarily equal to the
negative and neutral ones. This load imbalance deteriorates voltages when compared to positive
and negative poles, and it causes additional power losses in comparison with balanced operation
scenarios. This research addresses the problem of pole-swapping in bipolar DC networks using
combinatorial optimization methods in order to reduce the total grid power losses and improve
the voltage profiles. Bipolar DC networks with a non-solidly grounded neutral wire composed
of 21 and 85 nodes are considered in the numerical validations. The implemented combinatorial
methods are the Chu and Beasley genetic algorithm, the sine-cosine algorithm, and the black-hole
optimization algorithm. Numerical results in both test feeders demonstrate the positive effect of
optimal pole-swapping in the total final power losses and the grid voltage profiles. All simulations
were run in the MATLAB programming environment using the triangular-based power flow method,
which is intended for radial distribution system configurations.

Keywords: bipolar DC networks; optimal pole-swapping problem; unbalanced distribution networks;
monopolar constant power terminals; triangular-based power flow formulation; operation with
neutral floating

1. Introduction

Bipolar DC distribution has attracted the attention of both academia and the industry
due to its advantages over traditional AC distribution networks and monopolar DC con-
figurations [1,2]. In comparison with AC networks, bipolar DC networks do not require
reactive power and frequency control, which makes them easy to control, since the control
variable is only the magnitude of the voltage at each pole (positive and negative) in the
feeding bus [3]. With respect to monopolar DC networks, bipolar DC networks can trans-
port two times the power, and they allow interconnecting loads between the positive and
negative poles (i.e., two-pole loads) for special applications [4,5].

Even though bipolar DC networks are efficient when compared to monopolar DC
configurations or easily manageable in comparison with AC conventional systems, their
analysis requires specialized tools regarding control and optimization [6]. In the case of
control, efficient nonlinear control methods are required to support constant voltages in
the substation while considering the neutral wire and the positive and negative poles and
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ensuring stability during closed-loop operation for constant power terminals [7]. The main
challenge with respect to control is dealing with the negative resistance effect of the constant
power terminals in converters for AC/DC applications [8]. The optimization area is not
the exception, since efficient power flow tools, optimal power flow methods, and so on are
required to optimize the grid performance regarding power loss minimization or voltage
profile improvements [2], among other applications. This research focuses on the optimiza-
tion of bipolar DC configurations in order to deal with power loss minimization. These
power losses are mainly caused by imbalances in the monopolar loads (i.e., differences
between total positive-to-neutral and negative-to-neutral loads) [9].

In the current literature, the analysis of bipolar DC networks is still a young field of
research, and there are few works that concentrate on it. Ref. [9] proposed a derivative-free
power flow approach to deal with voltage calculation in bipolar DC networks while con-
sidering load imbalances and the possibility of working with solidly grounded or floating
neutral wire. Numerical results in the 21-bus grid and the 85-bus grid showed the effec-
tiveness of this power flow method regarding processing times, the number of iterations,
and convergence. Ref. [10] solved the power flow problem for bipolar DC networks by
considering constant power terminals. A 3-bus system was used for validating the power
flow model. This model was developed using the nodal voltage method. However, the au-
thors do not propose any innovative solution alternative, and they just implemented the
electrical circuit in the PSCAD/EMTDC software.

Regarding the optimal power flow solution, multiple methodologies have been pro-
posed in the current literature. Ref. [2] addressed the optimal power flow problem for
bipolar DC networks with multiple monopolar and bipolar constant power terminals,
with the main advantage that the neutral cable is considered in their formulation. The goal
of this paper is to calculate the locational marginal prices of all the nodes in the network.
To this effect, the authors relax the hyperbolic relations between voltages and power us-
ing linearization methods. This relaxation simplifies the complication of the power flow
problem and allows turning it into a linear or quadratic programming model with linear
constraints. In [11], an optimal power flow approach for bipolar DC networks is proposed
which involves the classical current injection method using the Newton—-Raphson repre-
sentation. The aim of this research is to minimize the grid voltage imbalances caused by
monopolar constant power loads. A quadratic programming model with linear constraints
based on the Jacobian matrix is used to solve optimal power flow problems by means of a
recursive sequential evaluation. Even though this proposed approach is novel, the authors
do not present validations with combinatorial or nonlinear programming methods.

As for optimal pole swapping applications, Ref. [12] proposed a multi-objective opti-
mization model to redistribute pole-to-neutral loads between positive and negative poles.
Nevertheless, they did not consider the hyperbolic relations between voltage and power,
and they only worked with resistive loads. This simplification allows obtaining a mixed-
integer linear programming model.

Based on the aforementioned state-of-the-art review, it was possible to identify that
only [12] presented a solution methodology for dealing with the optimal pole-swapping
problem in bipolar DC grids. However, the model was simplified and does not consider the
effect of constant power terminals in its formulation. This allowed identifying a research
opportunity regarding the solution of the optimal pole-swapping problem in bipolar DC
grids while considering multiple monopolar constant power loads through a master-slave
optimization approach. In the master stage, three different metaheuristic optimization
methodologies are employed to define the load connection at each node from positive-
to-neutral and negative-to-neutral poles. To decide on the connection of these loads to
each node a binary codification is implemented, where 0 implies maintaining the initial
load connection and 1 means interchanging monopolar loads between poles. The selected
metaheuristic techniques selected are (i) the Chu and Beasley genetic algorithm (CBGA),
(ii) the sine-cosine algorithm (SCA), and (iii) the black-hole optimizer (BHO). In the slave
stage, the triangular-based power flow formulation proposed in [9] is employed to evaluate
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the total grid power losses for each possible set of load connections provided by the
master stage.

Note that the selection of the three metaheuristic optimizers was made based on the
fact that they are different in nature. The CBGA, for instance, was inspired by Darwin’s evo-
lution theory, i.e., it is a nature-inspired optimizer; the SCA corresponds to a combinatorial
optimization method that is mathematically inspired by the circular behavior of the sine
and cosine trigonometric functions, and the BHO approach is a combinatorial optimization
method from the family of physical-inspired algorithms. These selections were made to
verify whether the theory that inspired each optimizer influences the final solution of
the studied optimization problem. It is worth mentioning that all of these optimizers are
population-based algorithms, and their differences lie in the mathematical structure of the
evolution rules.

Numerical results in the 21- and 85-bus grids confirm that all the three metaheuristic
optimizers find adequate power loss reductions compared to the benchmark cases with
reduced processing times. In the 21-bus grids, the reductions with respect to the benchmark
case were 3.94%, and the processing times were lower than 9 s; whereas, for the 85-bus
system, the power loss reductions were lower than 10.17% and the average processing
times were lower than 134 s.

The remainder of this research is structured as follows: Section 2 presents the exact
mixed-integer nonlinear programming model that represents the optimal pole-swapping
problem in bipolar DC networks with multiple monopolar and bipolar constant power
terminals; Section 3 describes the main aspects of each of the proposed metaheuristic
optimizers, i.e., codification, initial population, and evolution rules, among others, and it
presents the general power flow formula based on the upper triangular matrix representa-
tion; Section 4 describes the main characteristics of the test feeders, which are composed of
21 and 85 buses with radial structures; Section 5 presents the numerical validation of the
proposed master—slave optimizers, as well as their analysis, comparisons, and discussions;
finally, Section 8 shows the main concluding remarks obtained from this research, as well
as some proposals for future work.

2. Formulation of the Power Flow Problem

To represent the problem regarding optimal pole-swapping in bipolar DC networks
while considering the neutral wire, a mixed-integer nonlinear programming (MINLP)
formulation is used. The binary part of this MINLP model corresponds to the decision
variables regarding the connection of a particular monopolar load at node k in the positive
or negative pole. The continuous component of the MINLP model has to do with voltage
magnitudes, line currents, and power injections, among other variables. The MINLP model
that represents the pole-swapping problem is presented below.

2.1. Objective Function

The objective function of the optimal pole-swapping problem is the minimization
of the total power losses in all distribution lines for the positive, negative, and neutral
conductors. Equation (1) defines its formulation.

min ploss = Z 2 V;(Z 2 ijrsvks>l (1)

reP jeN sePkeN

where pjss is the objective function value associated with the total power losses of the grid.
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2.2. Set of Constraints

The set of constraints associated with the optimal pole-swapping problem contains the
power balance in all nodes of the network at each pole and the voltage regulation bounds
and conditions of the binary variables, among others. The complete set of constraints is
listed in Equations (2) to (16).

T Te— 1" = L ¥ GRVI, {(YkeN) @
reP jeN
0, — 15— 15 = Y Y GYVY, {Vk e N} (3)
reP jeN
ok~ L+ 1" = Y GRVL {Vk e N} 4)
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e Vi — an,
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ypmin < yP < ypma - fyk e N} (12)
Vn,min < an < Vn,max, {Vk c N} (13)
4
A |
V]-O = | 0 | Vhom, {j = slack} (14)
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xp+xp =1, {vk e N'} (15)
{xk,xk} € {0,1}. {Vk € '} (16)

Note that Equations (2)-(4) correspond to the current injection balance at each node of
the network for the positive, negative, and neutral poles. It is important to highlight that
these equations are applicable for grids with neutral solidly grounded wire in all nodes of
the network or the neutral wire that is only grounded at the substation bus and floating
in all remaining nodes. In other operation scenarios, it is necessary to consider the effect
of grounding resistance in Equation (3), as presented in [13] for three-phase four-wire
distribution networks. Equations (5) to (8) define the current calculation for each pole with
its hyperbolic relation between powers and currents. These equations demonstrate the
effect of monopolar loads on the total current absorbed from the positive and negative
poles. Note that these equations are nonlinear and non-convex, and they require specialized
solution methods, which motivates this research to propose a master-slave optimization
method based on metaheuristic optimizers and specialized power flow tools for unbalanced
bipolar DC networks in order to solve the pole-swapping problem as presented in Section 3.
An important fact in Equation (8) is that the effect of bipolar loads is only present in positive
and negative poles (see Equations (5) and (6)), since these loads, as expected, are connected
between these poles and are not related to the neutral pole.
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The set of box-type constraints (9)-(11) present the current limitations of the generation
nodes. It is worth mentioning that, for bipolar DC networks, the power generators are
connected between the ideal neutral point and each pole, which is similar to the star
connection used for generators in three-phase networks. In addition, current injection
at the neutral pole for generators is assumed to be equal to zero, which implies that,
in constraint (10), I;}“i“ = I;:]I{“ax = 0. Box-type constraints (12) and (13) define the voltage
regulation limits imposed by regulatory policies to distribution system operators. Note
that, in the case of the neutral pole, there is no assigned constraint, since, ideally speaking
(in a solidly grounded scenario), all the voltages in this pole must be zero. Equation (14)
shows the voltage profiles set in the slack source, with is ideally operated for the positive,
neutral, and negative poles. Equation (15) defines that only one binary variable per node
is activated in order to determine which load is connected to the positive or negative
pole. Note that, if x]f is activated, i.e., xf: = 1, the original load connection is maintained;
whereas, if x% = 1, the positive and negative monopolar loads are interchanged. Finally,
constraint (16) defines the binary nature of the decision variables xl’f and xj.

Remark 1. The solution of the MINLP model (1)—(16) requires efficient methodologies that can deal
with the nonlinearities and non-convexities of the solution space given by the hyperbolic relations
between voltages and powers in Equations (5)—(9).

This research presents a master—slave optimization approach based on discrete meta-
heuristics combined with the bipolar power flow solution approach based on the upper
triangular power flow method [9]. The solution methodologies implemented are presented
in the next section.

3. Solution Methodology

In order to deal with the MINLP formulation given in Equations (1)-(16), the appli-
cation of a master—slave optimization approach is proposed, which is based on discrete
metaheuristic optimizers and a specialized bipolar power flow solver.

3.1. Codification

The main advantage of using combinatorial optimization methods to deal with the
optimal pole-swapping problem in bipolar DC networks is that with a simple binary
codification, it is possible to represent the solution space. This binary codification is
presented below.

xXt=10,,1,1,---0], (17)

where X! corresponds to solution individual 7 in iteration . Note that the dimension of the
solution space for this problem is 2"~ [14], with 1 being the total number of nodes of the
bipolar DC network. It is important to highlight that a value of 0 in Equation (17) means
that x}f = land x} = 0, and a value of 1 means that xlf =0and x; = 1.

3.2. Slave Stage: Power Flow Solution Approach

The heart of any master—slave optimization method corresponds to the slave stage,
as it typically aims to define the technical feasibility of each solution vector x! provided by
the master optimization methodology. This study adopts a recent power flow formulation
derived specifically for bipolar DC networks with a radial structure. This is a derivative
free power flow formulation based on the upper triangular matrix that relates the nodal
injected currents with the branch currents [9].
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The triangular-based power flow formula is presented in Equation (18). This power
flow formula is derived by applying the graph theory for radial distribution networks
presented by [15].

on,m-+1 on on pon,m
%4 = Ay VI = RETTHMT (18)
where V; %"+ is the vector that contains all the demand voltages at iteration m + 1 for
the positive, neutral, and negative poles, respectively, which is a nonlinear function of the

demanded currents currents I;on/m. In addition, V" represents the voltage outputs in the
substation (see Equation (14)). Note that Ajs and Ry, 0, are matrices that depend on the

grid topology under analysis. Note that the demanded currents I 5 "™ remain in the form
of a hyperbolic relation between voltages and powers, and they also depend on the binary
variables x]f and x7, i.e., they are a function of the decision vector Xf. Note that I 53(”’"1 for
each node k can be defined as presented in Equation (19).

pon,m =1 pon,m pon
1" = Hdiag ™ (Ach"" ) X P, (19)
where
; 14
pon,m ls’k 1 L 0 pon pd_’kn
I =i H=|-1 0 -—1|,PL" = |ph;
n —
ld,k 0 1 1 Pg,k
po _ P 0 pn _ P n no _ ,n n ;
where vy, = vy — v, vy = vp — Uy, and vRG = vy — v are grouped into a vector
as Avgj(" = Z‘;{, ij}(, vg?](}T. It is worth mentioning that X} represents the monopolar load

connections at node k, i.e., it is the variable that decodes the solution value for each node
contained in X!. The decodification for each node k is presented below:

v 1 100
Xf/k:O%[xﬁ]:[o}%sz 0 1 0f, (20)
k 0 0 1
v 0 [0 0 1]
Xf/k_lé[x’;‘]_[l}_)xk_ 0 1 0. (21)
k 1 0 0

Remark 2. The mathematical structure of the decodification variable Xj shows that the bipolar DC
constant power terminals remain unaltered by the pole-swapping solution since these are connected
between the positive and negative poles and are not related to the neutral wire.

To determine when the power flow solution Formula (18) has converged to the power
flow solution, the maximum difference between two consecutive iterations is determined,
Vpan,m+1 Vpon,m
Vi =1Vl

ie., max{ | } < g, with zeta being the maximum convergence error,

which is typically chosen as 1 x 10710 [9].

Once the power flow problem is solved for each solution vector X!, the total grid
power losses for this configuration can be obtained, which are calculated as defined in
Equation (22).

ST
Ploss = lpon Rflon]lpon, (22)

where ]lp on T represents the vector with all the currents through the lines, and Rfl‘m is the
primitive resistance matrix associated with all the branches.
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Remark 3. For additional information regarding the triangular-based power flow formulation for
bipolar DC networks with strictly radial configurations, see [9,15].

3.3. Master Stage: Metaheuristic Optimizers

The master stage corresponds to the brain of the optimization methodology since it is
entrusted with guiding the exploration and exploitation of the solution space by means
of specialized evolution rules. In this research, three combinatorial optimization methods
are studied in order to solve the optimal pole-swapping problem in bipolar DC networks.
As previously discussed, these are the Chu and Beasley genetic algorithm (CBGA), the sine-
cosine algorithm (SCA), and the black-hole optimizer (BHO).

Remark 4. The selection of the CGBA, the SCA, and the BHO considered that each one of them
comes from a different optimization family, with the AGCB being inspired by nature [16], the SCA
by mathematics [17], and the BHO by physics [18].

The main characteristic of these algorithms is that they work with an initial population,
ie., a set of candidate solutions conformed by a matrix with rows of the same form
as the codification vector in Equation (17). A brief explanation of these algorithms is
presented below.

3.3.1. Chu Beasley Genetic Algorithm

Genetic algorithms are probably the most popular optimization algorithms to deal
with multiple combinatorial optimization problems. They were initially developed during
the 1970s by Holland [19], with the objective of solving complex optimization problems,
inspired by the theory of natural selection proposed by Charles Darwin. The CGBA is a
population-based optimizer that works with an initial population that evolves using three
simple rules: (i) selection, (ii) recombination, and (iii) mutation.

v Selection: in this stage, two arbitrary solution individuals are chosen from the popu-
lation, i.e., Xf and X;, where the only constraint is that i and j must be different. These
individuals are known as the parents.

v" Recombination: in this stage, the genetic information of both individuals is mixed
using a recombination point in order to obtain two new individuals, which are
called offspring.

v" Mutation: in this stage, each offspring is randomly mutated by changing its genetic
information in a particular position using probabilities, which emulates the differences
between sons from the same family, even if both come from the same parents.

Once the offspring population is generated, both are evaluated using the slave stage,
and only one of them has the right to be part of the population, i.e., if it is better than the
worst individual in the population and it meets the diversity criteria.

3.3.2. Sine-Cosine Algorithm

The sine-cosine optimization algorithm corresponds to a mathematically inspired
optimizer that uses two evolution rules based on the trigonometric functions of sine
and cosine in order to explore and exploit the solution space. This algorithm was initially
developed by the authors of [20] to solve the optimal power flow problem in power systems
with multiple thermal generation plants. The evolution rule applied for an individual X!
contained in the population is presented in Equation (23).

vt _ {round(Xf + ry sin(rp)|[ra Xt — XtPest|)  py > 23)
! round (X! + 1 cos(r) [r3 X! — XtrbeSt]) ry <

NI—=N—=

where 1 is a parameter that represents the importance of evolution of the sine and cosine,
which is defined as a function of the number of iterations, i.e., 11 = 1 — ﬁ, with fmax
being the maximum number of iterations. 7, is a random number with uniform distribution
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contained in the interval between [0,2pi]. 3 and r4 are random numbers with uniform
distribution contained in the interval between [0, 1], and Xtbest represents the best current
solution contained in the current population.

Note that once the evolution rule is applied for each individual X! in order to generate
the next solution individual Xf”, it is mandatory to check if all the components of this
vector are binary. Otherwise, these are corrected by generating a random binary number to
replace the incorrect value. Note that this revision stage is fundamental for maintaining a
feasible solution space for the pole-swapping problem.

Remark 5. The inclusion of the new potential solution Yf“ in the current population is performed
only if it is better than the current solution, i.e.,:

* X = Yit+l ifand Onl]/ ifploss (YitJrl) < Ploss (Xlt)
e Otherwise, X1 = X

3.3.3. Black Hole Optimizer

The BHO is a physically inspired optimization algorithm based on the physical inter-
action between black holes and stars at the center of galaxies [21]. The BHO has three im-
portant characteristics regarding its exploration and exploitation of the solution space [22].

i.  Thelocation of the black hole corresponds to the best current solution in the population,
ie., Xt,best,.

ii. the movements of the stars (remaining solution individuals in the population) are influ-
enced by their current positions and the gravitational force exerted by the black hole;

iii. the stars that surpass the event horizon are absorbed by the black hole (destroyed),
and, with stellar gas around the black hole, a new star is created.

The evolution rule in the BHO takes the form presented in Equation (24).
—Xxt
Y1 = round (Xf +r (Xbest X! ) ) (24)

where r; is a vector with the same dimensions of the individual X! filled by values between
0 and 1 with a uniform distribution that includes pondering the effect of the black hole on
the next solution. Like the SCA algorithm, the feasibility of each component in the potential
solution Yi“rl is verified and corrected when necessary in order to keep the solution space
feasible. In addition, the same replacement criterion is applied.

In case the new individual Yf“ surpasses the event horizon, a new star is randomly
generated with the same structure, as defined in Equation (17). For additional details
regarding the implementation of the BHO, see [22,23].

3.4. Summary of the Metaheuristic Optimization Methodologies

The application of the CBGA, the SCA, or the BHO to solve the optimal pole-swapping
problem in bipolar DC networks with multiple constant power terminals is summarized in
Algorithm 1.
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Algorithm 1: Proposed master—slave optimization approach to solve the optimal
pole-swapping problem in bipolar DC networks.

Data: Select the bipolar DC network under analysis

Find the per-unit equivalent representation of the network;

Define the number of iterations tmax for the metaheuristic algorithms;
Make t = 0;

Select the size of the initial population, i.e., X0,

Define the number of iterations mmax for the power flow problem;
Define the tolerance of the power flow problem, ie., { =1 X 1010,
Evaluate each individual Xf in the power flow formulas of Equations (18) and (19);
fort =1: tpax do

if Selected method = CBGA then

Select two arbitrary parents X} and X;

Recombine both parents to obtain two offspring individuals;
Apply the mutation operator to each offspring;
Evaluate each offspring in the power flow formulas of
Equations (18) and (19); Select the winning individual;
if Is the winner better than the worst individual in the population? then
if Is the winner different from all the individuals in the population? then
‘ Replace the worst individual with the winner;
end

end
end
if Selected method = SCA then

Generate random values for ry, 13, and r4, and calculate r; = 1 — ——;

tmﬂX ’

Apply evolution rule in Formula (23) to obtain Yl.t+1 ;
Revise/correct the feasibility of the potential solution Yf“ ;
Evaluate YitH in the power flow formulas of Equations (18) and (19);
if Ploss (Yit+1) < Ploss (Xf) then

| Replace X!! with Y/*;
else

‘ Make Xf“ = Yit;
end
end
f Selected method = BHO then
Generate random values for r;;

-

Apply evolution rule in Formula (24) to obtain Yf'"1 ;
Revise/correct the feasibility of the potential solution Yi‘u“l ;
Evaluate Yf“ in the power flow formulas of Equations (18) and (19);
if Ploss (Yl‘t+1) < Ploss (th) then
| Replace X!*! with Y/;
end
Make Xf“ =Y}
end

end
Order all solutions in ascending form with the values of the objective function;
Result: Report the optimal solution
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Note that, in order to compare all of the metaheuristic optimizers, the same number
of individuals in the population is evaluated, as well as in the same number of iterations.
In addition, each method is evaluated 100 times to obtain its statistical behavior.

4. Test Feeder Characteristics

To validate the proposed optimization methodology, two test feeders composed of 21
and 85 buses were used. The electrical information for both test feeders is presented below.

4.1. The 21-Bus System

This test feeder corresponds to an adaptation of the original monopolar DC distribu-
tion grid proposed in [24] to evaluate the convergence of the Newton—-Raphson method
in power flow studies involving DC networks. The grid topology of this test feeder is
depicted in Figure 1.

dc
ac

slack (v)

Figure 1. Grid configuration of the 21-bus system.

The main characteristics of this test feeder are as follows: (i) it has a radial configura-
tion; (ii) the substation is located at node 1, which is operated with £1 kV for the positive
and negative poles while the neutral pole is assigned 0 V; (iii) the total monopolar loads
amount to 554 kW in the positive pole and 445 kW in the negative pole. The complete
parametric information for this test feeder is listed in Table 1.

Table 1. Data for the 21-bus system (all powers in kW).

Node j Node k Rji (V) Py, P, pr"

dk
1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0

14 15 0.065 22 30 0
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Table 1. Cont.

Node j Node k Rji () PY Py Py
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

4.2. The 85-Bus System

The 85-bus grid corresponds to an equivalent of the classical IEEE 85-bus grid pre-
sented in [25] for the optimal placement of capacitor banks. This adaptation was proposed
by the authors of [9] for the application of the triangular-based power flow formulation in
imbalanced bipolar DC networks. The electrical topology for the 85-bus grid is depicted in

Figure 2.
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Figure 2. Electrical configuration of the 85-bus system for bipolar DC network analysis.

The information regarding the branch and load parameters for this test feeder is
reported in Table 2. Note that this system is operated with £11 kV in the positive and
negative poles, while the neutral wire at the substation is set to 0 V.
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Table 2. Data for the 85-bus system (all powers in kW).

Node j Node k Rji (€0) Ph, P, P Node j Node k Rj (Q) P, Py, "
1 2 0.108 0 0 10.075 34 44 1.002 17.64 17.995 0
2 3 0.163 50 0 40.35 4 45 0.911 50 17.64 17.995
3 4 0.217 28 28.565 0 45 46 0.911 25 17.64 17.995
4 5 0.108 100 50 0 46 47 0.546 7 7.14 10
5 6 0.435 17.64 17.995 25.18 35 48 0.637 0 10 0
6 7 0.272 0 8.625 0 48 49 0.182 0 0 25
7 8 1.197 17.64 17.995 30.29 49 50 0.364 18.14 0 18.505
8 9 0.108 17.8 350 40.46 50 51 0.455 28 28.565 0
9 10 0.598 0 100 0 48 52 1.366 30 0 15
10 11 0.544 28 28.565 0 52 53 0.455 17.64 35 17.995
11 12 0.544 0 40 45 53 54 0.546 28 30 28.565
12 13 0.598 45 40 25 52 55 0.546 38 0 48.565
13 14 0.272 17.64 17.995 35.13 49 56 0.546 7 40 32.14
14 15 0.326 17.64 17.995 20.175 9 57 0.273 48 35.065 10
2 16 0.728 17.64 67.5 33.49 57 58 0.819 0 50 0
3 17 0.455 56.1 57.15 50.25 58 59 0.182 18 28.565 25
5 18 0.820 28 28.565 200 58 60 0.546 28 43.565 0
18 19 0.637 28 28.565 10 60 61 0.728 18 28.565 30
19 20 0.455 17.64 17.995 150 61 62 1.002 125 29.065 0
20 21 0.819 17.64 70 1525 60 63 0.182 7 7.14 5
21 2 1.548 17.64 17.995 30 63 64 0.728 0 0 50
19 23 0.182 28 75 28.565 64 65 0.182 125 25 375
7 24 0.910 0 17.64 17.995 65 66 0.182 40 48.565 33
8 25 0.455 17.64 17.995 50 64 67 0.455 0 0 0
25 26 0.364 0 28 28.565 67 68 0.910 0 0 0
26 27 0.546 110 75 175 68 69 1.092 13 18.565 25
27 28 0.273 28 125 28.565 69 70 0.455 0 20 0
28 29 0.546 0 50 75 70 71 0.546 17.64 38.275 17.995
29 30 0.546 17.64 0 17.995 67 72 0.182 28 13.565 0
30 31 0.273 17.64 17.995 0 68 73 1.184 30 0 0
31 32 0.182 0 175 0 73 74 0.273 28 50 28.565
32 33 0.182 7 7.14 125 73 75 1.002 17.64 6.23 17.995
33 34 0.819 0 0 0 70 76 0.546 38 48.565 0
34 35 0.637 0 0 50 65 77 0.091 7 17.14 25
35 36 0.182 17.64 0 17.995 10 78 0.637 28 6 28.565
26 37 0.364 28 30 28.565 67 79 0.546 17.64 42.995 0
27 38 1.002 28 28.565 25 12 80 0.728 28 28.565 30
29 39 0.546 0 28 28.565 80 81 0.364 45 0 75
32 40 0.455 17.64 0 17.995 81 82 0.091 28 53.75 0
40 41 1.002 10 0 0 81 83 1.092 12.64 32.995 62.5
4 © 0.273 17.64 25 17.995 83 84 1.002 62 72.2 0
4 43 0.455 17.64 17.995 0 13 85 0.819 10 10 10

5. Numerical Validations

The computational implementation of the metaheuristic methodologies for solving the
optimal pole-swapping problem in bipolar DC networks with multiple constant monopolar
and bipolar loads was executed in the MATLAB programming environment using the
researchers” own scripts. For this implementation, version 20210 was used on a PC with an
AMD Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM, running on a 64-bit version of
Microsoft Windows 10 Single Language.

In the numerical simulations, it was considered that the neutral wire was only grounded
at the substation bus, since, as demonstrated by [9], this is the worst scenario regarding power
losses when compared to the solidly grounded case for all the nodes of the network.

6. Results in the 21-Bus System
The solution to the pole-swapping problem for the 21-bus grid with the CBGA,
the SCA, and the BHO is presented in Table 3.
Table 3. Results of the 21-bus system for the proposed metaheuristic optimizers.
Nodes with
Method A kW Reduction (% Time (s
Modification Ploss (kW) (%) ©
Benchmark case — 95.4237 — —
SCA [4, 6,11,16, 21} 91.6630 3.9413 8.8340
BHO [3, 5,7,8,9,10,12,13, 16, 21] 91.6628 3.9411 16.2323
CBGA [5, 7,8,9,10,12,13,14, 16, 21] 91.6628 3.9411 2.2620
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The numerical results in Table 3 show that:

The expected power losses reduction after applying each one of the metaheuristic
optimizers is about 3.9411% with respect to the benchmark case, i.e., there is a net
reduction of 3.7609 kW.

The total processing times were considerably lower in the case of the CBGA since
it only took about 202,620 s to solve the pole-swapping problem, whereas the SCA
took about 8.8340 s in the second position. This makes the BHO the worst algorithm
regarding processing times, with a mean duration of 16.2323 s.

The solution provided by the SCA shows that the solution only requires changes in five
nodes, with an objective function value of 91.6630 kW, while the BHO and the CBGA
make changes in ten nodes. Note that, for all three optimization methods, nodes 16
and 21 were identified in the final solution. In addition, the solutions provided by
the BHO and the CBGA have nodes 5,7, 8,9, 10, 12, 13, 16, and 21 in both solutions,
and they only interchange nodes 3 and 14. However, the latter do not have loads,
which confirms that the solutions provided by the BHO and the CBGA are identical.

On the other hand, Figure 3 presents the behavior of the voltage profiles in all the

nodes of the 21-bus system for each pole, considering the benchmark case as well as the
solution reached with each one of the metaheuristic optimizers.

(@) V7 (pu)

(b) V° (pu)

(©) V" (pu)

1.020 T T T T T T T T T
1.000¢ —e— Ben. case —— SCA
0.980 |- —o— BHO —e— CBGA

—0.050 - —e— Ben. case —e— SCA -
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—0.100 - - - - > . : L .

1 3 5 7 9 11 13 15 17 19 21
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—0.900 |-
—0.920 |-
—0.940 |-
—0.960 -
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—1.000¢ —e— BHO —e— CBGA | |
—1.020 - - - - - - . . .

3 5 7 9 11 13 15 17 19 21
Nodes

Figure 3. Behavior of the voltages for all poles in the 21-bus systems with each one of the metaheuristic

optimizers: (a) voltage value at the positive pole, (b) voltage value at the neutral pole, and (c) voltage
value at the negative pole.

The main result in Figure 3 is the positive effect of pole-swapping on the voltage

behavior of all nodes in the network for each pole. When the voltage profiles in the
positive poles are compared to those in the negative pole, it is observed that the system
was balanced, which implies that the pole with the highest loadability will increase due
to the load reduction on it (see Figure 3a), at the same time that, in the pole with less it
will decrease as a function of its load increment. Note that the most positive effect on the
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optimal pole swapping is in the neutral wire since the deviation with respect to the ideal
voltage is reduced when compared with the benchmark case, as can be seen in Figure 3c.

7. Results in the 85-Bus System

The solution to the pole-swapping problem for the 85-bus grid with the CBGA,
the SCA, and the BHO is presented in Table 4. Note that the benchmark case for this
test feeder, as reported in [9], has an initial power loss value of 489.5759 kW.

Table 4. Results in the 85-bus system for the proposed metaheuristic optimizers.

Method Nodes with Modification Ploss (kW) Reduction (%)  Time (s)
Ben. case — 489.5759 — —
6,8,9,12,13,14,15,17,19,22,23,30,
SCA 32,33,34,35,36,37,40,41,44,45, 53, 440.0133 10.1236 68.4910
55,57,59,61,63,65,68,71,81,83
BHO

3,6,7,9,11,14,16,17,19,22,23,24,29,31, 34,
69,71,72,73,74,75,76,78,79,80,81,82, 84

37,39,43, 44,49, 55,56,57,61, 62,64, 65, 66, 68,} 440.1445 10.0968 133.2345

2,4,5,9,12,13,18,19, 20, 22,23,29,31, 33, 34,
CBGA 35,38,39,42,43,44,46,47,48,51,53,54,55,57, 439.8161 10.1639 15.5741
62,70,72,73,74,76,77,78,79,80, 81, 82, 84, 85

The numerical results in Table 4 allow one to observe that:

i.  The expected reductions in the power losses for the 85-bus grid are between 10.1639
and 10.0968%, i.e., a final power loss value of 439.8161 kW was obtained for the CBGA
and 440.1445 kW for the BHO.

ii. In numerical terms, all the three explored metaheuristic optimizers find adequate
values for the objective function, with a difference of 0.3284 kW between them, which
implies that the SCA and the BHO methods reach near-optimal solutions with respect
to the solution found with the CBGA.

iii. The solution found with the SCA proposes the movement of loads in 33 nodes,
the BHO moves loads in 43 nodes, and the CBGA also changes connections in 43 nodes.
Comparisons between the SCA and the other optimizers show that near-optimal so-
lution values can correspond to very different locations in the solution spaces since
the number of interventions in the nodes of the network is 11.76%, which is lower in
comparison with the BHO and the CBGA.

Statistical Evaluation

To show the effectiveness and robustness of the proposed metaheuristic optimizers
when dealing with the problem regarding the optimal pole-swapping problem in bipolar
DC networks, 100 consecutive implementations of each optimization algorithm were
executed to obtain their maximum, mean, and minimum values, as well as the standard
deviations for each test feeder and each metaheuristic optimizer. Table 5 presents the
statistical behavior of the CBGA, the BHO, and the SCA for each test feeder.

The results in Table 5 allow us to observe that: (i) for both test feeders, the SCA is
the optimization method with the highest variations with respect to the mean value, since
the standard deviation is 0.2256 kW for the 21-bus grid and 0.3323 kW for the 85-bus grid,
while the best optimization method regarding stability after each execution is the BHO,
with standard deviations of 0.0122 and 0.1143 kW for the 21- and 85-bus grids, respectively;
(ii) with respect to the maximum value, it is observed that, in both cases the SCA finds
the worst solution among the three optimization methods, in comparison with values of
92.7745 and 441.8369 kW; (iii) with respect to the minimum value, it is possible to note that
the solution in the 21-bus grids is the same for the BHO and the CBGA, with a minimum
objective function of 91.6628 kW, whereas, for the 85-bus grid, only the CBGA obtains a
solution of less than 440 kW, followed by the SCA with a value of 440.0133 kW.
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Table 5. Statistical behavior of the three metaheuristic optimizers in both test feeders after
100 consecutive evaluations.

. .. Stand.
Method Maximum (kW)  Minimum (kW) Mean (kW) Deviation (kW)

21-bus grid

SCA 92.7745 91.6630 91.8161 0.2256

BHO 91.7084 91.6628 91.6784 0.0122

CBGA 91.7461 91.6628 91.6824 0.0190
85-bus grid

SCA 441.8369 440.0133 440.5837 0.3323

BHO 440.6536 440.1445 440.3452 0.1143

CBGA 440.7200 439.8161 440.0459 0.1542

Note that the results in Table 5 confirm that, with respect to the minimum objective
function value, the best optimization method is the CBGA. Moreover, regarding the stability
of the solution (i.e., the minimum standard deviation) the best method is the BHO.

8. Conclusions and Future Works

The problem regarding the optimal pole-swapping problem in bipolar DC networks
with multiple monopolar and bipolar constant power terminals was addressed in this
research through the application of three solution methodologies with a master—slave
structure. In the master stage, a metaheuristic optimizer (CBGA, BHO, or SCA) was em-
ployed to define the load connection at each node, while the slave stage was entrusted with
evaluating the total grid power losses by using a triangular-based power flow formulation
specialized for radial bipolar DC networks.

Numerical results in the 21-bus grid showed that the three optimization methods allow
reductions of about 3.94% with respect to the benchmark case, whereas, for the 85-bus grid,
these reductions are between 10.10 and 10.16%. In both test feeders, the CBGA finds the
best objective function value (minimum value): 91.6628 and 439.8161 kW, respectively.

With respect to the voltage profile performance, as expected, the optimal load redistri-
bution in the positive and negative poles with respect to the benchmark case allows noting
that the neutral voltage drop was minimized in the 21-bus system, which made the voltage
magnitudes of the positive and negative poles similar in comparison with the benchmark
case. The initial differences between total monopolar consumptions in the 21- and 85-bus
grids were 109 and 1873.42 kW, respectively, whereas, when the optimal solution found
with the CBGA was implemented in both test feeders, these imbalances were reduced to 47
and 52.58 kW, respectively.

The statistical analysis of the three metaheuristic optimizers revealed that: (i) the most
stable algorithm after 100 consecutive evaluations was the BHO since it showed a lower
standard deviation in both test feeders; (ii) with respect to the final objective function value,
the most efficient algorithm was the CBGA since it found the minimum value of the power
losses in both test feeders.

As future work, the following studies can be conducted: (i) proposing new meta-
heuristic optimizers to deal with the optimal pole-swapping problem (i.e., the vortex search
algorithm, the generalized normal distribution algorithm, and the gradient-based meta-
heuristic optimizer, among others); (ii) developing a mixed-integer convex optimization
model to reformulate the exact MINLP model given in Equations (1) to (16) in order to
ensure that the global optimum is reached via the convex optimization theory.
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