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Abstract: The optimal integration of photovoltaic generation systems is a challenge for distribution
utilities since these devices have a direct impact on company finances due to the large amount of
investment required at the beginning of the planning project. In this investigation, the problem re-
garding the optimal siting and sizing of photovoltaic resources in medium-voltage levels is addressed
from an economical point of view, where the optimization model that represents said problem
corresponds to a mixed-integer nonlinear programming model. The maximum allowed size for
single photovoltaic units in the distribution network is set at 2400 kW. The investment costs, energy
purchase costs and maintenance costs for photovoltaic units, are considered in the objective function.
Typical constraints such as power balance, generation capacities, voltage regulation, among others,
are considered in the mathematical formulation. The solution of the optimization model is addressed
by implementing a modified version of the Arithmetic Optimization Algorithm, which includes a
new exploration and exploitation characteristic based on the best current solution in iteration t, i.e.,
xt

best. This improvement is based on a Gaussian distribution operator that generates new candidate
solutions with the center at xt

best, which are uniformly distributed. The main contribution of this
research is the proposal of a new hybrid optimization algorithm to solve the exact optimization
model, which is based on a combination of the Arithmetic Optimization algorithm with the Vortex
Search algorithm and showed excellent numerical results in the IEEE 34-bus grid. The analysis
of quantitative results allows us to conclude that the strategy proposed in this work has a greater
effectiveness with respect to the General Algebraic Modeling System software solvers, as well as with
metaheuristic optimizers such as Genetic Algorithms, the Newton–Metaheuristic Algorithm, and the
original Arithmetic Optimization Algorithm. MATLAB was used as a simulation tool.

Keywords: arithmetic optimization algorithm; distribution networks; solar PV generation; cost
minimization; master-slave optimization

1. Introduction

Global warming goals make it necessary to change our energetic consumption habits
by using renewable energy resources, which can gradually displace the sources of fossil
generation [1–3]. Nowadays, in the electrical sector, energy production with fossil fuels
(coal, diesel, or natural gas) is the common denominator in most countries around the
world [4,5]. However, with the constant reduction in the production costs of photovoltaic
(PV) modules, wind generators, and non-conventional generators based on renewable
energy sources, it is possible to transform the energetic matrix by using renewables with
competitive prices in comparison with conventional sources [6,7].
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Electrical distribution networks are not unaffected by the penetration of distributed
energy resources, which is due to the fact that these grids cover rural and urban areas
with potential renewable energy usage [8,9]. In addition, distribution feeders with a radial
structure are typically designed to provide power from 3 to 10 MVA in medium-voltage
applications, which makes these grids important candidates for integrating renewable
energy mainly from PV technology and energy storage systems [10,11]. These sources can
help with reducing greenhouse gas emissions and energy losses, improving voltage profiles,
and also receiving regulatory incentives from some governments mainly in developing
countries [12,13]. However, the integration of PV sources in electrical distribution networks
is not an easy task, since distribution grids are nonlinear, complex systems from the
mathematical point of view [14]. According to the literature review, the optimal location
and sizing of PV sources is formulated as a MINLP. This implies that it is not possible to
ensure that the global optimum is found via exact optimization methods in polynomial
times [15]. To determine the optimal location and sizing of PV sources, it is important to
give greater consideration to economic objective functions than to technical ones (energy
losses or voltage improvements), since, from the point of view of the electricity service,
the integration of new devices to electrical networks must be economically feasible for the
duration of the project [16]. Some of the analyzed works are presented below.

Ref. [14] implements multi-objective optimization with the modification of the
Jaya Algorithm to determine the optimal location and sizing of PV sources consider-
ing the voltage profile improvement and the power loss reductions. The numerical
results are validated in the IEEE 33-bus system, but no economic analysis is provided
by the authors. Ref. [16] present the version of the Chu and Beasley Genetic Algorithm
(CBGA) as a solution strategy for localization and sizing of PV sources in distribu-
tion grids. The authors consider the minimization of the total annual operative costs,
which corresponds to the combination of the energy purchase costs in the substation
with the investment and maintenance costs of the PV generation units. The numerical
results demonstrate the effectiveness of the proposed CBGA in comparison with the
MINLP solvers available in the GAMS software. Ref. [17] propose an improvement of
the solution reached by the CBGA with the application of the Newton Metaheuristic
(NMA). The quantitative results obtained in the IEEE 34-bus and IEEE 85-bus grids
demonstrate the advantage of this algorithm at placing and sizing PV generation units
in distribution grids. Additional optimization methods applied to the studied problem
are: Particle Swarm Optimization [18], Cortex Search Algorithm [19], Wind Driven
Optimizer [20], and heuristic-based methods [21,22], among others. The main charac-
teristic of these approaches is that they locate PV sources based on technical objective
functions such as voltage stability and energy losses, which makes the validation of the
economical feasibility of these approaches a difficult matter. A complete review regard-
ing objective functions, optimization techniques, and methodologies for PV potential
assessment can be consulted in [23].

With respect to the analysis of the literature review, the contributions of this work are:
(i) hybridizing the recently developed Arithmetic Optimization Algorithm in [24] with the
Vortex Search Algorithm in order to obtain a powerful Modified Arithmetic Optimization
Algorithm (MAOA) combinatorial optimization technique, whose main advantage is that
it combines the advantages of the four arithmetic operations with Gaussian distributions
to explore vast regions of the solution space at the beginning of the optimization process,
as well as to exploit promissory regions at the end of the iterative process; and (ii) the
numerical comparison with statistical information of metaheuristic optimizers such as
the Newton–Metaheuristic Algorithm, the Chu and Beasley Genetic Algorithm, the AOA,
and the MINLP solvers available in the GAMS software. These comparisons help to
demonstrate that, for the IEEE 34-bus network, MAOA finds the best optimal solution with
the lowest standard deviation among the comparative methods.

It is important to mention that, after reviewing the state of the art regarding the
optimal location of PV generation units, a need to propose new optimization algorithms
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with excellent numerical performance to address this optimization problem was evidenced,
as there are no reports that ensure that the global optimum is found for this problem. This is
mainly caused by the non-linearities and non-convexities of the solution space, which make
it necessary to conduct more studies in this research area. In addition, the proposed hybrid
algorithm corresponds to a new contribution in the area of combinatorial optimization that
can be used for different MINLP problems in science and engineering.

This work is organized and presented in six sections including introduction: Section 2
describe the complete MINLP formulation; Section 3 describes the implemented methodology,
which corresponds to the improvement of the Arithmetic Optimization Algorithm with an
new exploration-exploitation phase based on hyper-ellipses with variable radius generated
with Gaussian distribution centered on the current best solution; Section 4 describes the main
characteristics of the IEEE 34-bus grid, including its grid topology and its line and demand
parameters, as well as the parametrization of the objective function and the demand and solar
curves employed in the numerical validations; Section 5 shows the complete numerical valida-
tions of the proposed MAOAs, as well as comparisons with recently reported metaheuristic
optimizers and exact MINLP solvers; Section 6 presents the conclusions and future work.

2. Mathematical Optimization Model

The optimal location and sizing of PV sources in electrical distribution networks can
be represented as a MINLP model, where the continuous variables are related to electrical
quantities, i.e., currents, voltages and powers, while the integer part is associated with the
location of the PV sources [17,25]. The objective function represents to the minimization of
the investment and maintenance costs of the PV units, together with the energy purchase
costs in the substation terminals (note that all of these costs are annualized for a period of
time of 20 years and presented using the net present value). This function is defined in

Equation (1), where γ is defined as
(

ta
1−(1+ta)

−Nt

)
. Acost, A1, A2, CkWh, T, ta, Nt, pcg

i,h, ∆h,

te, CPV, CO&M, Gpv
h ,H, N and T are described in detail in [17].

Acost = A1 + A2, (1)

A1 = CkWhTγ

(
∑

h∈H
∑

i∈N
pcg

i,h∆h

)(
∑
t∈T

(
1 + te

1 + ta

)t
)

(2)

A2 = CPVγ

(
∑

i∈N
ppv

i

)
+ CO&MT ∑

i∈N
∑

h∈H
ppv

i Gpv
h ∆h (3)

The complete set of constraints include reactive and active power equilibrium, voltage
regulation bounds, device capabilities, and the number of PV units available. The imple-
mented constraints are described in Equations (4)–(11), where qcg

i,h, Pd
i,h, Qd

i,h, vi,h, vj,h, Yij,

θij,h, pcg,min
i , pcg,max

i , qcg,min
i , qcg,max

i , xi, ppv,min
i , ppv,max

i , vmin
i , vmax

i and Nava
pv are described

in detail in [17].
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ppv
i Gpv

h + pcg
i,h − Pd

i,h = vi,h ∑
j∈N

Yijvj,h cos
(

θij,h − ϕij

)
,
[
∀i ∈ N ,
∀h ∈ H

]
, (4)

qcg
i,h −Qd

i,h = vi,h ∑
j∈N

Yijvj,h sin
(

θij,h − ϕij

)
,
[
∀i ∈ N ,
∀h ∈ H

]
, (5)

pcg,min
i ≤ pcg

i,h ≤ pcg,max
i , {∀i ∈ N , ∀h ∈ H} (6)

qcg,min
i ≤ qcg

i,h ≤ qcg,max
i , {∀i ∈ N , ∀h ∈ H} (7)

xi p
pv,min
i ≤ ppv

i ≤ xi p
pv,max
i , {∀i ∈ N} (8)

vmin
i ≤ vi,h ≤ vmax

i , {∀i ∈ N , ∀h ∈ H} (9)

∑
i∈N

xi ≤ Nava
pv (10)

xi ∈ {0, 1}, {∀i ∈ N} (11)

The optimization model described in Equations (1)–(11) have the following interpreta-
tion: Equation (1) represents the objective function, is the summation of the annual energy
purchasing costs in the substation bus defined in Equation (2) with the annual investment and
maintenance costs of the installed PV generation units defined in Equation (3). The active and
reactive power equilibrium are defined in Equations (4) and (5). These equations represent the
high challenge in the optimization problem since they are nonlinear non-convex. Inequality
box-type constraints (6)–(8) represent the active and reactive power bounds in the substation
bus and the possibility of generating active power in a particular node i if the binary variable
xi is activated, respectively. Box-type constraint (9) defines the admissible voltage magnitudes,
and the inequality constraint of Equation (10) limits the maximum number of PV units available
for installation. Equation (11) presents the binary logic of the decision variable xi.

To solve the MINLP model in Equations (1)–(11) in the current literature, the pre-
dominant alternative corresponds to the usage of embedded combinatorial optimization
methods due to the large dimensions of the solution spaces in these MINLP models [26,27].
These methods allow dealing with the nonlinearities and non-convexities of the model
via sequential programming [14]. In this line, this research proposes the application of a
modification of the Arithmetic Optimization Algorithm to solve the problem regarding the
optimal siting and sizing of PV units in distribution grids.

3. Solution Methodology

A master-slave solution methodology is herein proposed. In the master stage, the
recently developed AOA proposed in [24] is modified by introducing a Gaussian distri-
bution to explore and exploit the solution space. The master algorithm is entrusted with
determining the nodes where the PV sources will be installed along with their optimal
sizes, which implies that, in this stage, the integer part of the MINLP model is solved. In
the slave stage, a power flow formulation for distribution grids is used. The power flow
solution is entrusted with determining the value of the component of the objective function
A1, i.e., the annual energy purchase costs in the substation bus. In addition, with the power
flow solution, the voltage regulation constraint for each node for each period of time is
also verified.

The complete description of the master and slave optimization stages is presented
below. Note that we will start with the slave stage, since this is fundamental during the
exploration and exploitation phases of the AOA and its modified version.

3.1. Slave Stage: Power Flow Solution

The main challenge in distribution systems optimization when considering the com-
plete electrical network corresponds to the solution of the power equilibrium constraints (see
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Equations (4) and (5), respectively) since they are nonlinear and non-convex and require nu-
merical methods to be solved [28]. The main advantage of using metaheuristic optimizers to
solve MINLP models is that the whole model is solved sequentially, i.e., when all the binary
variables (location of the PV sources) and their sizes are solved, then the power flow equations
can be easily solved through any power flow approach [14]. Here, we adopt the successive
approximation power flow method for AC distribution grids originally proposed in [28], which
is applicable to radial and meshed distribution networks without any modification to its re-
cursive formula. The general recursive power flow formula for the successive approximation
method is defined in Equation (12), where m, Vd, Spv,h, Sd,h, Vs,h, Yds, diag(z) and z? are
described in detail in [29]:

Vm+1
d,h = Y−1

dd

[
diag−1

(
Vm

d,h

)(
S?pv,h − S?d,h

)
−YdsVs,h

]
(12)

The main characteristic of the recursive power flow formula of Equation (12) is that its
convergence to the power flow solution can be guaranteed through the application of the
Banach fixed-point theorem [30]. To determine whether the power flow Equation (12) has
converged, the difference between the voltage magnitudes for two consecutive iterations is
used, where ε = 1× 10−10, is a tolerance value and is assigned according to [28].

max
h

{
||Vm+1

d,h | − |V
m
d,h||

}
≤ ε (13)

After the load flow, the active power generated in the slack node is calculated through
Equation (14).

pcg
i,h =real

{
Ss,h
}

pcg
i,h =real

{
diag(Vs.h)

(
Y?

ssV?
s,h +Y?

sdV
?
d,h

)}
(14)

With the solution of pcg
i,h (Equation (14)) we determine the first component of the

objective function, i.e., A1. The second component of the objective function, i.e., A2 is
obtained through the solution vector of the master stage (PV source sizes). In metaheuristic
optimization techniques, the exploration and exploitation of the solution space is performed
by a fitness function [31]. fitness function implemented in this work contains two penalty
factors for the voltage regulation constraint, as well as an additional penalty factor with
respect to the positive definition of active power generation at the slack source. fitness
function is presented in Equation (15).

Ff = Acost +

α1 maxh
{
|Vd,h| − vmax

d , 0
}
+

α2 maxh
{
|vmin

d − |Vd,h|, 0
}
−

α3 minh

{
pcg

i,h, 0
}

 (15)

When active power generation and voltage regulation are outside the operating limits,
the positive penalty factors α1, α2, and α3 are enabled, these factors are adjusted in 100× 103.

3.2. Master Stage: Arithmetic Optimization Algorithm

The AOA is a recently developed optimization algorithm that explores and exploits
the solution space by using the distribution of the main four arithmetic operations, namely
multiplication, division, subtraction, and addition [14]. The AOA can be defined as a
population-based optimizer that makes the initial population evolve through the solution
space. The initial population takes the form of Equation (16).
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Xt =



xt
11 xt

12 · · · x1j · · · x1nv

xt
21 xt

22 · · · x2j · · · x2nv
...

...
...

. . .
...

...
xt

i1 xt
i2 · · · xij · · · xinv

...
...

...
. . .

...
...

xt
ni1

xt
ni2

· · · xni j · · · xninv


(16)

where xij is the value of variable j for the ith individual in the population, with nv being
the number of variables and ni the number of individuals.

The main feature of the proposed solution strategy is that it works with a integer-
continuous codification, where the continuous part defines the optimal size and the integer
part defines the optimal localization of PV sources. In the studied problem, ni is equal to
2Nava

pv . Each row i in the initial population (i.e., Xt
i ) takes the following form:

Xt
i =

[
2, k, 12 | 0.2580, ppv

k , 1.7596
]

(17)

where the first Nava
pv positions correspond to the integer part of the codification and the

positions from Nava
pv + 1 to 2Nava

pv .
To explore the solution space, the AOA implements an Math Optimizer Accelerated

(i.e., MOA) function, which depends on its maximum and minimum values, MOAmin
and MOAmax, as well as on the current iteration counter t and the maximum number of
iterations tmax.

MOAt = MOAmin +

(
MOAmax −MOAmin

tmax

)
t (18)

Note that the variable factor in Equation (18) will be used in the exploration and
exploitation phases of the AOA by using a random number r1, which will be compared to
MOAt at each iteration. Each one of the exploration and exploitation iteration phases will
be presented below.

3.2.1. Exploration Phase

The AOA uses the properties of the division and multiplication arithmetic operators to
generate the position of the ith individual using the evolution rule defined in Equation (19).

xt+1
ij =


xt

bestj ÷ (MOPt + ε)×
((

xmax
j − xmin

j

)
µ + xmin

j

)
if r2 < 1

2

xt
bestj ×MOPt ×

((
xmax

j − xmin
j

)
µ + xmin

j

)
otherwise

(19)

where MOPt is a variable in function of the number of iterations and has the following
structure:

MOPt = 1−
(

t
tmax

)β

(20)

Here, β is a sensitive factor that help improving the exploration accuracy, which is fixed
as 0.2 based on the experiments made by [24]. Note that ε is a factor that avoids divisions
by zero, but it is small enough and can be selected as equal to the ε used in the power flow
convergence test. In addition, r2 is a random number with normal distribution between 0 and
1, µ is a control parameter set as 0.5 based on the recommendations of [24].
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3.2.2. Exploitation Phase

The AOA uses the advantages of the subtraction and addition operators, since these
produce small variations around the current solution Xt

j . The rule in this exploitation stage
is defined by Equation (21).

xt+1
ij =


xt

bestj −MOPt ×
((

xmax
j − xmin

j

)
µ + xmin

j

)
if r3 < 1

2

xt
bestj + MOPt ×

((
xmax

j − xmin
j

)
µ + xmin

j

)
otherwise

(21)

Evolution rules in Equation (21) show that new individuals obtain their new values by
adding or subtracting positions (it depends on the value of the random number r3, which
is assigned between 0 and 1 with normal distribution). These are considered to be soft
variations around the current position, which means an exploitation of the solution space
in heuristics.

It is worth highlighting that each new individual generated in the exploration and
exploitation phases must be reviewed to ensure that each new position xt+1

ij is between its

maximum and minimum bounds (i.e., xmax
j and xmin

j ). In addition, the first Nava
pv positions

in the new solution vector Xt+1
i are rounded to near integer, since these correspond to the

nodes where the PV sources will be installed, i.e., these must always be integer values.

3.2.3. Implementation of the AOA

The implementation of the AOA described in the previous subsection can be made via
Algorithm 1.

Algorithm 1: Classical AOA proposed in [24].
Data: Distribution system to analyze.

1 Set parameters µ, β and tmax;
2 Make t = 0, and generate the initial population Xt;
3 for t ≤ tmax do
4 Determine the Ff value of each individual Xt

i ;
5 Find the best current solution Xbestt;
6 Update the value of MOAt using Equation (18);
7 Update the value of MOPt using Equation (20);
8 for i = 1 : ni do
9 for j = 1 : nv do

10 Random numbers between 1 and 0 for r1, r2, and r3 ;
11 if r1 > MOAt then
12 Exploration phase;
13 if r2 > 1/2 then
14 Apply the division operator ÷ using Equation (19);
15 else
16 Apply the multiplication operator × using Equation (19);
17 end
18 else
19 Exploitation phase;
20 if r3 > 1/2 then
21 Apply the subtraction operator − using Equation (21);
22 else
23 Apply the addition operator + using Equation (21);
24 end
25 end
26 end
27 Check the upper and lower limits of Xt+1

i ;
28 end
29 end
30 Return the best solution Xtmax

best ;
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3.3. Improving the Exploration and Exploitation of the Solution Space

To improve the exploration and exploitation stages of the original AOA, we propose
a modified version of this algorithm based on the evolution strategy used for the Vortex
Search Algorithm [32], which is based on non-concentric hyper-ellipses around the best
current solution Xt

best. Let us define the center of the hyper-ellipse in the iteration t as Xt
best,

then, via a Gaussian distribution, it is possible to generate a set of solution candidates
that are uniformly distributed across with the solution space. The candidate solutions are
obtained by Equation (23).

Xt+1 = p(z|µt, Σ) (22)

Xt+1 =
1√

(2π)2Nava
pv |Σ|)

exp
{
−1

2
(z− µt)

TΣ−1(z− µt)

}
(23)

where:

• z : vector of random variables.
• Σ : co-variance matrix.

If Σ has equal values in its diagonal (i.e., the same variance) and if the non-diagonal
components are zero, then the Gaussian distribution will generate hyper-ellipses around
the solution space. Considering these characteristics, it is possible to easily calculate Σ
through Equation (24).

Σ = σ0I, (24)

where:

• σ0 : Gaussian distribution variance.
• I : identity matrix with appropriate dimensions.

To calculate the initial standard deviation, Equation (26) can be used:

σ0 =
max{xmax} −min

{
xmin}

2
(25)

where xmax is the maximum radius of the solution space (i.e., r0) [32]. To take the advantage
of the MOAt factor in iteration t, we define the decreasing radius of the hyper-ellipse as
presented in Equation (26).

rt = 1−MOAt (26)

which means that the radius of the hyper-ellipse is reduced at a linear rate.
Here, it is important to mention that the descending population Xt+1, generated with

Equation (23), must be reviewed to ensure that the upper and lower bounds of the decision
variables are observed by each individual Xt+1

i . In addition, the first Npv
ava positions are

rounded to the near integer in order to ensure the discrete nature of the codification vector
(Equation (17)). Algorithm 2, summarizes the proposed optimization approach.



Electronics 2022, 11, 1680 9 of 14

Algorithm 2: Improved AOA based on hyper-ellipses with variable radius.
Data: Distribution system to analyze

31 Set parameters µ, β and tmax;
32 Make t = 0, and generate the initial population Xt;
33 for t ≤ tmax do
34 Determine the Ff value of each individual Xt

i ;
35 Find the best current solution Xt

best;
36 Update the value of MOAt using Equation (18);
37 Update the value of MOPt using Equation (20);
38 Generate random numbers between 0 and 1 for δ ;
39 if δ < 1/2 then
40 for i = 1 : ni do
41 for j = 1 : nv do
42 Generate random numbers between 0 and 1 for r1, r2, and r3 ;
43 if r1 > MOAt then
44 Exploration phase;
45 if r2 > 1/2 then
46 Apply the division operator ÷ using Equation (19);
47 else
48 Apply the multiplication operator × using Equation (19);
49 end
50 else
51 Exploitation phase;
52 if r3 > 1/2 then
53 Apply the subtraction operator − using Equation (21);
54 else
55 Apply the addition operator + using Equation (21);
56 end
57 end
58 end
59 Check the upper and lower limits of Xt+1

i ;
60 end
61 else
62 Determine the current radius rt (Equation (26));
63 Generate the descending population Xt+1 ((23));
64 Check the upper and lower limits of Xt+1;
65 end
66 end
67 Return the best solution Xtmax

best ;

4. Test Feeder Characteristics

To evaluate MAOA in order to locate and size PV sources in electrical distribution
networks, the IEEE 34-bus system depicted in Figure 1 was employed.

∼
slack

1 2 3 4 5
6

7 8 9 10 11 12

13
14
15
16

28
29
30

31
32
33
34

17 18 19 20 21 22 23 24 25 26 27

Figure 1. Grid topology for the IEEE 34-bus network.

The electrical parameters regarding line impedances and load values are listed in Table 1.
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Table 1. IEEE 34-bus network parameters: lines and loads.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.1170 0.0480 230 142.5
2 3 0.1073 0.0440 0 0
3 4 0.1645 0.0457 230 142.5
4 5 0.1495 0.0415 230 142.5
5 6 0.1495 0.0415 0 0
6 7 0.3144 0.0540 0 0
7 8 0.2096 0.0360 230 142.5
8 9 0.3144 0.0540 230 142.5
9 10 0.2096 0.0360 0 0
10 11 0.1310 0.0225 230 142.5
11 12 0.1048 0.0180 137 84
3 13 0.1572 0.0270 72 45
13 14 0.2096 0.0360 72 45
14 15 0.1048 0.0180 72 45
15 16 0.0524 0.0090 13.5 7.5
6 17 0.1794 0.0498 230 142.5
17 18 0.1645 0.0457 230 142.5
18 19 0.2079 0.0473 230 142.5
19 20 0.1890 0.0430 230 142.5
20 21 0.1890 0.0430 230 142.5
21 22 0.2620 0.0450 230 142.5
22 23 0.2620 0.0450 230 142.5
23 24 0.3144 0.0540 230 142.5
24 25 0.2096 0.0360 230 142.5
25 26 0.1310 0.0225 230 142.5
26 27 0.1048 0.0180 137 85
7 28 0.1572 0.0270 75 48
28 29 0.1572 0.0270 75 48
29 30 0.1572 0.0270 75 48
10 31 0.1572 0.0270 57 34.5
31 32 0.2096 0.0360 57 34.5
32 33 0.1572 0.0270 57 34.5
33 34 0.1048 0.0180 57 34.5

The objective function is evaluated by implementing the parameters described in Table 2,
these values are taken from [33].

Table 2. Parameters to evaluate the proposed fitness function.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 US$/kWh T 365 days
ta 10 % te 2 %
Nt 20 years ∆h 1 h

CPV 1036.49 US$/kWp CO&M 0.0019 US$/kWh
ppv,max

i 2400 kW ppv,min
i

0 kW
Nava

pv 3 – ∆V ±10 %
α1 100× 103 US$/V α2 100× 103 US$/V
α3 100× 103 US$/W – – –

In addition, Figure 2 depicts the mean average annual generation profile for a PV generator
in the metropolitan area of Medellín, Colombia, as well as the average load curve [34]. Colombia
is a country without seasons.



Electronics 2022, 11, 1680 11 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.01

Time (h)

D
em

an
d/

So
la

r
cu

rv
es

(p
.u

) Demand Solar

Figure 2. Behavior of demand and generation for Medellín, Colombia.

5. Numerical Validations

To demonstrate the efficiency of the MAOA, this research employed four comparative
methods, three of them based on metaheuristics, namely the Chu and Beasley Genetic
Algorithm (AGCB) [16], the Newton–Metaheuristic Algorithm (NMA) [17], the Arithmetic
Optimization Algorithm (AOA) [24], and the BONMIN solver in the GAMS software. The
implementation of the metaheuristic optimizers was carried out in MATLAB using our
own scripts. Regarding the software, the Matlab R2021b version was used in Microsoft
Windows 10 64 bits version, hardware-wise we worked on an Intel(R) Core(TM) i7–7700HQ
CPU 2.80 GHz computer with 24 GB of RAM.

To analyze the performance of the implemented metaheuristic optimization strategies,
a population size of 10 individuals, 1000 iterations and 100 repetitions of each algorithm
were used. The solutions reached by each optimization method are presented in Table 3.

Table 3. Results for the IEEE 34-bus grid when comparing the proposed MAOA with the
literature reports.

Method Site (Node)
Size (kW) Acost (US$/Year)

Bench. case – 4,588,283.80

BONMIN
{

26(2400), 27(747.45)
34(1336.00)

}
3,355,261.86

DCCBGA
{

11(1055.54), 23(1347.95)
25(2057.09)

}
3,354,711.16

NMA
{

10(994.25), 23(1409.42)
24(2056.85)

}
3,354,676.16

AOA
{

21(1792.20), 26(1652.38)
32(996.68)

}
3,355,035.45

MAOA
{

11(1265.71), 23(1688.73)
27(1498.18)

}
3,354,511.86

Table 3 reveal four important things: (i) the best solution for the IEEE 34-bus grid is
reached by the MAOA, which reaches an objective function value of US$/year 3,354,511.86,
thus implying an improvement of US$ 164.30 per year of operation in comparison with
the solution of the NMA reported in [17]; (ii) With respect to the benchmark case, the
reduction reached by the MAOA is about 26.8896 %, followed by the NMA with 26.8860%,
while the worst approach corresponds to the BONMIN solver in GAMS, with a reduction
of 26.8733% (these values confirm that all the compared methodologies can derive in
improvements in the annual grid performance higher than 27.85% with respect to the
benchmark case); (iii) when the AOA and the proposed modification are compared, it
is observed that there is a difference of about US$/year 523.59 in favor of the MAOA,
which demonstrates that the exploration and exploitation improvements based on variable
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hyper-ellipses around the current solution Xt
best allow for a better numerical performance

in the AOA; and (iv), regarding the nodes where the PV sources are located, the MAOA
identified nodes 11, 23 and 27, a similar set of nodes of the CBGA, where node 25 replaces
node 27. Furthermore, the solutions reported by the other methods are close to this set
of nodes, which implies that the studied problem has multiple near-optimal solutions
with small variations in the final objective function value. This situation clearly makes
finding the global optimum difficult, and additional studies should be conducted in this
research area.

To show that, after the 100 consecutive evaluations, the proposed MAOA has a b+etter
numerical performance, Figure 3 depicts the average reduction found by each one of the
metaheuristic algorithms in all runs.
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)
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Figure 3. Average performance of the metaheuristic optimizers.

The reduction percentages in Figure 3 clearly show that, on average, the MAOA is
the best optimization algorithm to address this problem, given that each one of the 100
solutions implies a reduction between 26.8079 and 26.8896%, only followed by the CBGA
until solution 99, with a range between 26.8091 and 26.8853%. Note that the NMA and the
AOA are located in the third and fourth places, with ranges between 26.6671 and 26.8860%
and 26.7627 and 26.8782%, respectively. To confirm these results, Table 4 reports the
minimum, mean, maximum, standard deviation, and processing times for each algorithm.

Table 4. Statistic behavior of each algorithm (all costs values in US$/year).

Method Min. Mean Max. Std. Time (s)

CBGA 3,354,711.16 3,356,113.05 3,361,340.45 949.06 5.98
NMA 3,354,676.16 3,356,736.54 3,364,721.66 1775.72 21.29
AOA 3,355,035.45 3,357,083.55 3,360,336.27 1163.10 27.98

MAOA 3,354,511.86 3,355,629.78 3,358,260.82 699.43 24.57

Table 4 reveals three important things regarding the proposed MAOA: (i) this is the
only algorithm with a standard deviation lower than US$ 700 per year of operation after
100 consecutive runs, which means that all the solutions obtained by this algorithm are
contained in a small ball around the mean value; (ii) the proposed MAOA is the only
metaheuristic method with mean and maximum values lower than US$/year 3,600,000;
and (iii), regarding the processing times, all the metaheuristics find the optimal solution
with processing times of less than 30 s, with the CBGA being the fastest and the AOA the
slowest. However, for planning, purposes all of the algorithms can be considered to be
efficient in terms of computational effort.

6. Conclusions and Future Work

The optimal location and sizing of PV generation units in distribution networks was
analyzed in this work with an improved version of the Arithmetic Optimization Algorithm
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called MAOA. This algorithm was enhanced with the inclusion of an exploration and
exploitation stages based on hyper-ellipses with variable radius, which were uniformly
distributed using a Gaussian distribution with respect to the current best solution Xt

best if
the value of the parameter δ was lower than 50%. The numerical results demonstrate that
the MAOA finds the best optimal solution reported in the current literature for the IEEE
34-bus grid when compared to the BONMIN solver in GAMS and metaheuristic methods
such as CBGA, NMA, and the original version of the AOA. The reduction percentage
reached by the MAOA was 26.8896% with respect to the benchmark case, which was only
followed by the NMA, with a value of 26.8860%. This implies that the MAOA found an
additional reduction of US$ 164.30 per year of operation in comparison with the NMA.

The statistical analysis confirmed the excellent numerical performance of the proposed
MAOA, given that it had a standard deviation lower than US$/year 700, with average and
maximum values lower than 3.6 million dollars per year of operation, which makes it the
only algorithm among metaheuristics that yields these values.

Finally, the following future works are identified: (i) apply MAOA to the problem
regarding optimal reactive power compensation in distribution grids using fixed-step
capacitors and distribution static compensators; (ii) reformulating the studied MI-SOCP
model into a mixed-integer conic model that can guarantee that the global optimum is
found via interior-point and branch and bound methods; and (iii) to include in the proposed
MINLP model the effect of different days along the year for countries where seasons have
important effects on the solar PV energy production.
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