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Abstract. A weighted average current control applied to a three-phase inductor-capacitor-
inductor grid-connected battery charger for electric vehicles is presented in this paper. The
proposed controller is based on a combination of the partial currents of the system (inverter
and grid currents), which are feedback into the control loop. Therefore, by using this approach
a reduction of the system order is achieved. The proposed controller allows a bidirectional
control of the converter currents, thus allowing both, a controlled charge of the battery and the
injection of the current with low distortion in the grid. Further, the implemented controller does
not needs to measure the inverter currents. The control strategy is validated with simulation
results.

1. Introduction
In recent years, interest in electric vehicles (EV) has increased because they constitute a very
efficient alternative to reduce greenhouse gases produced by internal combustion vehicles. EV
use electric energy for their operation, which is supplied by an on-board battery bank (BB). The
BB can be recharged through a grid-connected battery charger (BC) which can be on-board or
off-board [1–4].

The off-board BC, also known as charger stations, constitute the key to supply energy to EV
in public areas and in a short time. A possible configuration for a BC is a three-phase inverter
connected to the grid through a proper filter. It is also desirable that this system be able to
work with bidirectional power flow [5–8].

The filters for grid connection can be inductive (L-filter) or a combination inductor-capacitor-
inductor (LCL-filter), among others. The use of LCL filters is growing in last years due to they
allow a better attenuation of the harmonic current content. Nevertheless, the use of LCL filters
increase the system order, while they are susceptible to interferences and resonance effects. To
solve these problems advanced control strategies should be considered [9–12].

In this work, a control strategy for a three-phase BC connected to the grid through an LCL
filter is presented. Due to the high order of the system (ninth-order), a weighted average current
control (WACC) is proposed with the objective of reducing the order through the feedback of the
sum of the partial inverter and grid currents [10,13,14]. Also, by a combination of the dynamic
equations, a reduction of the needed measurements is achieved and only the grid currents and
grid voltages should be measured for the implementation of the controller.
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Due to the aforementioned advantages, this proposal aims to contribute to the development
of charging infrastructure for EVs both locally and globally, to solve the energy problems that
may be generated when several VEs are connected to the existing power electrical system,
contributing also to the reduction of the environmental pollution. The control strategy is
validated with simulation results using a realistic model of the system.

2. Weighted average current control for a three-phase battery charger with
inductor-capacitor-inductor filter

2.1. Modeling of the voltage source converter
The studied system, shown in Figure 1, is composed of a three-phase inverter connected to the
grid through an LCL filter with a DC-Link connected to the battery bank. The dynamic of the
system in Equation (1), is obtained using the abc to dq transformation.
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Figure 1. Grid connected LCL three-phase inverter.

Lf
d ifdq
dt

= − (Rf + ωdqJLf ) ifdq − ucdq + vdcmdq,

Lg
digdq
dt

= − (Rg + ωdqJLg) igdq + ucdq − egdq, (1)

Cd
ucdq

dt
= −ωdqJCucdq + ifdq − igdq,

where ifdq and igdq are the inverter and grid currents vectors, respectively, ωdq is the reference
frame frequency, J is an anti-symmetric matrix, ucdq is a vector with the capacitor voltages, edq
is a vector with the grid currents, Rg and Rf represent the resistive losses in the inductor filter,
Lf y Lg are the inductances of the filter and finally mdq is a control signals vector.

2.2. Weighted average current control
The proposed WACC for the three-phase BC connected to the grid through an LCL filter allows
an order reduction in the system dynamics, thus transforming a ninth-order system into a first-
order one. This controller also allows increasing the bandwidth of the system response and the
control loop gain. With this method, the weighted value of the currents is obtained through a
sum of the equations that govern the system dynamics in dq coordinates.

By defining an average factor as
Lf

Lf+Lg
and

Lg

Lf+Lg
for the currents ifdq and igdq respectively,

it can be obtained a current iwa which is the average of the circulating currents in the inductors
of LCL filter. Thus, this control strategy is named WACC. In this way, the weighted average
current is defined as in the Equation (2).

i(t)wadq =
Lf i(t)fdq
Lf + Lg

+
Lg i(t)gdq
Lf + Lg

. (2)
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If the Laplace transformation is applied to Equation (1), the combination defined by Equation

(2) is performed and k =
Rf

Lf
=

Rg

Lg
is defined, the weights for the currents are obtained as in the

Equation (3).

(s + k)

(
LfI(s)fd + LgI(s)gd

(Lf + Lg)

)
=

ωdq (LfI(s)fq + LgI(s)gq)

(Lf + Lg)
+

mdV (s)dc − e(s)gd
(Lf + Lg)

,

(3)

(s + k)

(
LfI(s)fq + LfI(s)gq

(Lf + Lg)

)
=
−ωdq (LfI(s)fq + LgI(s)gq)

(Lf + Lg)
+

mdV (s)dc − e(s)gq
(Lf + Lg)

.

By renaming the terms of Equation (3), the equations of weighted average currents results
in Equation (4).

(s + k) I(s)wadq =

Vdc

[
mdq +

(Lf+Lg)
Vdc

ωdqJ I(s)wadq −
e(s)gdq
Vdc

]
(Lf + Lg)

. (4)

For a simplification in the analysis and design of Equation (4) a new variable m
′
dq is defined

Equation (5).

m
′
dq = mdq +

(Lf + Lg)

Vdc
ωdqJ I(s)wadq −

e(s)gdq
Vdc

, (5)

Thus, by replacing Equation (5) in Equation (4) results Equation (6).

(s + k) I(s)wadq =
Vdc

(Lf + Lg)
m

′
dq. (6)

These considerations allow finding in the Equation (6) a first-order transfer function that
simplifies the control design, Equation (7).

G(s)wadq =
I(s)wadq

m
′
dq

=
Vdc

s(Lf + Lg) + (Rf + Rg)
. (7)

In Figure 2 a scheme of the proposed control strategy is presented, where iwadq are the
feedback of the averaged currents and i∗wadq are the desired values. The controllers are

proportional-integral (PI) realizations, Gpi = Kp(s + Ki
Kp

)/s, whose parameters are designed

using a root-locus method.
For the implementation of the proposed controller the value of mdq (see Equation (8)) is

obtained from the Equation (5) (see Figure 2).

mdq = m
′
dq −

(Lf + Lg)

Vdc
ωdqJI(s)wadq +

egd
Vdc

. (8)

To become independent of the measurement of ifabc, a combination of the system equations
is performed, obtaining ifdq as functions of igdq and egdq. Then, from Equation (1) results
Equation (9).
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I(s)fd = (s2CLg + sRg − ω2
dqCLg + 1)I(s)gd + (2sωdqCLg + ωdqCRg)I(s)gq

+sCe(s)gd + ωdqCe(s)gq,

(9)

I(s)fq = −(2sωdqCLg + ωdqCRg)I(s)gd + (s2CLg + sRg − ω2
dqCLg + 1)I(s)gq

+ωdqCe(s)gd + sCe(s)gq.
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Figure 2. Scheme of the proposed WACC.

2.3. Simulation results
The desired specifications for the system are: settling time, ts < 0.02 s and maximum overshoot
OS% 5 20% . The desired performance is achieved with KP = 0.0013579 and Ki = 2.1145299.
The proposed control strategy was validated through simulation tests using SimPowerSystem
from Matlab. The system parameters are: grid voltage vLLrms = 155 V, battery voltage Vdc =
400 V and the LCL filter parameters Lf = 1.25e−3H, Lg = 0.625e−3H, Rf = 0.2 and Rg = 0.1.

Through the control of the battery current (see Figure 2), from Equation (10) and Equation
(11), the reference of the grid current is calculated. By replacing igd and igq by i∗gd and i∗gq in

Equation (9), respectively, i∗fdq is obtained. With the current references and Equation (2), i∗wadq

is obtained.

P =
3

2
(igdegd + igqegq) , Q =

3

2
(igdegq − igqegd) . (10)

P =
3

2
(igdegd) = IbatVDC −→ igd =

2

3

IbatVDC

egd
, igq = 0. (11)

Figure 3(a) shows the battery current in this case. It can be observed that ibat goes from a
negative value (charge of the battery) to a positive value (discharge of the battery). The change
is produced at 0.2 s and the system begins to inject current into the grid at this moment. In
Figure 3(b) the current and voltage of phase a are shown. Before the change (0.2 s) the phase
between voltage and current is 180◦ and after the change it is 0◦. In Figure 3(d) the state
of charge of the battery is shown, while Figure 3(e) shows the grid current in dq coordinates.
Finally, in Figure 3(c) and Figure 3(f) the total harmonic distortion (THD) for both states
(charge and discharge) is presented. As can be see, in both cases the obtained THD is below of
the standard limits (5%).



II Workshop on Modeling and Simulation for Science and Engineering (II WMSSE)

Journal of Physics: Conference Series 1448 (2020) 012013

IOP Publishing

doi:10.1088/1742-6596/1448/1/012013

5

0.1 0.15 0.2 0.25 0.3 0.35
Time[seg]

-20

-10

0

10

C
ur

re
nt

s[
A

]

i
bat

i*
bat

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time[seg]

40

60

80

100

S
O

C
[%

]

0.1 0.15 0.2 0.25 0.3 0.35
Time[seg]

-200

0

200

[V
]/[

A
] e

ga

i
ga

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time[seg]

-100

-50

0

50

C
ur

re
nt

s[
A

]

i
gd

i
gq

0 5 10 15 20 25 30
harmonic

0

0.05

0.1

A
m

pl
itu

de Battery charge

0 5 10 15 20 25 30
harmonic

0

0.05

0.1

A
m

pl
itu

de grid injection

a)

b)

c)

e)

d)

f)

Figure 3. Simulation results of the three-phase charging station. (a) Battery current, (b)
current and voltage of phase a, (d) the state of charge of the battery, (e) grid current in dq
coordinates, (c) and (f) THD.

3. Conclusions
In this work, a WACC control for three-phase battery charger with LCL filter (charger station
for electric vehicles) was presented. The proposed control allows a reduction of the system
order resulting in a first-order one which simplifies the control design, thus allowing the use
of the classic PI controllers. It also allows to increase the bandwidth and the controller gains,
achieving a better performance. Working with the systems equations, the measure of the inverter
currents was avoided, being only necessary the measurement of the grid voltages and currents for
implementing the controller. The performance of the controller was validated through simulation
tests, which showed the correct performance for both stages, charging and discharging the
battery. The THD of the grid current in both stages was maintained below the standard limits.
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