
Results in Engineering 16 (2022) 100654

Available online 24 September 2022
2590-1230/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Application of the arithmetic optimization algorithm to solve the optimal 
power flow problem in direct current networks 

Jhon Montano a,*, Oscar Daniel Garzón b, Andrés Alfonso Rosales Muñoz c, 
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A B S T R A C T   

This article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) 
networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master- 
slave methodology solves the OPF problem in two stages: the master stage estimates the solution to the OPF 
problem considering its constraints and variables, and the slave stage assesses the fitness of the solution proposed 
by the master stage. To validate the methodology suggested in this article, three test systems cited multiple times 
in the literature were used: the 10, 21 and the 69 nodes test systems. In addition, three scenarios varying the 
allowable power limits for the Distributed Generators (DGs) are presented; thus, the methodology explores so-
lutions under different conditions. To prove its efficiency and robustness, the solution was compared with four 
other methods reported in the literature: Ant Lion Optimization (ALO), Black Hole Optimization (BHO), the 
Continuous Genetic Algorithm (CGA), and Particle Swarm Optimization (PSO). The results show that the 
methodology proposed here to reduce power losses presents the best solution in terms of standard deviation.   

1. Introduction 

Microgrids are defined as micro- and macro-scale systems that can 
operate with both Alternating Current (AC) and Direct current (DC) in 
isolated systems or connected to a power grid. Their implementation in 
DC networks is well-known because they can be used to integrate 
distributed energy resources [1]. Non-conventional energy sources are 
one of the most important resources nowadays because they reduce CO2 
emissions significantly by decreasing the production of electric power 
from fossil fuels. Due to the relevance of DC networks today, the sci-
entific community has identified the need to study ways to improve their 
technical-economical aspects and increase their efficiency [2,3]. As a 
result, it has been found that integrating Distributed Generators (DGs) 
into DC networks can improve their behavior and performance consid-
erably—which is known as Optimal Power Flow (OPF) and can be used 
to study and optimize several network-related problems. However, some 
of their most frequent technical operating difficulties are electric power 

losses, CO2 emissions, network operating costs, and out-of-limit voltage 
profiles and current [4–6]. An overview of DC networks and the OPF is 
presented below. 

1.1. DC networks and the power flow problem 

Due to the progress made and the results obtained in power elec-
tronics, it is possible to transmit and distribute energy as direct current 
[7]. DC networks have advantages over their alternating current coun-
terparts, e.g., phasors and reactive components; hence, they make it easy 
to calculate their characteristic power variables. They also eliminate the 
use of AC/DC converters, thus reducing power losses by conversion 
[8–10]. 

DC networks are usually composed of one slack generator (some-
times two), distribution lines, constant power loads, distributed gener-
ators, and power storage devices [11,12]. To design them, after the DC 
network and its components have been determined, it is necessary to 
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establish the amount of power that DGs should inject into the grid to 
improve network operation and thus obtain economic, operating, 
technical, and environmental benefits [7]. The objective of OPF is to 
improve the objective function set by the network operator. Here, the 
objective function is the reduction of power losses (Ploss) associated 
with power distribution considering that it has been widely used in the 
specialized literature, according to a state-of-the-art review [13]. 

1.2. The OPF problem in DC networks: state of the art 

Multiple investigations have focused on the OPF problem in DC 
networks in recent years. They have proposed solutions such as the 
implementation of algorithms based on commercial software and 
sequential programming models using optimization techniques and 
numerical methods. The optimal power value that DGs in a network 
should inject to comply with regulations and to minimize power losses 
can be determined employing these solutions [14]. 

Regarding the OPF solution methodology using commercial soft-
ware, in Refs. [15–17], the objective function is to minimize power 
losses associated with power distribution. Due to the solution method-
ology used in this paper, it is not possible to replicate the ones proposed 
by those authors because they used commercial software. In Ref. [15], 
the convex relaxation method based on second-order conic program-
ming is used by means of MOSEK, which is commercial software. In that 
paper, the OPF problem is solved for a 16-bus DC network considering 
processing times and standard deviation. In Ref. [16], sequential convex 
programming is used to solve the OPF problem for 10- and 21-bus test 
systems considering processing times but not standard deviation. In 
Ref. [17], GAMS/CONOPT and the continuous genetic algorithm are 
used to assess the OPF problem for a 10-bus test system, comparing the 
solution obtained by the proposed methodology and the one obtained by 
GAMS; however, the processing times and the standard deviation are not 
considered. The cited studies used commercial software and small DC 
networks (10, 16, and 21 buses); thus, it is not possible to establish the 
robustness of those methodologies. Besides, they did not consider the 
currents flowing through the power lines, the worst voltage in the sys-
tem, and other parameters necessary to establish network performance. 

Aiming to promote the use of open source software and eliminate the 
use of its commercial counterpart, new sequential programming 
methods based on optimization algorithms and numerical methods have 
been suggested to solve the OPF problem; for instance, in Refs. [18–20]. 
These techniques implement a master-slave solution methodology, 
where the optimization algorithm is the master stage, and a numerical 
method selected to solve the power flow problem is the slave stage. In 
Ref. [18], the multiverse optimization algorithm is used as the master 
stage, and Successive Approximation (SA) as the slave stage. That paper 
proposes a solution to the OPF problem for the 21- and 69-bus test 
systems, considering the currents flowing through the lines but dis-
regarding processing times. In Ref. [19], the sine cosine algorithm is 
proposed as the master stage; and SA, as the slave stage. In that article, 
the solution to the OPF problem is proposed only for the 21-bus system, 
the currents flowing through the lines are not considered, and the pro-
cessing times and standard deviation obtained by the optimization al-
gorithms are disregarded. In Ref. [1], the authors propose a master-slave 
methodology combining the Ant Lion Optimization (ALO) algorithm and 
SA to solve the OPF problem in 21- and 69-bus systems, considering 
processing times but disregarding the standard deviation. Some of the 
articles that suggest the use of open source software do not analyze the 
computation time required by the methodologies; then, it is not possible 
to determine the methodology’s performance. Also, among the cited 
papers, tuning is performed in only one, i.e., [18]; therefore, the tech-
niques are not implemented under the same operating conditions. 

After the state-of-the-art review above, we conclude that new tech-
niques should apply sequential programming and encourage the use of 
open source software to solve the OPF problem. Additionally, new 
studies should detail the tuning of the techniques that produce high 

quality solutions and low processing times, as well as the standard de-
viation of the optimization algorithms and the currents flowing through 
the lines, which were not considered in some studies. 

Hence, this paper proposes a new optimization technique based on a 
master-slave methodology where the master stage uses the AOA and the 
slave stage is performed by the SA. This methodology proposes a solu-
tion for the 21- and 69-bus test systems with distributed generation of 
20%, 40%, and 60% of the power provided by the slack generator. The 
solution quality, processing time, and robustness of the solution meth-
odology are thoroughly analyzed. 

1.3. Scope and contributions 

This document addresses the OPF problem from the viewpoint of 
sequential programming methodologies, thus avoiding the use of com-
mercial software, and proposes the application of the AOA combined 
with SA. The purpose is to generate a highly effective hybrid method-
ology in terms of quality and time. The following are the main contri-
butions of this paper to the state of the art:  

● A new application for the arithmetic optimization algorithm.  
● A new master-slave methodology that solves the OPF problem in DC 

networks.  
● Better results (in terms of quality, repeatability, and computation 

times) than those of other methodologies that have been imple-
mented to solve the OPF problem in DC networks. 

1.4. Structure of the article 

This paper is organized as follows. Section 2 presents the mathe-
matical formulation of the OPF problem in DC networks, where the 
objective function is the reduction of power losses associated with power 
distribution considering all the constraints of DC networks in a distrib-
uted generation environment. Section 3 introduces the proposed opti-
mization technique to solve the OPF problem applying a master-slave 
methodology that combines the AOA and SA. Section 4 details the 
optimization algorithms that are compared with the proposed solution 
methodology, as well as the test systems used to perform the simula-
tions. Section 5 reports the results obtained by the optimization algo-
rithms for the 10, 21 and 69 nodes test systems at different percentages 
of distributed power penetration. Finally, Section 6 draws the conclu-
sions and suggests future research. 

2. Mathematical formulation 

The state-of-the-art review above shows that the solution to the OPF 
problem is related to the power flow and the constraints set by the 
network operator [21]. Once they are established, it is possible to 
determine the stability of the system, the current congestion in the lines, 
and the power losses, among others. Thus, in this case study, the power 
losses are the variable of interest, and the objective function is to 
minimize them. The equations that compose the objective function and 
the OPF constraints are presented below. 

2.1. Objective function 

The objective function is defined as a specific problem to be solved or 
minimized by applying an optimal flow. This paper addresses the 
reduction of power losses in a DC network. 

minPloss = vT GLv (1) 

In Equation (1), Ploss represents the function to be reduced, that is, 
the power losses in the system as a function of v, which is a vector 
containing all the voltage profiles calculated using the load flow; and GL 
is the matrix that represents the conductivity effects of each line. 
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2.2. Constraints 

This subsection details the set of equations that represent the con-
straints of the OPF problem. They refer to the technical and operational 
issues that should be considered to obtain an optimal and viable solution 
to the OPF problem. These equations and their details are presented 
below: 

Pg + PDG − Pd = D(v)[GL +GN ]v, (2)  

Pmin
g ≤ Pg ≤ Pmax

g , (3)  

Pmin
DG ≤ PDG ≤ Pmax

DG , (4)  

vmin ≤ v ≤ vmax, (5)  

Iij ≤ Imax
ij , (6)  

1T(PDG − αPg) ≤ 0, (7) 

The mathematical interpretation of Equations (2)–(7) is the 
following. In Equation (2), the main factors, Pg, PDG, and Pd, are the 
power generated by the slack node, the power supplied by the DGs, and 
the power demanded by the network nodes, respectively. This equation 
expresses the power balance of the network. In Equation (2), D(v) is a 
positive symmetric matrix whose diagonal contains the nodal voltages of 
the system, while GL and GN represent the inductive and resistive com-
ponents of the microgrid lines, respectively. Equations (3) and (4) 
contain Pmin

g and Pmax
g , which denote the minimum and maximum power 

that the slack node can supply to the network. Likewise, Pmin
DG and Pmax

DG 
define the minimum and maximum power that the DGs can supply. 
Equations (3) and (4) determine and limit the power to be injected into 
the microgrid, both the power coming from the main generator located 
in the slack node and that supplied by the DGs, in such a way that there 
are no power losses due to over injection. Equation (5) includes vmin and 
vmax, which define the maximum and minimum allowable voltage. This 
constraint ensures that the voltages resulting after power injection 
comply with voltage regulations, avoiding sags and swells that desta-
bilize the system. One of the limits that facilitate a stable system is 
Equation (6) because it contains the current flowing through the lines, 
Iij, which must be lower than Imax

ij . Finally, Equation (7) defines the 
maximum penetration of DG, where α represents the allowable per-
centage of penetration with respect to the power generated by the slack 
node. 

3. Proposed methodology 

The equations introduced in Section 2 represent the objective func-
tion and the constraints of the OPF problem. From the state of the art in 
Subsection 1.2, we conclude that, to address this problem, it is necessary 
to analyze the behavior of OPF methods. Therefore, since it involves 
power flows, the OPF problem is non-linear-non-convex, and it is 
necessary to use numerical methods and metaheuristic techniques to 
solve it. This article presents an optimization algorithm that solves the 
OPF problem in two stages. First, the master stage is carried out using 
the AOA proposed in Ref. [22]. Second, in the slave stage, SA is used to 
solve the power flow [23], and the proposed objective function is 
evaluated. In this master-slave methodology, the problem is solved in 
two stages that operate together. The two methods, the AOA and SA, 
were selected for this study based on the excellent results of each method 
independently, according to the literature reviewed above. 

3.1. Master stage: arithmetic optimization algorithm 

The AOA is a technique inspired by the distribution behavior of the 
main arithmetic operators in mathematics, which is based on the 

principles of modern mathematics, geometry, and algebra. Arithmetic 
uses the four basic mathematical operations (i.e., addition, subtraction, 
multiplication, and division) to study numerical methods employed to 
solve any problem using mathematical optimization. In other words, the 
AOA is useful to establish the best solution to an optimization problem 
by generating a population and using arithmetic operators hierar-
chically according to the domain of the optimization algorithms. This 
gives the AOA the possibility of creating a population (with a search 
space) that applies two fundamental strategies: exploration and 
exploitation. In the former, search agents expand the search space to 
solve a specific problem while avoiding local solutions. In the latter, they 
improve the accuracy of the solutions obtained in the previous phase. 
Therefore, these two search mechanisms (Fig. 1) use the arithmetic 
operators hierarchically as follows: Division (D “÷“), Multiplication (M 
“*“), Subtraction (S” − “), and Addition (A” + ”). The next subsection 
presents the phases of computational development and those used here 
to solve the OPF problem implementing the AOA. 

3.1.1. Generation of the initial population 
Equation (8) is used to create the initial population (Xi(i,j)), where 

each Xi in the population represents a possible solution to the problem. 
Subscript i in the initial population denotes the i-th individual, and 
subscript j is the j-th dimension of the problem that denotes each i 
element. In the OPF problem, each individual generated in the different 
dimensions represents an amount of power to be injected by the DGs into 
the DC network. Each individual has a value given within the solution 
space and limited by the technical constraints of the problem. The value 
is a result of implementing upper (ub) and lower (lb) bounds assigned to 
the dimensions of the problem, which correspond to the maximum and 
minimum power level assigned to each generator in the OPF problem. 
The first population is generated from random values (rand) in the [0 −
1] range to explore larger regions in the search space. They are multi-
plied by the difference between the limits, thus allowing a greater dis-
tribution of individuals within the search space. 

Xi(i,j) = ((ub − lb) ∗ rand ) + lb (8) 

The previous equation determines the values of individuals i in 
dimension j. To create the entire population of individuals Xi, we pro-
pose a size nxd matrix, where n represents the number of individuals as 
viable solutions to the problem, and d represents the number of vari-
ables. In Equation (9), Xn is the n-th individual in matrix MXi. In the OPF 
problem, the total number of columns d is the number of DGs in the DC 
network (other than the slack node), and the value in each column is the 
power they inject into the network. 

Fig. 1. Hierarchical order of arithmetic operators.  
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MXi =

⎡

⎢
⎢
⎢
⎢
⎣

Xi1,1 Xi1,2 ⋯ ⋯ Xi1,d
Xi2,1 Xi2,2 ⋯ ⋯ Xi2,d

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

Xin,1 Xin,2 ⋯ ⋯ Xin,d

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

Xi1
Xi2
⋮
⋮

Xin

⎤

⎥
⎥
⎥
⎥
⎦

(9)  

3.1.2. Calculation of the objective function 
The slave stage evaluates the objective function of each individual 

(fitness function) and then assesses the impact of the viable solutions 
contained in MXi. Each value is stored in a nx1 matrix called MOXi, and 
the losses in the power injected by each DG are calculated (see Equation 
(10)). In the OPF problem, each individual generated in the search space 
and assigned to each Xi is evaluated and the values of the variables for 
each possible solution are obtained. 

MOXi =

⎡

⎢
⎢
⎣

f
( [

X1,1,X1,2,…,X1,d
] )

f
( [

X2,1,X2,2,…,X2,d
] )

⋮
f
( [

Xn,1,Xn,2,…,Xn,d
] )

⎤

⎥
⎥
⎦ (10) 

The individuals with the best solution in the MOXi matrix (i.e., lowest 
power losses) are selected as the incumbent solution. Then, the objective 
function is stored in Equation (9), and the configuration of its variables 
during the iterative cycle are stored in Equation (10). To establish the 
best solution at the current iteration, this study proposes comparing the 
solutions stored in the solutions vector given by the objective function. If 
a better solution than the incumbent is obtained at a certain iteration, 
the Best_Fob and Best_Xi values are updated. In Equation (12), Best_Xi is a 
vector of 1xd, and a denotes the individuals that represent the best 
objective function at each iteration. 

Best_Fob =
[
f
(
Xi1,d

) ]
(11)  

Best_Xi = [Xa] (12)  

3.1.3. Exploration and exploitation phases 
The AOA applies an iterative process using arithmetic operators ac-

cording to the phase: exploration and exploitation (i.e., the movement 
method of the optimization technique). The exploration phase uses the 
Division (D) and Multiplication (M) operators, which obtain decision 
values under a high dispersion rate and compromise the exploitation 
phase. Note that operators D and M cannot easily approach a feasible 
solution due to their high dispersion, unlike Addition (A) and Subtrac-
tion (S), which are used in the exploitation phase and can easily 
approach a feasible solution. A and S can be used to start each search 
phase, which depends on a starting point obtained by calculating 
Equation (13), also known as the Math Optimizer Accelerated (MOA). In 
other words, exploration and exploitation are used to generate all the 
new individuals in the iterative process in each particle and dimension 
of the problem. 

MOA = Min + Cont ×
(

Max − Min
Maxiter

)

(13) 

This equation determines which phase will be executed in the iter-
ative process in the AOA (i.e., exploration or exploitation). Here, Cont 
denotes the current iteration, ranging from an initial value of 1 to the 
maximum number of iterations, i.e., Maxiter. The value defined as the 
minimum of the accelerated function (Min = 0.2) and the maximum 
value (Max = 1) enable the MOA to determine a value to compare it with 
a random value, i.e., r1. The process advances as follows: if (r1 < MOA), 
the exploration phase is used; otherwise, the exploitation phase is 
employed. The two phases are described below:  

● Exploration phase: It uses D and M to conduct a stochastic search. 
These two operators, which are its main search strategies, are 
modeled in Equation (14). 

Xi(i,j) =

⎧
⎪⎨

⎪⎩

Best_Xi × MOP ×
( (

ub(1,j) − lb(1,j)
)
× μ + lb(1,j)

)
r2 < 0.5

Best_Xi
(MOP + ε) ×

( (
ub(1,j) − lb(1,j)

)
× μ + lb(1,j)

)
r2 > 0.5

(14) 

This equation depends on a random value, r2, in the [0 − 1] range. 
This value allows determining the phase to be used, that is, if (r2 < 0.5), 
the M operator is used. Therefore, the exploration phase is based on 
Equation (14), using the individuals (Best_Xi) who provided the best 
solution so far employing the Math Optimizer Probability (MOP), the 
upper bounds (ub), lower bounds (lb), and a fixed value (μ = 0.5), which 
is a parameter to control the search fitness. If the opposite occurs (i.e., r2 
> 0.5), the D operator will be implemented using the best individuals, 
the upper and lower bounds, the MOP, and a parameter ϵ = 2.2204e− 16. 

MOP = 1 −
cont1/α

Maxiter1/α (15) 

In Equation (15), MOP is a coefficient expressed as the value of the 
function at the present iteration, the maximum number of iterations, and 
a parameter α = 5 that determines the accuracy of the exploration phase 
throughout the iterative process [22]. 

● Exploitation phase: This search phase uses Addition (A) and Sub-
traction (S) to take advantage of the search space because these 
operators make it easy to approach a solution due to the low 
dispersion of their search mechanism. Thus, the aim of the exploi-
tation phase is to determine the most optimal solution (among the 
given solutions) at each iteration using Equation (16). 

Xi(i,j) =
{

Best_Xi × MOP +
( (

ub(1,j) − lb(1,j)
)
× μ + lb(1,j)

)
r3 < 0.5

Best_Xi × MOP −
( (

ub(1,j) − lb(1,j)
)
× μ + lb(1,j)

)
r3 > 0.5

(16) 

This equation, like the exploration phase, depends on a random 
value, r3, in the [0 − 1] range. If (r3 < 0.5), S is used to perform the 
exploitation based on Equation (16). The latter uses the individuals who 
provided the best solution obtained so far (Best_Xi) employing the MOP, 
the addition of upper bounds (ub), lower bounds (lb), and parameter μ. If 
(r3 > 0.5), R is used following the same process, but doing a subtraction. 

Once the phase to be used is determined and it is applied to the 
current iteration, the position of each individual in the iterations is 
updated, making sure they respect the constraints of the problem; in this 
case, not exceeding the power values set for the DGs. Subsequently, 
MOXi is updated by assessing the new individuals according to the 
objective function and updating the incumbent problem at each itera-
tion. This process is repeated until the stopping criteria established for 
this problem are met. 

3.1.4. Stopping criteria 
The two stopping criteria used in the master stage are described 

below:  

● The master stage will end after n consecutive iterations if the 
incumbent of the problem is not updated. That is, the iterative pro-
cess ends when the objective function reaches a considerable number 
of iterations (a non-improvement counter) without finding a better 
solution to the problem.  

● The computation ends when the optimization algorithm reaches the 
maximum allowable number of iterations, which is controlled by a 
counter in the algorithm. 

The iterative process in Algorithm 1 is presented below to help 
readers understand the proposed AOA-SA solution methodology. 
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Algorithm 1 
Hybrid AOA-SA optimization algorithm  

1:Load system data 
2:Initialize the parameters of the algorithms 
3:Generate initial population of individuals (MXi)

4:Calculate adaptation function employing slave stage (MOXi)

5:Select the incumbent solution (Best_Fob)
6:Select the best individuals (Best_Xi)
7:Initialize P, Max, and Min parameters 
8:while Cont ≤ Maxiter do 
9: Initialize MOP view (15) 
10: Initialize MOA view (13) 
11: for (i = 1 : Size(Xi)) do 
12: for (j = 1 : Dim) for dimension of the problem do 
13: r1 = rand [0 − 1] 
14: if r1 < MOA then 
15: r2 = rand [0 − 1] 
16: if r2 < MOA then 
17: Xi(i,j) = Best_Xi× MOP×

( (
ub(1,j) − lb(1,j)

)
× μ + lb(1,j)

)

18: else 

19: Xi(i,j) =
Best_Xi

(MOP + ε)×
( (

ub(1,j) − lb(1,j)
)
× μ + lb(1,j)

)

20: end if 
21: else 
22: r3 = rand [0 − 1] 
23: if r3 < 0.5 then 
24: Xi(i,j) = Best_Xi× MOP+

( (
ub(1,j) − lb(1,j)

)
× μ + lb(1,j)

)

25: else 
26: Xi(i,j) = Best_Xi× MOP −

( (
ub(1,j) − lb(1,j)

)
× μ + lb(1,j)

)

27: end if 
28: end if 
29: end for 
30: end for 
31: Calculate adaptation function by means of SA 
32: Update incumbent solution 
33: Cont = Cont + 1; 
34:end while  

3.2. Slave stage 

The slave stage assesses the fitness of the solution suggested by the 
master stage and solves the power flows to determine if the suggested 
power injections for the DGs are adequate. The slave stage—in which 
the objective function is evaluated—should be fast, accurate, and 
effective because optimization algorithms should be efficient. 

This paper suggests solving the OPF problem using an iterative 
method based on SA [23], which was selected due to the convergence of 
its solution and its short processing time. This method is based on the 
following equation: 

Gdd⋅vd = − D− 1
d (vd)Pd − Gdg⋅vg (17)  

where Gdd is a positive symmetric matrix containing all the conductivity 
effects of the distribution lines; vg, the voltage profile of the slack node; 
and vd, the voltage at demand nodes. Through a mathematical devel-
opment applied to Equation (17), it is possible to get a new equation and 
establish the nodal voltages at demand nodes. 

vd = − G− 1
dd [D

− 1
d (vd)Pd +Gdg ⋅ vg] (18) 

To find these values in the vd system, an iterative process should be 
implemented to find the nodal voltages with an almost null convergence 
error. Thus, a t counter should be implemented in Equation (18). The 
following is the equation to find the voltage profiles: 

vt+1
d = − G− 1

dd D− 1
d (vt

d)Pd + Gdg⋅vg (19) 

To explain the master-slave methodology in detail, which aims to 
reduce the power losses in DC networks, in Fig. 2 is presented the 
flowchart of the methodology describe in this research document. The 
flowchart presents all step necessaries to execute the optimization al-
gorithm and obtain the solution to OPF problem. The steps presented in 

the flowchart are described below: 
The proposed methodology required that, first: the data of the 

electrical system must be load and the initial condition that represent 
the OPF problem in DC networks, must be load too. The data correspond 
to electrical parameters, nodes connections, resistive in the branch, 
percentage of power penetration (α), optimization algorithm parame-
ters, among others. Second: the master stage (AOA) begins, in this stage 
is generate the initial popualtion, next the stage slave evaluate the 
objetive funcion for each particle in the initial population and the best 
incumbent is assigned for the firts population. Third: Based on the 
incumbent and the initial parameters, the population is updated. Fourth: 
checks if any of the stop criteria are met. Fifth: once a stop criterion is 
met, the optimization algorithm stops and the results obtained are 
presented. It should be noted that these iterative processes are run over 
and over again until the stop criteria are met in their entirety and when 
this occurs the best result obtained for the OPF is selected and these 
results are presented. 

4. Test scenarios and considerations 

In this study, three test systems were used to validate the proposed 

Fig. 2. Hybrid AOA-SA optimization algorithm diagram.  
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methodology. The systems were adapted from previous versions in AC 
and based on the state of the art. 

To adapt the systems, distributed generators and batteries were 
replaced with loads with the same power levels. As a result, the test 
systems used here have one generator that supplies all the power 
demanded by the system. Said generator is located at Node 1, that is, the 
slack node. This section presents all the electrical characteristics and 
parameters of the two test systems. 

4.1. 10 nodes test system 

The 10 nodes test system is presented in Fig. 3. It is can be observe 
that this electrical system is composes for 10 buses and 9 branches [2], 
whit a unique generator and radial structure. The parameters of this 
system are show in Table 1 (see Figs. 4 and 5). 

The system considers two types of loads: constant power loads (P) 
and resistive loads (R), which produces an initial power loss of 0.1436 p. 
u. for a total demand of 3.6 p.u. Finally, the voltage and power bases 
used in this system are 1 kV and 100 kW, respectively. 

4.2. 21 nodes test system 

The 21 nodes test system is presented in Ref. [24]. In Ref. [21], the 
authors adapted this system to conduct tests in DC. This system, 
composed of 21 buses and 20 lines, includes only constant power loads. 
Its electrical configuration is presented in Fig. 9, and its parameters are 
detailed in Table 2. 

Table 2 shows the following data of the 21-bus test system (from left 
to right): transmitting bus (from), receiving bus (to), resistance (R[pu]) 
of the line connecting those buses, and power demand at that bus (P 
[pu]). 

In the 21-bus test system, the slack node (Node 1) generates 5.8160 
p.u. in its initial state. Besides, the voltage at the slack node is considered 
to be flat, that is, 1 p.u. The power losses in the system equal 0.27603 p. 
u. A voltage and a base power of 1 kV and 100 kW, respectively, are 
assumed in this system. Data about the actual power and voltage in this 
system are available to validate the results in case real values are 
required. DGs were located in the system considering a state-of-the-art 
review and previous studies that have produced outstanding results. 
Therefore, the DGs were located at nodes 9, 12, and 16, as shown in 
[25]. 

4.3. 69 nodes test system 

The 69 nodes test system is an adaptation of the classical AC 69-node 
test system employed for power loss reduction via distributed generation 
integration in AC networks, presented in Refs. [4,26,27]. The base 
values used in this system to obtain p.u. values are 12.66 kV and 100 
kVA. Additionally, modifications to the electrical configuration were 
made in this study, as shown in Fig. 10. The parameters of this test 
system are detailed in Table 3. Initially, in the 69-bus test system, the 
power generation of the slack node is 40.4311 p.u., and the power losses 
equal 1.5385 p.u. The slack node operates with a voltage of 1 p.u. In this 

system, the generators are located at nodes 26, 61, and 66, as reported in 
Ref. [13] (see Table 4). 

4.4. Comparison of methods and parameters 

To assess the convergence of the proposed optimization method 
(AOA), we compared its results to those of four other optimization 
methods reported in the literature, which were selected thanks to their 
performance in terms of quality and computation times. In sum, five 
methods were compared here: AOA, ALO, black hole optimization Fig. 3. Electrical configuration of the 10 nodes test system.  

Fig. 4. Electrical configuration of the 21-bus test system.  

Fig. 5. Electrical configuration of the 69-bus test system.  

Table 1 
Electrical parameters of the 10 nodes test system.  

From To R [pu] P [pu] R [pu] 

1(slack) 2 0.0050 0 0 
2 3 0.0015 − 0.8 0 
2 4 0.0020 − 1.3 0 
4 5 0.0018 0.5 0 
2 6 0.0023 0 2.0 
6 7 0.0017 0 0 
7 8 0.0021 0.3 0 
7 9 0.0013 − 0.7 0 
3 10 0.0015 0 1.25  

Table 2 
Electrical parameters of the 21 nodes test system.  

From To R [pu] P [pu] From To R [pu] P [pu] 

1(slack) 2 0.0053 − 0.70 11 12 0.0079 − 0.68 
1 3 0.0054 0.00 11 13 0.0078 0.10 
3 4 0.0054 − 0.36 10 14 0.0083 0.00 
4 5 0.0063 − 0.04 14 15 0.0065 0.22 
4 6 0.0051 0.36 15 16 0.0064 − 0.23 
3 7 0.0037 0.00 16 17 0.0074 0.43 
7 8 0.0079 − 0.32 16 18 0.0081 − 0.34 
7 9 0.0072 0.80 14 19 0.0078 0.09 
3 10 0.0053 0.00 19 20 0.0084 0.21 
10 11 0.0038 − 0.45 19 21 0.0082 0.21  
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(BHO), continuous genetic algorithm (CGA), and particle swarm opti-
mization (PSO). Each of these five methods was used in the master stage 
of the proposed master-slave methodology to solve the OPF problem. In 
said methodology, the master stage uses the optimization algorithm to 
establish the power values to be injected by the DGs; in turn, the slave 
stage employs the SA numerical method to establish the power loads. To 
confirm the effectiveness of the five methods, this study used the 10, 21 
and the 69 nodes test systems, which are frequently implemented in the 
literature for this purpose [2,4,18,24,28]. 

To make a fair comparison of the five methods employed here to 
solve the OPF problem, the optimization algorithms were tuned. Such 
tuning was performed using the PSO algorithm (presented in Ref. [4]) in 
the two bus test systems so that every method could obtain the best 
possible solution according to the objective function. The tuning pa-
rameters were population size, [1–100]; maximum number of iterations 
of each algorithm, [1–1000]; and non-improvement iterations, 
[1–1000]. The population in the PSO algorithm was 10 individuals, and 
the maximum number of iterations was 300. Finally, Tables 5 and 6 
present the parameters of the five methods tuned for the 21- and 69-bus 
test systems, respectively. These parameters enable each optimization 
method to find the best solution to the OPF problem according to the 
objective function. 

5. Simulations and results 

This section presents the results obtained by the five optimization 
methods implemented here to solve the OPF problem in DC networks 
using the 10, 21 and 69 nodes test systems described in Section 4. The 
simulations were conducted in MATLAB R2018b running on a work-
station with 16 GB of RAM, a 3.50-GHz Intel(R) Xeon (R) processor, a 
446-GB solid state drive, and Microsoft Windows 10 Pro for Worksta-
tions. Each solution methodology was run 100 times to evaluate its 
repeatability, accuracy, and standard deviation. The results in each 
system are presented below. 

5.1. Results in the 10-bus test system 

Table 7 presents the results obtained by the proposed methodology 
and the optimization algorithms after performing 100 runs for each of 
the test scenarios. To carry out this work, each of the DGs is allowed to 
inject 20%, 40% and 60% of the power generation injected by the Slack 
generator for the base case (system without distributed generation). The 
table mentioned above represents the information of the 10-node DC 
system and is arranged as follows: in the first column is located the 
optimization algorithm used to obtain the solution to the OPF problem 
in DC networks, in the second column is the sum of the net power 
injected by the 3 DGs; in the third and fourth columns are the minimum 
Ploss and the average Ploss obtained by the optimization algorithms rep-
resented in kW, respectively. Similarly, the fourth and fifth columns 
show the percentage of loss reduction achieved (%) with respect to the 
Ploss of the base system. Column 5 shows the percentage of standard 
deviation obtained by each optimization algorithm. Finally, the sixth 
and seventh columns show the voltage farthest from 1 (worst voltage) 
and the highest current flowing through the conductor lines for the 

Table 3 
Electrical parameters of the 69 nodes test system.  

From To R[pu] P[pu] From To R[pu] P[pu] From To R[pu] P[pu] 

1 2 0.0005 0 24 25 0.7488 0 47 48 0.0851 − 0.79 
2 3 0.0005 0 25 26 0.3089 − 0.14 48 49 0.2898 − 3.84 
3 4 0.0015 0 26 27 0.1732 − 0.14 49 50 0.0822 − 3.84 
4 5 0.0215 0 3 28 0.0044 − 0.26 8 51 0.0928 − 0.405 
5 6 0.3660 − 0.026 28 29 0.0640 − 0.26 51 52 0.3319 − 0.036 
6 7 0.3810 − 0.404 29 30 0.3978 0 9 53 0.1740 − 0.0435 
7 8 0.0922 − 0.75 30 31 0.0702 0 53 54 0.2030 − 0.264 
8 9 0.0493 − 0.3 31 32 0.3510 0 54 55 0.2842 − 0.24 
9 10 0.8190 − 0.28 32 33 0.8390 − 0.1 55 56 0.2813 0 
10 11 0.1872 − 1.45 33 34 1.7080 − 0.14 56 57 1.5900 0 
11 12 0.7114 − 1.45 34 35 1.4740 − 0.04 57 58 0.7837 0 
12 13 1.0300 − 0.08 3 36 0.0044 − 0.26 58 59 0.3042 − 1 
13 14 1.0440 − 0.08 36 37 0.0640 − 0.26 59 60 0.3861 0 
14 15 1.0580 0 37 38 0.1053 0 60 61 0.5075 − 12.44 
15 16 0.1966 − 0.45 38 39 0.0304 − 0.24 61 62 0.0974 − 0.32 
16 17 0.3744 − 0.6 39 40 0.0018 − 0.24 62 63 0.1450 0 
17 18 0.0047 − 0.6 40 41 0.7283 − 1.02 63 64 0.7105 − 2.27 
18 19 0.3276 0 41 42 0.3100 0 64 65 1.0410 − 0.59 
19 20 0.2106 − 0.01 42 43 0.0410 − 0.06 65 66 0.2012 − 0.18 
20 21 0.3416 − 1.14 43 44 0.0092 0 66 67 0.0047 − 0.18 
21 22 0.0140 − 0.05 44 45 0.1089 − 0.392 67 68 0.7394 − 0.28 
22 23 0.1591 0 45 46 0.0009 − 0.392 68 69 0.0047 − 0.28 
23 24 0.3463 − 0.28 4 47 0.0034 0      

Table 4 
Parameters of the continuous methods employed in the master stage for the 10 
nodes test system.  

Method AOA ALO BH CGA PSO 

Number of particles 34 62 85 46 79 
Maximum number of iterations 777 443 330 678 520 
Maximum number of non-improvement 

iterations 
91 89 55 72 83  

Table 5 
Parameters of the continuous methods employed in the master stage for the 21 
nodes test system.  

Method AOA ALO BH CGA PSO 

Number of particles 64 79 67 52 49 
Maximum number of iterations 783 769 317 592 679 
Maximum number of non-improvement 

iterations 
783 441 317 346 263  

Table 6 
Parameters of the continuous methods employed in the master stage for the 69 
nodes test system.  

Method AOA ALO BH CGA PSO 

Number of particles 73 77 35 40 58 
Maximum number of iterations 378 182 566 622 723 
Maximum number of non-improvement 

iterations 
378 182 566 443 252  
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system under analysis. For this system a 500 kcmils conductor is selected 
according to NTC2050. 

Through Table 7 we obtain Figs. 6 and 7, through which the solutions 
reached by each optimization algorithm after the 100 runs are 
compared. In the first figure, the comparison in terms of minimum Ploss 
between the AOA and the other optimization algorithms employed to 
solve the OPF problem making use of the three penetration percentages 
of 20%, 40% and 60% are presented. For the scenario that is allowed a 
penetration percentage of 20%, the AOA achieves a minimum Ploss 
reduction of 2.9615%, outperforming the CGA, BH, ALO and PSO by 
0.0687%, 0.2487%, and 0.0008% and 0.0001% respectively. For the 
case considering 40% distributed generation again the AOA is the 
optimization algorithm that achieves the best minimum Ploss reduction, 
achieving a reduction of 4.7839% and outperforming the other algo-
rithms by an average percentage of 0.0677%. For the case considering 
the 60% power injection by the GDs, again the AOA achieves the best 
minimum Ploss reduction, achieving a reduction of 5.6218%, out-
performing the PSO by 0.00004%, the CGA by 0.0005%, the ALO by 
0.0653% and the BH by 0.0752%. The above analyzed results show that 
the AOA is the algorithm that allows obtaining the best results in terms 
of minimum Ploss reduction for the 10-node system. In Fig. 7 it is possible to appreciate the average Ploss reduction per-

centage obtained by each algorithm for the three allowed penetration 
percentages, as well as the standard deviation and the average time 
taken by each algorithm to obtain the best solution for the problem 
addressed. For the case considering the average Ploss, the AOA achieves 
an average reduction of 13.09 kW, tying with the PSO and being out-
performed by the ALO by only 0.01 kW, by the CGA by only 0.02 kW and 
the BH by only 0.03 kW. For the scenario that evaluates the standard 
deviation, the AOA achieves an average percentage of 0.19%, being 
surpassed only by the PSO by 0.1899%, but in turn surpasses the CGA by 
11.41%, ALO by 13.56% and the BH by 21.48%. For the case where 
processing times are considered, the AOA manages to solve the OPF 
problem for the 10-node system in an average time of 6.39s, being 
outperformed only by the BH and CGA by only 1.31s and 1.28s, 
respectively; but outperforming the ALO by 1.28s and the PSO by 1.92s. 
The results discussed above show that the AOA can obtain good solu-
tions in terms of average Ploss, obtaining an excellent standard deviation 
for each penetration percentage, and managing to reach the solution of 
this system in a short average time. 

Table 7 
Results of the simulation in the 10 nodes test system.  

10 nodes test system 

Ploss base case = 13.70859 kW 

Method Total injected power [kW] Power Losses Reduction Worst V [p.u] Imax [A] 

Minimum [kW]/Reduction [%] Average [kW]/Reduction [%] STD [%] 

20% power generation 
AOA 9.9417 13.3026/2.9615 13.3116/2.8959 0.3716 0.9763 310.9076 
ALO 9.9389 13.3027/2.9606 13.3038/2.9527 0.0120 0.9763 310.9304 
BH 9.9382 13.3367/2.7128 13.6645/0.3219 7.1627 0.9762 310.9548 
CGA 9.9391 13.3120/2.8927 13.5043/1.4901 2.1499 0.9761 310.9358 
PSO 9.9417 13.3026/2.9614 13.3021/2.9588 0.0023 0.9763 310.9083 
40% power generation 
AOA 19.8834 13.0528/4.7839 13.0590/4.7384 0.1566 0.9824 230.4056 
ALO 19.8711 13.0529/4.7833 13.0539/4.7760 0.0042 0.9823 230.4247 
BH 19.8363 13.0757/4.6168 14.5807/-6.3619 17.8241 0.9822 230.7890 
CGA 19.8442 13.0669/4.6808 22.1234/-61.3832 34.0867 0.9824 230.7215 
PSO 19.8834 13.0528/4.7839 13.0529/4.7834 0.0004 0.9824 230.4063 
60% power generation 
AOA 29.8252 12.9379/5.6218 12.9396/5.6099 0.0372 0.9887 150.9697 
ALO 29.7475 12.9469/5.5566 12.9647/5.4268 0.6585 0.9883 151.6011 
BH 29.7722 12.9482/5.5466 12.9881/5.2495 0.4408 0.9884 151.3946 
CGA 29.8216 12.9371/5.6214 12.9391/5.6134 0.0048 0.9886 150.9980 
PSO 29.8248 12.9379/5.6218 12.9381/5.6206 0.0086 0.9887 150.9724  

Fig. 6. Average reductions in power loss compared to AOA in the 10 nodes 
test system. 

Fig. 7. Average results in the 10 nodes test system.  
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5.2. Results in the 21 nodes test system 

Table 8 shows the results of the five methods in the 21-bus test 
system with 20%, 40%, and 60% of the power injected by DGs with 
respect to the maximum power level injected by the slack node. This 
table contains seven columns (from left to right): optimization method; 
total power injected by the 3 DGs; minimum power losses (Ploss) ob-
tained by each method [kW] and reduction in percentage compared with 
the base case; average Ploss of each method [kW] and reduction in per-
centage compared with the base case; standard deviation STD of each 
method [%]; worst voltage of the system in p.u.; and maximum voltage 
flowing through the distribution lines [A]. In the 21-bus test system, the 
maximum allowable voltage was 520A. 

Table 8 presents the results obtained by the optimization methods in 
the 21 nodes test system. Figs. 8 and 9, which were obtained from said 
table, compare the minimum and average Ploss obtained by the five 
optimization algorithms. Fig. 8 compares the average minimum error in 
Ploss in the 3 DG scenarios: 20%, 40%, and 60% of the power supplied by 
the slack node compared to AOA. The AOA and PSO present the best 
responses in terms of Ploss reduction with 20% penetration, both 
achieving a 52.2382% reduction compared with the base case, thus 
outperforming ALO, the CGA, and BHO by 0.0039%, 0.0485%, and 
0.4256%, respectively. With 40% penetration, the AOA and PSO ach-
ieved the best reductions in Ploss, followed by ALO, which ranks in third 
place with a reduction of 77.8220%, the CGA in fourth place with 
77.8175%, and BHO in the fifth place with 77.6280%. With a penetra-
tion of 60%, the AOA achieved a reduction percentage of 89.9061%, 
which was outperformed by PSO and ALO by 0.0022% and 0.0010%, 
respectively. However, the AOA outperformed the CGA and BHO by 
0.0153% and 0.1069%, respectively. 

Fig. 9 shows the differences in average Ploss between the proposed 
optimization algorithm and the other four methods after running them 
100 times. With 20% penetration, the AOA presented the best reduction 
in average Ploss with 52.2338%, thus outperforming (in this order) PSO, 
ALO, the CGA, and BHO by 0.1143%, 0.2983%, 0.3610%, and 3.2130%, 
respectively. With 40% penetration, the AOA produced the best reduc-
tion in Ploss with 77.7971%, thus outperforming ALO, PSO, the CGA, and 
BHO by 0.0014%, 0.692%, 0.0700%, and 1.4755%, respectively. With a 
penetration of 60%, the AOA achieved a reduction percentage of 
89.8930%, which was outperformed by ALO by 0.0069%. Nevertheless, 
the AOA still outperformed PSO, the CGA, and BHO by 0.0439%, 
0.0804% and 0.9134%, respectively. 

Table 8 
Results of the simulation in the 21 nodes test system.  

21 nodes test system 

Ploss base case = 27.603 kW 

Method Total injected power [kW] Power Losses Reduction Worst V [p.u] Imax [A] 

Minimum [kW]/Reduction [%] Average [kW]/Reduction [%] STD [%] 

20% power generation 
AOA 116.3207 13.1823/52.2382 13.1835/52.2338 0.0058 0.9570 380.6000 
ALO 116.3176 13.1833/52.2343 13.2658/52.9356 1.1400 0.9571 380.6041 
BH 116.3182 13.2997/51.8126 14.0703/49.0208 2.4181 0.9543 380.7199 
CGA 116.1763 13.1957/52.1896 13.2831/51.8728 0.2787 0.9570 380.7577 
PSO 116.3207 13.1823/52.2382 13.2150/52.1195 0.7833 0.9571 380.5999 
40% power generation 
AOA 232.6400 6.1208/77.8230 6.1280/77.7971 0.0554 0.9713 257.21920 
ALO 232.6348 6.1211/77.8220 6.1284/77.7957 0.8002 0.9713 257.22470 
BH 232.1035 6.1747/77.6280 6.5352/76.3216 3.2377 0.9702 257.80950 
CGA 232.6327 6.1224/77.8175 6.1473/77.7271 0.2356 0.9711 257.22800 
PSO 232.6414 6.1208/77.8232 6.1471/77.7279 1.2434 0.9713 257.21780 
60% power generation 
AOA 348.9243 2.7859/89.9061 2.7895/89.8930 0.0744 0.9823 137.6000 
ALO 348.9581 2.7856/89.9071 2.7876/89.8999 0.0436 0.9823 137.5959 
BH 347.1716 2.8154/89.7992 3.0416/88.9795 4.7602 0.9820 139.3822 
CGA 348.8699 2.7902/89.8907 2.8117/89.8126 0.4493 0.9827 137.6587 
PSO 348.9620 2.7853/89.9083 2.8017/89.8491 2.0068 0.9824 137.5616  

Fig. 8. Average reductions in power loss compared to AOA in the 21 nodes 
test system. 

Fig. 9. Average results in the 21 nodes test system.  
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To assess the repeatability and precision of the optimization algo-
rithms in solving the OPF problem in the 21 nodes test system, Fig. 9 
compares the standard deviation of the proposed optimization method 
with those of the other four optimization algorithms. With 20% power 
injection, the AOA presents the best standard deviation, i.e., 0.0058%, 
outperforming the CGA by 0.2729%, PSO by 0.7775%, ALO by 
1.1341%, and BHO by 2.4123%. With 40%, the AOA achieved the best 
standard deviation again with 0.055%, thus outperforming the CGA, 
ALO, PSO, and BHO by 0.1802%, 0.7448%, 1.1880%, and 3.1824%, 
respectively. With 60%, the AOA obtained a standard deviation of 
0.074%, outperformed only by ALO by 0.030%. In this scenario, the 
AOA outperformed the CGA by 0.375%, PSO by 1.932%, and BHO by 
4.686%. 

5.3. 69 nodes test system 

Table 9 presents the results obtained by each optimization algorithm 
analyzed in the 69 nodes test system, where the DGs were enabled to 
inject 20%, 40%, and 60% of the power supplied by the slack node. It is 
organized as Table 8, but the maximum allowable current was 335A in 
this case. The results presented in Table 9 are illustrated in Figs. 10 and 

11, which compare the minimum and average Ploss of the AOA with those 
of the other four optimization algorithms. 

Fig. 10 shows the difference in average minimum error in Ploss with 
20%, 40%, and 60% of DG injection compared to AOA. In this figure, 
with 20% injection, the AOA presented the best solution to the OPF 
problem with a reduction of 63.2854%, outperforming PSO by 0.0001%, 
ALO by 0.0481%, the CGA by 0.647%, and BHO by 0.8577%. With 40% 
injection, PSO showed a reduction of 90.9048%, outperforming the AOA 
by 0.0001%, followed by ALO, the CGA, and BHO with 90.8948%, 
90.8936%, and 90.5027%, respectively. With 60%, the AOA and PSO 
obtained the best value in Ploss reduction, i.e., 96.3888% each, followed 
by the CGA with 96.3884%, ALO with 96.3876%, and BHO with 
96.1755%. 

Fig. 11 shows the differences in average Ploss between the AOA and 
the other four optimization algorithms. In the 20% scenario, the AOA 
exhibited the best average power loss reduction, i.e., 63.2840%, out-
performing PSO, the CGA, ALO, and BHO by 0.1392%, 0.3867%, 
0.5924%, and 3.7985%, respectively. With 40% power injection, the 
AOA presented the best Ploss average reduction with 90.9021%, followed 
by the CGA with 90.8006%, PSO with 90.6968%, ALO with 90.8948%, 
and BHO with 87.8768%. With 60% power injection, the AOA and PSO 
showed a reduction of 96.3888%, outperforming the CGA by 0.0156%, 

Fig. 10. Average reductions in power loss compared to AOA in the 69 nodes 
test system. 

Table 9 
Results of the simulation in the 69 nodes test system.  

69 nodes test system 

Ploss base case = 115.855 kW 

Method Total injected power [kW] Power losses Reduction Worst V [p.u] Imax [A] 

Minimum [kW]/Reduction [%] Average [kW]/Reduction [%] STD [%] 

20% power generation 
AOA 808.6190 56.4854/63.2854 54.4876/63.2740 0.0015 0.9610 247.7975 
ALO 808.2789 56.5594/63.2373 57.3990/62.6916 1.1593 0.9607 247.8302 
BH 802.5487 57.805/62.4277 62.3316/59.4855 4.4940 0.9616 248.3812 
CGA 807.9075 56.5850/63.2207 57.0826/62.8972 0.4181 0.9606 247.8616 
PSO 808.6195 56.4856/63.2853 56.7017/63.4848 0.4072 0.9610 247.7975 
40% power generation 
AOA 1617.0000 13.9931/90.9047 13.9971/90.9021 0.0164 0.9847 180.57120 
ALO 1616.8836 14.0084/90.8948 14.4271/90.6226 2.3783 0.9846 180.59830 
BH 1604.0404 14.6116/90.5027 18.6515/87.8768 12.6229 0.9840 181.66040 
CGA 1616.9396 14.0101/90.8936 14.1533/90.8006 0.6437 0.9847 180.59400 
PSO 1617.2390 13.9929/90.9048 14.3129/90.6968 5.9359 0.9847 180.56900 
60% power generation 
AOA 2209.3127 5.5558/96.3888 5.5558/96.3888 0.0000 0.9949 133.1353 
ALO 2215.5314 5.7315/96.3876 5.7315/96.2746 6.3320 0.9950 132.6443 
BH 2162.1432 5.8840/96.1755 8.3247/94.5891 21.5430 0.9950 136.8871 
CGA 2204.7900 5.5565/96.3884 5.5797/96.3733 0.2977 0.9949 133.4926 
PSO 2209.3229 5.5558/96.3888 5.5558/96.3888 0.0000 0.9949 133.1345  

Fig. 11. Average results in the 69 nodes test system.  
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ALO by 0.1142%, and BHO by 1.7997%. 
As with the 21 nodes test system, Fig. 11 shows the differences in 

standard deviation between the AOA and the other four optimization 
methods in the 69-bus system. This figure can be used to evaluate the 
accuracy and repeatability of each method in finding a good quality 
solution. As shown in Fig. 11, the AOA presented the best standard de-
viation with 20% penetration, i.e., 0.0015%, thus outperforming PSO by 
0.4057%, the CGA by 0.4166%, ALO by 1.1578%, and BHO by 4.4925%. 
With 40% DG, the AOA exhibited a standard deviation of 0.0164%, 
outperforming the other optimization algorithms by an average of 
5.3788%. With 60% penetration, the AOA obtained a standard deviation 
of 3.94 × 10− 6, which was outperformed by PSO by only 3.35 × 10− 6. 
However, the AOA outperformed the CGA by 0.2977%, ALO by 
6.3320%, and BHO by 21.5430%. This analysis proves that the AOA 
method is the best option for obtaining a high quality solution every 
time the algorithm is run. 

6. Conclusions 

This article presented a new optimization method for the Optimal 
Power Flow (OPF) problem in Direct Current (DC) networks using a 
master-slave methodology. In the latter, the master stage is performed 
by the Arithmetic Optimization Algorithm (AOA), which evaluates 
possible solutions to the OPF problem considering its constraints. Sub-
sequently, the slave stage evaluates the fitness of the solutions to the 
problem (proposed by its master counterpart) and uses Successive Ap-
proximations (SA) to solve the OPF problem. Three scenarios, two sys-
tems, and four other methods were implemented to validate the 
proposed methodology. The three scenarios were defined to evaluate the 
performance of the algorithms when the power injected by DGs was 
limited to 20%, 40%, and 60% with respect to the power injected by the 
slack node. The 21- and 69-bus test systems, frequently reported in the 
literature, were also employed for this validation. 

The results allow us to conclude that the AOA-SA method proposed 
in this article is the best option to solve the OPF problem because it 
achieves the best standard deviation (as shown in the figures and tables 
above) in the solution to the OPF problem. Thus, this method is the most 
likely to produce an optimal solution in terms of power supplied by each 
generator and significant reductions in power losses. 

The figures also show that the reductions in power losses obtained by 
the methods do not present significant differences. However, if we 
analyze them in terms of kilowatts or megawatts, it is evident that the 
most efficient method, that is, the proposed method, can reduce power 
losses, thus generating significant savings. The tables indicate that this 
method (i.e., AOA-SA) also kept the voltage and current within their 
limits, which is a good indicator of its performance and also proves that 
the constraints of the OPF problem were respected. 
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