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Abstract: The design of an efficient energy management system (EMS) for monopolar DC networks
with high penetration of photovoltaic generation plants is addressed in this research through a convex
optimization point of view. The EMS is formulated as a multi-objective optimization problem that
involves economic, technical, and environmental objective functions subject to typical constraints
regarding power balance equilibrium, thermal conductor capabilities, generation source capacities,
and voltage regulation constraints, among others, using a nonlinear programming (NLP) model.
The main characteristic of this NLP formulation of the EMS for PV plants is that it is a nonconvex
optimization problem owing to the product of variables in the power balance constraint. To ensure
an effective solution to this NLP problem, a linear approximation of the power balance constraints
using the McCormick equivalent for the product of two variables is proposed. In addition, to
eliminate the error introduced by the linearization method, an iterative solution methodology (ISM)
is proposed. To solve the multi-objective optimization problem, the weighted optimization method
is implemented for each pair of objective functions in conflict, with the main advantage that in this
extreme the Pareto front has the optimal global solution for the single-objective function optimization
approach. Numerical results in the monopolar version of the IEEE 33-bus grid demonstrated that
the proposed ISM reaches the optimal global solution for each one of the objective functions under
analysis. It demonstrated that the convex optimization theory is more effective in the EMS design
when compared with multiple combinatorial optimization methods.

Keywords: greenhouse gas emissions; energy loss; energy purchasing costs; multi-objective optimization;
convex approximation

1. Introduction

Monopolar DC grids are emerging technologies that work with direct-current signals
to supply electrical energy to multiple users at medium and low-voltage levels [1]. These
grids are composed of two poles: one of them is the positive pole that has a voltage of
+VDC V concerning the neutral pole that is solidly grounded at each point of load connected,
i.e., the neutral pole is set t 0 V [2]. In these networks, it is possible to connect constant
resistive loads (linear loads), constant power loads (nonlinear loads), and distributed
energy resources (generation and batteries) [3]. Monopolar DC networks have attracted the
attention of researchers and distribution companies since these, when contrasted with AC
networks, have better voltage profile performance and low energy losses [4]. The control
design is straightforward because the voltage magnitude is the only variable of interest [5].

Two main approaches are reported in the current literature to analyze monopolar
DC networks. The first approach is associated with designing control strategies to man-
age energy flow interchange between the grid and the distributed energy resources con-
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nected to it [6]. This is a research area focused on the efficient control of power electronic
converters [7], where the primary idea is to support voltage profiles in controlled load
terminals, extract the maximum power available in renewable sources, or store energy
in batteries during periods of low demand and high generation, to return this energy in
periods with contrary behavior [8]. The second approach corresponds to design optimiza-
tion strategies for planning and operation purposes [9]. In the planning case, the main
idea is integrating new devices (renewables or batteries) to improve the grid performance
regarding operational costs for an expected horizon period of analysis [10]. In the operation
case, usually, the idea is to propose efficient energy management systems that allow defin-
ing the best daily power injection profiles for renewable generation and energy storage
systems [11,12].

The design of energy management systems (EMSs) is a vast area of research with
multiple applications in the contexts of microgrids, and active distribution networks, in-
cluding applications in seaports [13,14], public buildings [15,16], hospitals [17], farms [18],
and electrical distribution networks [11], among others. For this reason, in this research,
we are interested in analyzing monopolar DC networks from the optimization point of
view by proposing efficient energy management systems (EMS) for monopolar DC grids
considering photovoltaic generation [19,20]. Using a multi-objective optimization approach,
the proposed EMS considers three objective functions (economic, technical, and environ-
mental) [11]. In the current literature, the EMS for monopolar DC networks has been
attracting attention in the last few years. Some of the most relevant reports in this area are
presented below.

The authors of [11] have proposed designing an efficient energy management system
(EMS) for PV generators integrated into monopolar DC distribution networks considering
technical, environmental, and economic objective functions. As constraints, the power
balance constraints and the capacities of the devices were considered. A single-objective
function analysis was implemented to deal with the exact nonlinear programming (NLP)
model. The salp swarm optimization algorithm was implemented to optimize the daily
dispatch of the PV generators. Numerical results in two test feeders demonstrated the effec-
tiveness of this optimization algorithm compared to the crow search algorithm, the particle
swarm optimizer, and the multi-verse optimization approaches. Ref. [10] proposed a con-
vex approximation based on the McCormick envelopes to select and locate battery energy
storage systems in monopolar DC networks. The objective function corresponded to the
minimization of the total daily energy losses. Numerical results in the 21-bus grid demon-
strated the proposed quadratic convex approximation’s effectiveness when compared with
the mixed-integer NLP model’s exact solution in GAMS software. However, the main
flaw of this research corresponded to the non-elimination of the error introduced by the
McCormick approximation since any recursive optimization approach was implemented.
The authors of [12] have proposed a convex optimization method to define the optimal
operation of PV sources in monopolar DC networks to minimize the total greenhouse gas
emissions in isolated grids fed by diesel generation sources; the main contribution is using
artificial neural networks to predict the expected behavior of the power output of the PV
sources; numerical results demonstrated that their convex proposal and the exact NLP
solution in the GAMS software were the same. Ref. [21] analyzed regulatory scope for
integrating renewables in medium and low voltage distribution networks based on the Law
1715 of the Colombian senate. This is the most crucial regulatory scope for integrating any
renewable energy resource in the Colombian electric system since this defines all the legal
and technical considerations for the massive integration of these devices in the existing
passive distribution network, which will cause these networks to become active agents
with an essential role in the electricity market. Refs. [22,23] have presented a complete
qualitative analysis regarding the integration of PV plants in the Colombian power system.
The authors study the market conditions based on the Law 1714 of 2014, considering
the active participation of these systems in the new energetic matrix. Qualitative results
demonstrate that the Colombian market continues under development areas where more
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political and economic conditions must be defined before the massive integration of PV
generation plants. The authors of [24] proposed the application of a convex approximation
based on the branch power flow to determine the efficient dispatch of PV plants in isolated
monopolar distribution networks to minimize the total CO2 emissions caused by diesel
sources. Numerical results demonstrated that the branch power flow approach is efficient
when the energy losses are minimized; however, when the objective function is different,
some convergence problems have been experimented with.

Based on the previous state-of-the-art review, this research contributes the following:
(i) a new formulation for the problem of efficient operation of PV plants in monopolar
DC networks considering different objective functions. A mathematical analysis is made
over each one of these functions to determine their geometric structure, which permits us
to confirm that all of them (economic, technical, and environmental) are convex; (ii) the
approximation of the nonconvex set of constraints associated with the power balance
constraint using the McCormick approximation for the product of two variables. To min-
imize/eliminate the error introduced by this linearization method, an iterative solution
methodology is implemented by starting with plane voltages (equal values in all the nodes)
until reaching the desired convergence; (iii) the construction of the Pareto front for each
pair of objective functions using the multi-objective weighted-based approach was pro-
posed. Numerical results confirmed that for linear objective function regarding economic
or environmental indices, the EMS design is not a multi-objective problem. In contrast,
economic/environmental vs. technical are objective functions in conflict.

Note that to demonstrate the effectiveness of the proposed optimization methodol-
ogy based on convex approximations, a single-objective function analysis with multiple
metaheuristics was performed, evidencing that for all the simulation cases, the iterative so-
lution methodology founds better numerical results than the recently reported values with
different combinatorial optimization methods reported by Grisales-Noreña et al. in [11].
These comparative algorithms are the crow search algorithm, the particle swarm optimizer,
the multi-verse optimizer, and the salp swarm optimization method. On the other hand,
it is important to highlight that in this research, the location of the PV plants was previ-
ously defined by the distribution company, and the demand and generation curves are
considered well-known without uncertainties (input parameters for the studied problem);
however, more research will be required to address the stochastic nature of these variables
(demand and PV generation curves), added with the possibility of studying the optimal
selection of the nodes where the PV plants must be located from the distribution system
planning point of view. In addition, the degradation characteristics of the batteries are
not considered in this research; however, in future works, it will be necessary to include
the aging-degradation characteristics of the batteries, especially for distribution system
planning projects that involve energy storage systems.

The remainder of this contribution is organized as follows: Section 2 describes the
general EMS using a multi-objective formulation, which considers the minimization of
three objective functions: (i) the expected energy losses (technical function); (ii) the expected
emissions of CO2 (environmental function); (iii) the expected energy purchasing costs in
conventional generators and maintenance costs of the PV plants (economic function). These
objective functions are subject to technical constraints regarding power balance equilibrium,
thermal capacities of conductors, generation capacities in power sources, and voltage
regulation bounds, among others. Section 3 reveals the proposed solution methodology
by presenting the model convexification approaches, followed by the proposed iterative
solution methodology. In addition, the multi-objective approach is formally presented
using the weighed-based optimization methodology using two factors for combining
pairs of objective functions. Section 4 shows the main characteristics of the test feeder
under analysis, which corresponds to the monopolar DC version of the IEEE 33-bus grid,
including three PV plants with demand and generation behaviors associated with the
typical performance of the electrical distribution networks in the Medellín City, Colombia.
Section 5 reveals the main numerical results considering a single-objective optimization
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analysis to compare the performance of the proposed iterative solution methodology with
multiple combinatorial optimization methods reported in the specialized literature. In
addition, the multi-objective analysis is made to construct the fronts using the weighted-
based approach. Finally, Section 6 lists all the conclusions derived from this research and
some possible future research works.

2. Multi-Objective Optimization Model

The problem of the efficient operation of PV plants in monopolar DC distribution
networks considering different objective functions can be represented as a nonlinear pro-
gramming model with nonconvex constraints. The main idea of this optimization problem
is to find a Pareto front by considering the conflict of interest between different objective
functions. Three objective functions are considered in this research, as described below.

2.1. Possible Objective Functions

In modern electrical networks, the economic and environmental indices are funda-
mental variables that must be considered for reliable and efficient operation at all voltage
levels. Here, we evaluate three objective functions regarding technical, economic, and
environmental indicators.

The first objective function is typically employed in electrical distribution networks
for optimal power flow studies, and it minimizes the expected energy loss for a defined
operation horizon (Eloss). Equation (1) defines the mathematical structure of this objec-
tive function.

min Eloss = ∑
h∈H

∑
km∈L

rkmi2km,h∆h, (1)

where rkm is the resistive parameter associated with the distribution line that connects
nodes k and m, and ikm,h is the current flow at the route km at the period h.

The second objective function is associated with the total greenhouse gas emissions
in conventional generation sources (electrical substations in interconnected distribution
grids) or diesel generation sources in distribution networks at remote rural distribution
grids. This objective function is formulated in Equation (2).

min ECO2 = ∑
h∈H

∑
k∈N

(
γcg pcg

k,h + γs ps
k,h

)
∆h, (2)

where ECO2 is the total greenhouse gas emissions associated with coat dioxide (CO2), which is the
main pollutant in electrical networks based on thermal sources; γcg and γs mean the emission
coefficients associated with the thermal sources (diesel plants) and the substation equivalents
(slack sources), which have power outputs per period defined as pcg

k,h and ps
k,h, respectively.

The third objective function corresponds to the economic indicator of the grid oper-
ation, which is associated with the expected energy generation costs in the case of diesel
sources or energy purchasing costs from the transmission system in the case of substations
added with the operating and maintenance costs in PV plants. This objective function is
formulated in Equation (3).

min Ecosts = ∑
h∈H

∑
k∈N

(
Ccg

kWh pcg
k,h + Cs

kWh ps
k,h + Cpv

O&M ppv
k,h

)
∆h, (3)

where Ecosts is the expected operating costs for the period of operation under analysis; Ccg
kWh

and Cs
kWh are the energy purchasing costs in the conventional generator (thermal source)

and the equivalent substation node, and Cpv
O&M is the expected maintenance and operation

costs in the PV plant, which has a power output defined as ppv
k,h.

2.2. Model Constraints

The operation of an electrical network must fulfill different operative constraints
associated with the physical nature of the system and the design capabilities of the de-
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vices integrating into these networks. To obtain a general formulation of the power flow
constraints, let us define the branch-to-node incidence matrix [3].

Definition 1 (branch-to-node incidence matrix A). The branch-to-node incidence matrix is a
rectangular matrix that contains information regarding the electrical connection between distri-
bution lines and nodes in a graph. Each component Ajk can be obtained based on the following
rules.

i. Ajk = 1 if the distribution line j is connected to the node k and its current is leaving this node.
ii. Ajk = −1 if the distribution line j is connected to the node k and its current is arriving this

node.
iii. Ajk = 0 if there is no physical connection between line j and node k.

Considering the definition of the matrix A, the power balance constraint (power
equilibrium at each node) can be defined at any node k as follows by considering that km
has the same meaning as the j index [25]:

pcg
k,h + ps

k,h + ppv
k,h − pd

k,h = vk,h ∑
j∈L

Ajkij,h, {k ∈ N , h ∈ H} (4)

The current flow at line j is defined as a function of its voltage drop and resistive effect
as defined in (5).

∑
k∈N

Aj,kvk = rjij,h, {j ∈ L, h ∈ H} (5)

To ensure the proper operation of the generation sources, their generation outputs
must be contained between their lower and upper bounds as defined in (6)–(8).

pcg,min
k,h ≤ pcg

k,h ≤ pcg,max
k,h , {k ∈ N , h ∈ H} (6)

ps,min
k,h ≤ ps

k,h ≤ ps,max
k,h , {k ∈ N , h ∈ H} (7)

ppv,min
k,h ≤ ppv

k,h ≤ ppv,max
k,h , {k ∈ N . h ∈ H} (8)

where pcg,min
k,h and pcg,max

k,h are the minimum and maximum power generation limits for

the conventional generation source, ps,min
k,h and ps,max

k,h are the lower and upper generation

bounds in the substation node, and ppv,min
k,h and ppv,max

k,h represent the lower and upper
generation limits for the PV plants, respectively.

In the case of the current flow through its branch, one must ensure that it does not
exceed its thermal limits (imax

j ). This can be defined as follows in (9).

−imax
j ≤ ij,h ≤ imax

j , {j ∈ L, h ∈ H} (9)

Owing to regulatory impositions (policies generated by institutions entrusted with
the regulation of the electrical energy service), the lower and upper voltage values (vmin

and vmax) for all the grid nodes are limited at any period.

vmin ≤ vk,h ≤ vmax, {k ∈ N , h ∈ H} (10)

Finally, in the case of the output voltage in terminals of the substation, i.e., the slack
bus, it is set as defined in (11), which allows ensuring the correct operation of the monopolar
DC network under steady-state conditions.

vk,h = vnom, {k = slack, h ∈ H} (11)

where vnom is nominal voltage of the DC network.
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2.3. Model Characterization

The optimization model (1)–(11) corresponds to a nonlinear nonconvex optimization
model in the continuous domain, where the following characteristics are present.

i. The three objective functions in (1)–(3) are from the family of convex functions, and are
strictly convex, i.e., the energy losses since it is a hyper-paraboloid, while the energy
purchasing costs are hyper-planes, i.e., convex and concave functions.
Let us present the general proof for these functions to confirm that all the objective
functions are convex. A function is convex if the following inequality is fulfilled [26].

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y). (12)

where λ is a constant parameter defined between 0 and 1, and x and y are two points
contained in the domain of the function under analysis.

a. In the case of linear functions, let us consider a general form presented below.

f (x) = ∑
k∈K

Ckxk, (13)

where Ck is a positive parameter, and considering the definition in (12), is obtained
the following condition

∑
k∈K

Ckλxk + Ck(1− λ)yk ≤ λ ∑
k∈K

Ckxk + (1− λ) ∑
k∈K

Ckxy. (14)

Note that in (14), is clear that the equality holds, ensuring that (13) is a convex
function. Note that with this proof, functions (2) and (3) are confirmed as convex
functions since both are linear functions with the form given by (13) [26].

b. In the case of a quadratic function, let us consider a general form presented below.

f (x) = ∑
k∈K

Dkx2
k , (15)

where Dk is a positive constant parameter. Now, considering the definition in
(12), the following condition is obtained:

∑
k∈K

Dk(λxk + (1− λ)yk)
2 ≤ λ ∑

k∈K
Dkx2

k + (1− λ) ∑
k∈K

Dky2
k , (16)

now, after applying some algebraic manipulations, the inequality condition in
(16) can be reduced as follows:

∑
k∈K

Dk(λxk + (1− λ)yk)
2 ≤ λ ∑

k∈K
Dkx2

k + (1− λ) ∑
k∈K

Dky2
k ,

∑
k∈K

Dk

(
λ2x2

k + (1− λ)2y2
k + 2λ(1− λ)xkyk

)
≤ λ ∑

k∈K
Dkx2

k + (1− λ) ∑
k∈K

Dky2
k ,

∑
k∈K

Dk

((
λ2 − λ

)
x2

k +
(
(1− λ)2 − (1− λ)

)
y2

k + 2λ(1− λ)xkyk

)
≤ 0,

∑
k∈K

Dk

(
λ2 − λ

)(
x2

k + y2
k − 2xkyk

)
≤ 0,

∑
k∈K

Dk

(
λ2 − λ

)
(xk + yk)

2 ≤ 0, (17)

which clearly evidences that
(
λ2 − λ

)
≤ 0, and (xk + yk)

2 > 0 which implies that

∑
k∈K

Dk

(
λ2 − λ

)
(xk + yk)

2 < 0, (18)
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Note that (18) is evidence that the quadratic function (15) is a strictly convex
function, which confirms that the objective function (1) is also strictly convex [26].

The objective functions in (1) and (2) are illustrated in Figure 1 using a three-dimensional
representation. The objective function regarding operating cost minimization is not
plotted since it is also linear and contains three independent variables that cannot be
plotted in a three-dimensional space.

(a) Energy loss

Eloss = r1i21,h + r2i22,h

(b) CO2 emissions

ECO2 = γcg,1 pcg
k,h + γs,1 ps

k,h

Figure 1. Convex structure of the objective functions: (a) hyper-paraboloid that represents the energy
loss function in (1), and (b) plane that represents the emissions of CO2 in (2).

ii. The objective functions (2) and (3) are not two objectives in conflict since the mini-
mization of one of them implies the minimization of the other one. This was recently
demonstrated by authors of [11] for a single-objective analysis in grid-connected and
stand-alone networks was made. In addition, they found that in the case of the objec-
tive function in (2), effectively, there is a conflicting behavior concerning the objectives
in (2) and (3), respectively.

iii. The set of constraints (5)–(11) is part of the linear affine and box-type constraints that
are part of the convex set of constraints, which implies that these do not require any
mathematical manipulation/approximation for convex optimization methods.

iv. The only constraint that it is nonaffine in the optimization model (1)–(11) is the power
balance constraint defined by (4) since it has multiple products between voltages
and currents variables per node. In this research, to obtain a convex approximation
of this set of equations, the McCormick approximation is used for the product of
two variables.

3. Proposed Solution Methodology

This section discusses the main characteristics of the proposed solution methodology,
which is based on a convex approximation of the economic/technical/environmental
day-ahead operation of PV plants in monopolar DC networks. In addition, a general
iterative solution approach is presented to minimize the errors introduced during the
convexification process.

3.1. Model Convexification

To obtain a linear equivalent formulation of the two variables, the McCormick ap-
proximation of two variables is implemented [27,28]. This approximation considers that
the product of two continuous variables f (x, y) = xy can be approximated as a linear
equivalent function with the structure of (19).

f (x, y) ≈ y0x + x0y− y0x0, (19)

where (x0, y0) is the linearization point. To illustrate the effect of the linearization method,
let us define the error function e(x, y) = 100(xy− y0x− x0y + y0x0), which is plotted in
Figure 2 considering that the linearizing point (x0, y0) = (1, 1).
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1.1 1.20.8
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Figure 2. Percentage of error between the exact and the linear approximation function for the product
of two variables.

Note that in the area of interest, i.e., in the neighborhood of (x0, y0), the maximum
estimation error between the exact and the approximated functions for the product of two
variables is about 4%, can be considered acceptable due to voltage regulation constraints,
this error will be lower since vmin and vmax are defined as 0.90 pu and 1.10 pu, which will
limit the movements of the voltage variable in the power balance constraint more.

Remark 1. Considering the linear approximation for the product of two variables in (19), the set
of power balance constraints in (4) can be approximated as an affine set of constraints with the
structure (20).

pcg
k,h + ps

k,h + ppv
k,h − pd

k,h = ∑
j∈L

Ajk

(
v0

k,hij,h + i0j,hvk,h − v0
k,hi0j,h

)
, {k ∈ N , h ∈ H} (20)

where v0
k,h and i0j,h are the linearizing points representing the initial values set for the voltage and

currents.

3.2. Iterative Solution Approach

To minimize the error introduced by the convexification approach using the Mc-
Cormick approximation for the product of two variables, we present an iterative counter
t to represent the current values of the model variables (xt) that serve to determine the
new values of these represented with t + 1, i.e., xt+1. The general convex approximation
model for the multi-objective problem of the optimal operation of PV plants considering
economic, technical, and environmental objective functions is presented in (21)

O.F.:

min Eloss = ∑
h∈H

∑
j∈L

rkm

(
it+1
j,h

)2
∆h,

min ECO2 = ∑
h∈H

∑
k∈N

(
γcg,k pcg

k,h + γs,k ps
k,h

)
∆h, (21)

min Ecosts = ∑
h∈H

∑
k∈N

(
Ccg

kWh pcg
k,h + Cs

kWh ps
k,h + Cpv

O&M ppv
k,h

)
∆h,
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s.t.:

pcg
k,h + ps

k,h + ppv
k,h − pd

k,h = ∑
j∈L

Ajk

(
vt

k,hit+1
j,h + it

j,hvt+1
k,h − vt

k,hit
j,h

)
, {k ∈ N , h ∈ H}

∑
k∈N

Aj,kvt
k = rjit

j,h, {j ∈ L, h ∈ H}

∑
k∈N

Aj,kvk
t+1 = rjit+1

j,h , {j ∈ L, h ∈ H}

pcg,min
k,h ≤ pcg

k,h ≤ pcg,max
k,h , {k ∈ N , h ∈ H}

ps,min
k,h ≤ ps

k,h ≤ ps,max
k,h , {k ∈ N , h ∈ H}

ppv,min
k,h ≤ ppv

k,h ≤ ppv,max
k,h , {k ∈ N . h ∈ H}

− imax
j ≤ it+1

j,h ≤ imax
j , {j ∈ L, h ∈ H}

vmin ≤ vt+1
k,h ≤ vmax, {k ∈ N , h ∈ H}

vt+1
k,h = vt

k,h = vnom, {k = slack, h ∈ H}

To recursively solve the approximated convex model (21) from the initial operative
point (21), the flow chart in Figure 3 is employed.

Start: Iterative
convex solution

Generation and
load inputs DC grid data

Make t = 0

Define vt
k,h = vnom

Find it
j,h with

∑k∈N Aj,kvt
k = rjit

j,h
{j ∈ L, h ∈ H}

Implement the
convex model (21)

Solve the opti-
mization model

using a convex tool

Present voltages
and powers

Evaluation
ends?

End: Result analysis

Solution report

Increase the t value,
i.e., t = t + 1

no

yes

Figure 3. Iterative solution approach for the convex approximation model in (21).
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To define if the iterative solution approach of the optimization model (21) presented
in Figure 3 converges to the optimal solution, the following stopping criterion is applied.

max
k∈N , h∈H

{∣∣∣vt+1
k,h || −

∣∣∣vt
k,h

∣∣∣∣∣∣} ≤ ε, (22)

where ε is the assigned tolerance, which takes a value of ε = 1× 10−8.

3.3. Multi-Objective Optimization Based on the Weight-Based Method

The weight-based optimization approach is implemented to obtain the Pareto front
for the optimization problem defined in (21). Due to the multi-objective behavior between
objective functions (1) and (2), and the objective functions (1) and (3), and the linear behavior
between objective functions (2) and (3), in this research, a bi-dimensional multi-objective
approach is implemented.

The general representation of the weight-based method for minimizing functions in
(21) is the following:

Objective function

min z = ω f1(x) + (1−ω) f2(x),

Subject to

h(x) = 0, (23)

g(x) ≤ 0,

ω ∈
[
ωmin, ωmax

]
,

x ∈
[

xmin, xmax
]
,

where f1(x) and f2(x) are two objective functions in conflict, ω is the weighing factor, z
is the weighted-based objective function under minimization, h(x) is the set of equality
constraints, g(x) is the set of inequality constraints, ωmin and ωmax are the lower and upper
bounds set for the weighting factor, typically between 0 and 1, and xmin and xmax are the
lower and upper bounds of the set of decision variables in the vector x.

Remark 2. Observe that if objective functions f1(x) and f2(x) are two convex functions, then, the
objective function z is also a convex function for ω ∈ [0, 1], with ω being a predefined constant
parameter. In addition, the solution of the weighted-based optimization model is carried out by
sweeping some values of the ω factor in its feasible interval.

4. Distribution Network under Analysis

To validate the iterative convex solution for the recursive convex modeling in (21) via
the flow diagram in Figure 3 considering the weighted-based multi-objective approach in
(23), we considered the IEEE 33-bus grid in its DC version, which is depicted in Figure 4.
It is worth mentioning that this test feeder was conditioned with information regarding
demand profile and PV generation for the Medellín municipality in Colombia, as reported
by the authors of [11].

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 4. Adaptation of the IEEE 33-bus grid for DC monopolar applications.

For this test feeder, the following characteristics are presented:
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i. The operative voltage in terminals of the substation is 12.66 kk, i.e., this is a medium-
voltage distribution network.

ii. The electrical configuration of the IEEE 33-bus grid is radial, i.e., the number of
branches is equal to the number of nodes minus one.

iii. Three PV plants are previously installed at nodes 12, 15, and 31, all with the capacity
of generating 2400 kW under nominal operation ratings.

All the parametric information related to loads and branches for this test feeder is
presented in Table 1.

Table 1. Network data regarding branches and loads.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 1.7114 200 85
8 8 9 1.0300 60 70
9 9 10 1.0400 60 55
10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 1.4680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 1.2890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 1.5042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 1.0590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

To emulate the expected behavior regarding generation and demand for the IEEE
33-bus grid, the information presented by the authors of [11] is considered to set these
parameters, which corresponds to the data for Medellín city. The percentage of demand
and the expected PV generation profiles are depicted in Figure 5.
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Figure 5. Graph of the electrical demand consumption and power generation with PV plants in
Medellín, Colombia.

5. Numerical Validations

Here are all the numerical results on the IEEE 33-bus grid in its DC version. For
this computational implementation, the MATLAB programming environment, version
2021b, was used on a PC with an AMD Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM
used running on a 64-bit version of Microsoft Windows 10 Single Language. The solution
of the recursive convex approximation (21) was reached in the convex disciplined tool
environment (known as CVX) for MATLAB using the SEDUMI and SDPT3 solvers.

The following simulation scenarios are considered to validate the effectiveness of the
convex optimization methodology in dealing with the problem of optimal operation of PV
plants in monopolar DC networks.

i. A comparative analysis with different metaheuristic optimization methods is pre-
sented using a single-objective minimization analysis.

ii. The construction of the Pareto fronts for the pairs technical-economic and environmental-
economic is presented.

Table 2 lists all the parameters to evaluate the objective functions. These data have
been adapted from [11].

Table 2. Parametrization of the objective function.

Parameter Value Unit

γcg 0.2671 kg/kWh
γs 0.1644 kg/kWh

Ccg
kWh 0.2913 USD/kWh

Cs
kWh 0.1302 USD/kWh

Cpv
O&M 0.0019 USD/kWh

5.1. Single-Objective Function Analysis

This section is considered a single-objective function analysis to demonstrate the
effectiveness of the proposed iterative solution methodology (ahead, ISM) in operating PV
plants in monopolar DC networks. For comparative purposes, four different optimization
algorithms from the family of metaheuristics optimizers recently reported by authors of [11]
are considered. These algorithms are the crow search algorithm (CSA), the particle swarm
optimizer (PSO), the multiverse optimizer (MVO), and the salp swarm algorithm (SSA). It is
worth mentioning that each one of these optimizers was evaluated 100 times to determine
their average behavior regarding the objective function minimization. Comparative results
between the metaheuristic optimizers and the proposed ISM are presented in Table 3.
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Table 3. Comparative analysis of the combinatorial methods with the proposed ISM.

Method Eloss (kWh/day) Ecosts (USD/day) ECO2 (kg/day)

Benc. Case 2186.2803 9776.3892 12,345.1497

CSA 1270.1562 7407.9046 9328.7685
PSO 1268.5973 7392.0432 9282.4081

MVO 1231.2531 7298.7157 9187.9682
SSA 1225.3323 7297.9712 9166.6746

ISM 1224.8548 7137.1822 8965.4072

The numerical results in Table 3 reveal that:

i. The best combinatorial optimization method corresponds to the SSA since it finds the
best numerical solution of each objective function when compared with the remainder
of metaheuristic optimizers. In the case of the energy losses minimization, it finds
a reduction of about 960.9480 kWh/day concerning the benchmark case; when is
minimized the total energy purchasing and operating costs, the reduction with the SSA
approach was about USD 2478.418 per day of operation. Finally, when it is minimized
the total emissions of CO2, the SSA approach reduces the objective function by about
3178.4751 kg/day.

ii. The CSA, PSO, and MVO found important reductions concerning the benchmark case
of each objective function minimization; however, they all stay stuck in locally optimal
solutions. Note that the minimum reductions with respect to each objective function
were provided by the CSA with values of 41.9033% (energy losses), 24.2265% (energy
costs), and 24.4337 (CO2 emissions). In contrast, the maximum reductions were found
with the SSA approaches, being these 43.9535%, 25.3511%, and 5.7467%, respectively.

iii. The proposed ISM found the best solution values for each objective function in the
single-objective function analysis, i.e., the globally optimal solution (these were cor-
roborated with the solution of the exact NLP model in the GAMS software [29]). When
energy losses are minimized, the daily reduction is about 961.4255 kWh/day, i.e.,
43.9754%. In the case of the minimization of energy purchasing costs, a reduction
of USD 2639.2070 per day of operation, i.e., a reduction of 26.9957%, was found. Fi-
nally, when the CO2 emissions are minimized, the ISM found a reduction of about
3379.74250 kg/day, corresponding to a reduction of 27.3771%.

iv When the SSA approach and the ISM are compared, it is observed that for each one
of the objective functions, the ISM finds better numerical reductions. These improve-
ments are 0.4775 kWh/day, USD 160.7790 per day of operation, and 201.2674 kg/day,
respectively. Nevertheless, the most important result in Table 3 is that owing to the
convex nature of the solution space and objective function in (21), the ISM always
finds the same objective function value for each one of the objectives; however, it is
not possible with each running of the SSA approach due to its random nature and
nonconvexity of the original NLP model (1)–(11)

To observe the effect of the McCormick approximation of the product between two
positive variables that allowed to obtain an approximated affine equivalent for the power
balance constraint (4) as presented in (20) is used Figure 6, where the convergence charac-
teristic of the proposed recursive convex optimization model considering the expected esti-
mation error and the number of solution to reach the desired tolerance (i.e., ε = 1× 10−8).

Note that the behavior in Figure 6 shows that: (i) the McCormick approximation
for each of the single-objective function analysis, including the benchmark case, reach
the expected convergence error after four iterations, i.e., it is possible to affirm that after
four iterations, the error introduced by the McCormick linearization is negligible, and the
solution of each objective function reaches the optimal value (see results in Table 3); (ii) the
convergence of the proposed recursive approximation methodology is quadratic, which
confirms the nature of the derivative-based approximation as the case of the McCormick
approximation (linear approximation of the product of two variables using Taylor’s series
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expansion) which in the Newton–Raphson case exhibits quadratic convergence (for more
details regarding the convergence of power flow methods, see reference [30]).
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Figure 6. Evolution of the error in the proposed recursive approximation method for the benchmark
case and the optimization of each single-objective function optimization.

To confirm that the solution of each objective function with the ISM is feasible, Figure 7
depicts the daily variation of the loadability of each distribution line. The loadability is
calculated as the current flow over the maximum thermal bound for each line in Table 1 at
each analysis period.
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Figure 7. Percentage of variation of the current at each distribution line at each period of analysis:
(a) current behavior in the benchmark case (no PV plants connected); (b) current behavior when
Eloss is minimized; (c) current behavior when Ecosts is minimized; (d) current behavior when ECO2 is
minimized.

The main characteristics in Figure 7 are that for the benchmark case, any distribution
line is operating with 100% of current transference capability as observed in Figure 7a,
and that there are some periods of operation where some distribution lines are loaded at
100%. This is the case of branch 30 when the minimization is applied to the daily energy
loss function (see Figure 7b). In the case of the energy purchasing costs minimization, the
lines that operate with 100% of loadability are 11, 14, and 30, as can be seen in Figure 7c.
While minimizing the amount of CO2 emissions, the saturated branches are 11 and 30 (see
Figure 7d). However, two main conclusions can be obtained from these plots: (i) all the
operative constraints in the optimization model are fulfilled, i.e., the final results in Table 3
are 100% feasible; (ii) the lines with saturation are distribution lines located directly in the
area of influence of the PV plants, which will have significant changes in their current flows
when the PV generation increases considerably.

5.2. Sensitivity Analysis

To evaluate the effect of the power generation variability and expected demand profile
in the expected behavior of the objective function values, here we present a sensitivity
analysis regarding possible variations from the PV generation sources from 75% to 105% of
energy availability in these sources by maintaining the demand curve fixed. In addition,
the generation curve is fixed by varying the expected demand consumption between 75%
and 105% of its nominal value. Table 4 presents the behavior of each objective function
when the single-objective function analysis is applied. It is essential to mention that for
demand increments higher than 105%, the studied problem is infeasible due to the thermal
constraints imposed by the conductors.
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Table 4. Sensitivity analysis regarding variations in the power generation availability and demand
behavior (all values are per day of operation).

PV
(%)

Eloss
(USD) ECO2 (kg) E costs

(USD)
Dem.
(%)

Eloss
(USD) ECO2 (kg) Ecosts

(USD)

75 1258.5109 9191.5059 7313.6805 75 664.1192 6130.7524 4889.5067
80 1250.0079 9134.9309 7269.5171 80 761.3790 6693.2993 5335.5873
85 1242.5269 9088.8165 7233.5176 85 865.8561 7257.2783 5782.8021
90 1235.8723 9047.5459 7201.2994 90 977.7199 7824.5048 6232.5675
95 1230.0092 9006.4100 7169.1879 95 1097.3414 8394.2082 6684.2826

100 1224.8548 8965.4072 7137.1822 100 1224.8548 8965.4072 7137.1822
105 1220.2060 8924.5361 7105.2808 105 1360.5354 9538.1184 7591.2792

The numerical results in Table 4 reveal that:

i. The effect of renewable generation availability on all the objective function values is
minimal since differences between generation availability between 75%, and 105%
are about 38.3049 kWh/day, 266.9698 kg/day, and 208.3997 USD/day. These small
differences are attributable to the fact that PV generations are optimally dispatched
without applying the maximum power point tracking point, i.e., that the energy used
from these sources is a function of the grid requirements. In addition, it can also
indicate that the size of the batteries is small, and these can not take advantage of the
total renewable energy resource available.

ii. As expected, the behavior of the demand profile has highly influenced all the objective
functions analyzed since the energy losses, generation costs, and greenhouse gas
emissions are a function of the total grid power consumption. Note that variations
of these objective functions when the PV generation is maintained at 100% and the
demand varies from 875% to 105% are 696.4162 kWh/day, 3407.3660 kg/day, and
2701.7725 USD/day.

The behavior of the ECO2 vs. Ecosts shows that the minimization of each one of these
objectives implies the minimization of the other one. This confirms that both objectives are
linearly dependent and are not in conflict. This is attributable to the fact that functions (2)
and (3) are linear functions of the power generation output in the substation terminal with
positive coefficients, which implies that the same combination of variables minimizes both
objectives simultaneously. More details regarding this behavior of ECO2 vs. Ecosts will be
discussed below.

5.3. Multi-Objective Analysis

In this section, the weighted-based multi-objective approach presented in (23) is
applied for pairs of objective functions. For constructing the Pareto front of each pair
of objective functions, the parameter ω sweeps between 0 and 1 in steps of 0.1. Figure 8
presents the Pareto front for the pair of objective functions Ecosts vs. Eloss, and ECO2 vs. Eloss.

The behavior of the Pareto fronts in Figure 8 shows that both Pareto fronts, i.e., Ecosts
vs. Eloss in Figure 8a and Ecosts vs. ECO2 in Figure 8b have the same behavior, i.e., the points
associated with the upright axis are the same in both fronts, there is only a modification of
the scale in the horizontal axis. This behavior in both fronts confirms that the Ecosts and the
ECO2 are functions that when one of them is minimized the other one is also minimized
as well.
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Figure 8. Pareto front for the conflicting objective functions: (a) Ecosts vs. Eloss, and (b) Ecosts vs. ECO2

Table 5 presents the values for all the market points in Figure 8a, which correspond to
the extreme values (points A and B), and the central values in the case of points C and D.

Table 5. Data of the market points for the Pareto front Figure 8a.

Point Eloss (kWh/day) Ecosts (USD/day) ECO2 (kg/day)

A 1248.7029 7137.1922 8965.4072
C 1235.5288 7227.4401 9081.1005
D 1229.1622 7293.2576 9165.4578
B 1224.5628 7420.4024 9328.3993

The numerical results in Table 5 show that:

i. The extreme point A represents the maximum value of the energy losses during the
daily operation with a value of 1248.7029 kWh/day, being the minimum value for the
energy purchasing costs and the CO2 emissions with values of USD /day 7137.1922
and kg/day 8965.4072, respectively. Note that these points are the optimal solu-
tion when the Ecosts and ECO2 are minimized using the single-objective analysis as
presented in Table 3 for the ISM approach.

ii. The extreme point B represents the minimum value possible for the total daily energy
losses reduction, i.e., 1224.5628 kWh/day, and at the same time, the maximum value
for the total grid operative costs and the greenhouse gas emissions, with values of
USD /day 7420.4024 and kg/day 9328.3993. Note that this point is the optimal solution
when the energy loss is considered in the single-objective function analysis (see Table 3
for the ISM approach).

iii. The difference between the extreme points A and B regarding each one of the objective
functions where kWh/day 24.1401, USD/day 283.2102, and kg/day 362.9921, per
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day of operation, which means that depending on the objective function selected
by the distribution company to operate each network, one of them will benefit to
the detriment of the others. However, if points C or D are selected as operative
points, these can balance the reduction in all the objective functions with adequate
minimization in all the objective functions with respect to their maximums.

6. Conclusions and Future Work

The problem of the efficient dispatch of PV plants in monopolar DC distribution
networks was addressed in this research using a convex approximation procedure. Three
objective functions were considered in the mathematical formulation: minimization of the
daily energy losses, energy purchasing combined with maintenance costs in PV plants, and
the total emissions of CO2. The convexification of the exact NLP model was made through
the McCormick equivalent of the product between two continuous variables. To reduce
the estimation error introduced by the McCormick approximation, an iterative solution
methodology was proposed by starting with plane voltages (equal magnitudes to the
substation bus) in all the network nodes. The main advantage of the proposed McCormick
approximation is that it ensures quadratic convergence to the global solution, which, as
expected, is based on derivatives that, as in the case of the Newton-based approaches,
converge quadratically in power flow problems in DC networks.

To validate the effectiveness of the proposed ISM, two simulations were evaluated in
the DC version of the IEEE 33-bus grid. The first simulation corresponded to the minimiza-
tion of each objective function individually. The second approach was the application of the
weighted-based optimization method to obtain the Pareto front for two pairs of functions
(Eloss vs. Ecosts) and (Eloss vs. ECO2 ). In addition, it was demonstrated that the pair Ecosts vs.
ECO2 is not a set of conflicting functions, i.e., the minimization of one of them also implies
the minimization of the other one. The main advantage of having a Pareto front is that
there is a set of possibilities for optimal operation of PV plants as a function of the interest
of the distribution company, which is not the case of the single-objective function analysis,
where the minimization of one of the objective functions will affect the expected reductions
in the other objective in conflict.

In the case of the single-objective function analysis, the proposed ISM demonstrated
that it could deal with the minimization of each objective function and finds the optimum
global value. Its efficiency was compared with multiple combinatorial optimizers. The
SSA approach was the most efficient metaheuristic approach; however, this algorithm
stayed stuck in locally optimal solutions compared with the proposed ISM. The common
characteristic between the single- and multi-objective function approaches is that the
extreme solutions in the Pareto front correspond to the optimal solutions in the single-
objective function analysis. These coincidences confirm that the ICS methodology can
effectively reach the best possible solution for the studied problem even if single- and
multi-objective approaches are implemented.

Sensitivity analysis regarding the variations in the PV generation availability and
expected demand consumption showed that in the former case, there are small variations
in all the objective function values, which means that the renewable energy availability is
enough to cover all the grid requirements if it is upper than 75%; however, the variations
in the demand profile, as expected, had important effects in the final objective function
values, which is explained by the fact that the energy losses is a square function of the total
consumption and the operating costs and greenhouse gas emissions are linear functions of
the load profile, respectively.

Possible future works derived from this research are the following: (i) a complete
comparative analysis between convexification techniques, i.e., second-order cone program-
ming, semidefinite programming, and recursive convex methods; (ii) the extension of the
proposed ISM to the operation of monopolar DC networks with different renewable gener-
ation sources and battery energy storage systems; (iii) the inclusion of uncertainties in the



Energies 2023, 16, 976 19 of 20

generation and demand profiles using robust convex optimization; (iv) the improvement of
the battery modeling to include aging-aware degradation characteristics in these elements.
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