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Abstract: This research proposes an efficient energy management system for standalone and grid-
connected direct current (DC) distribution networks that consider photovoltaic (PV) generation
sources. A complete nonlinear programming model is formulated to represent the efficient PV
dispatch problem while taking three different objective functions into account. The first objective
function corresponds to the minimization of the operational costs with respect to the energy purchas-
ing costs at terminals of the substation, including the maintenance costs of the PV sources. The second
objective function is the reduction of the expected daily energy losses regarding all resistive effects of
the distribution lines. The third objective function concerns the minimization of the total emissions of
CO2 into the atmosphere by the substation bus or its equivalent (diesel generator). These objective
functions are minimized using a single-objective optimization approach through the application of
the Salp Swarm Algorithm (SSA), which is combined with a matrix hourly power flow formulation
that works by using a leader–follower operation scheme. Two test feeders composed of 27 and
33 nodes set for standalone and grid-connected operation are used in the numerical validations.
The standalone grid corresponds to an adaptation of the generation and demand curves for the
municipality of Capurganá, and the grid-connected system is adapted to the operating conditions in
the metropolitan area of Medellín, i.e., a rural area and a major city in Colombia. A numerical com-
parison with three additional combinatorial optimizers (i.e., particle swarm optimization (PSO), the
multiverse optimizer (MVO), and the crow search algorithm (CSA)) demonstrates the effectiveness
and robustness of the proposed leader–follower optimization approach to the optimal management
of PV generation sources in DC grids while considering different objective function indices.

Keywords: direct-current distribution grids; grid-connected and standalone distribution networks;
combinatorial optimization methods; efficient energy management systems; photovoltaic generation;
multiple objective functions; daily operation dispatch

1. Introduction
1.1. General Context

The energy transition is currently a necessity for humans due to global population
development and growth, as well as to the high demand for electric energy associated with
it. This has generated a global warming phenomenon related to the negative environmental
impacts of the energy crisis, as well as to the excess of energy demand and low generation,
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which is mainly based on fossil fuels [1,2]. Electrical networks can be considered part of the
three main greenhouse gas emitters (mainly CO2), surpassed only by extensive livestock
and transportation systems. The electrical sector’s emissions of atmospheric pollutants are
associated with thermal generation plants that use coal, natural gas, or diesel to produce
electricity [3,4]. With the aim of reducing the negative impacts of conventional fossil
fuel-based generation, modern power grids are gradually integrating renewable energy
resources at all voltage levels, i.e., from high- to low-voltage networks [5,6]. This has been
possible thanks to the advances made in power electronics and renewable generation [7,8],
with photovoltaic (PV) generation being the most abundant and installed renewable source
around the world.

Colombia’s energy matrix is composed mainly of conventional large hydroelectric
generation systems (68.4%) and thermal power plants (30.6%). Only 1% is associated with
non-conventional generation sources, i.e., renewable energy (data gleaned by observing
electrical consumption during 2018 [9]). Within the energy matrix of Colombia, 69.4% of the
electricity is produced by clean sources (hydroelectric and renewable), and the remaining
electricity is generated by fossil fuel-based resources. By analyzing this behavior, it is
possible to observe the need to diversify the energy matrix, given its high dependence
on hydroelectric generation (which could have a significant impact if there is a deficit in
precipitations) and fossil fuels. Thus, creating opportunities for the growth of renewable
energy sources in the coming years [10,11]. It is also important to highlight that Colombia’s
geographical location (i.e., between the equatorial line and the tropic of Cancer) implies no
influence of the seasons, with a high number of solar hours throughout the year [12] and
important solar radiation levels.

The problems and opportunities described above have caused Colombia to be con-
sidered a potential candidate for the inclusion of PV power generation, for which many
literature works and PV generation projects have been conducted [11,13]. Research in this
field has focused on two kinds of electrical networks: grid-connected and standalone, also
known as urban and rural networks. Furthermore, in recent years, there has been a particu-
lar increase in the implementation of direct current (DC) grids due to the advantages of this
technology in comparison with alternating current (AC) grids, such as low implementation
costs and operational complexity given the absence of reactive components [14–16]. The
widespread inclusion of PV distributed generators, and the implementation of DC grids
have created a need to study and propose energy management systems that allow for a
smart operation of PV distributed generation (DG) in both urban and rural DC networks
by considering power generation and demand, as well as all technical parameters related
to the urban and rural regions of Colombia. The aim of this research work is to improve
the technical, economic, and environmental conditions of this type of grid.

1.2. Motivation

In recent years, many researchers, industrial companies, and governments have set out
to ensure resilient energy systems composed of renewable energy resources and smart en-
ergy systems that allow obtaining technical, economic, and environmental benefits for both
users and operators [17,18]. In this vein, DC grids are widely used and studied because of
their aforementioned advantages. In light of the global trends and the needs and challenges
identified for Colombia, the government has developed different laws and regulations in
order to encourage the adequate development of electrical systems in the short and long
term [19,20]. Here, the aim is to promote the massive integration of renewable energy and
resilient electric systems with high quality levels [21–24]. Based on the current need to
propose energy management systems for DC grids with improved technical, economic,
and environmental conditions, this work focuses all efforts on obtaining an efficient system
for operating PV generation sources in DC standalone and grid-connected networks in
both urban and rural areas. This involves reducing operating costs, power losses, and
CO2 emissions.
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1.3. State of the Art

In the literature, different approaches have been proposed for solving the problem
regarding the optimal operation of PV generation units in electrical distribution grids using
energy management systems. An example of this is the work by [22], who thoroughly ana-
lyzed the possibility of supplying part of the electrical energy consumption of residential
users in Bogotá, Colombia, based on the benefits granted by Law 1715 of 2014 [19]. The
authors analyzed two different residential consumers from strata 2 and 3 of the Colom-
bian socio-economic scale (where 1 is the lowest level) by considering penetrations of PV
generation ranging between 10 and 100% of their self-consumption. Numerical results
demonstrated that, in all cases, positive profits are perceived by the users during the first
year of operation of their PV residential installations. The authors of [25] proposed an
efficient convex optimization model for optimally operating PV generation sources in DC
distribution networks, with the aim of minimizing CO2 emissions. Their optimization
model was based on the branch power flow formulation, and numerical results in the DC
versions of the 33- and 69-bus test systems demonstrated the effectiveness and robustness
of the proposed conic optimization model when compared to the exact nonlinear program-
ming solvers available in the GAMS software. However, after multiple simulations, it
was observed that the solution of the conic model could deviate from the exact solution
of the studied problem if a component of the energy losses is not considered during the
optimization process. The authors of [15] proposed an efficient optimization approach
based on combining the vortex search algorithm (VSA) and the successive approximations
(SA) power flow method, which employs a master–slave optimization approach to locate
and operate PV generation sources in AC and DC networks. Thus, VSA is a nature-inspired
optimization method that employs the behavior of fluids for solving nonlinear problems
with continuous variables. Numerical results in the 33- and 69-bus test systems demon-
strated the effectiveness of the proposed approach in comparison with the Chu and Beasley
Genetic algorithm (CBGA) presented by [12] in terms of the quality of the solution and
processing times. The CBGA employs an iterative process based on genetic evolution that
uses selection, recombination, and mutation. The study by [26] presented the application
of the generalized normal distribution optimization approach to locate and size PV sources
in DC grids. This approach uses evolution rules for exploring the solution space with the
aim of finding a good-quality solution. According to the numerical results, this method
outperforms the reports of the VSA and CBGA in [12,15] in terms of the solution obtained,
the standard deviation, and the processing time required. However, the main flaw in
these works corresponds to the use of the maximum power point of the PV distributed
generators to define the optimal sizes of the PV sources, which implies that, in order to
obtain the expected objective function values, the PV sources must generate the maximum
power available, which is not adequate if the demand curves vary. With the same operation
scheme for the PV distributed generators, other works have been reported in the literature
whose goal is to solve the optimal dispatch power problem in DC networks by using
master–slave strategies. These works have used the 69- and 33-bus test systems to evaluate
the effectiveness of the proposed solutions in terms of solution quality, repeatability, and
processing times. One example of this is the implementation of the multiverse optimization
algorithm (MVO) [27], which employs the universe’s dynamics for solving continuous
problems. The work by [28] used PSO, a technique that takes advantage of the hunting
dynamics of birds and fish to obtain solutions of good quality in problems with continuous
variables. The CSA has also been used, which is inspired by the hunting strategies of crows
for solving continuous problems [29]. Table 1 summarizes the main works found during
this research, which address the power dispatch problem of PV distributed generators in
DC grids.
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Table 1. Works reported in the specialized literature for solving the problem regarding the optimal
operation of PV generation units in DC distribution networks.

Optimization Methodology Year Reference

Particle swarm Optimization algorithm 2009 [28]
Crow search algorithm 2017 [29]
Heuristic analysis based on regulation 2021 [22]
Multiverse optimization algorithm 2021 [27]
Convex optimization 2021 [25]
Vortex search algorithm 2022 [15]
Generalized normal distribution optimization approach 2022 [26]

The above demonstrates the need and importance of energy management systems
for the optimal dispatch of PV distributed generation in electrical networks to improve
technical, economic, and environmental conditions in a scenario of variable power gener-
ation and demand. Furthermore, it can be noted that these energy management systems
must be efficient with regard to solution quality, standard deviation, and processing times.
Thus, the aim is to obtain solutions of good quality and with a faster response to changes
in data associated with power demand and renewable generation. Furthermore, this work
identified the need to obtain all data related to the technologies, energy and maintenance
costs, emission indices, and environmental and power demand conditions of the electrical
systems and users for the studied regions.

1.4. Scope and Main Contributions

The main contributions of this research are listed below:

i. A characterization of data and technical, economic, and environmental parameters
for grid-connected and standalone DC grids located in urban and rural regions of
Colombia.

ii. A new energy management system approach to operate PV generation sources in stan-
dalone and grid-connected DC networks, which is based on a master–slave methodol-
ogy. The master stage involves the salp swarm algorithm with a continuous codifica-
tion that considers PV generators with variable generation instead of the traditionally
used maximum power point operations. The slave stage implements a matrix hourly
power flow that evaluates all of the solutions provided by the master stage in order to
guarantee shorter processing times and excellent convergence.

iii. The inclusion of three different objective functions in the proposed energy manage-
ment system approach allows the distribution company and the users to select the best
performance indicator as a function of operating policies. These objective functions
are the minimization of the operating costs associated with energy purchasing and PV
maintenance costs, the minimization of the total CO2 emissions, and the minimization
of the energy losses. The three objective functions are formulated for evaluating a
single day of operation.

iv. A new matrix hourly power flow methodology based on the successive approximation
method, whose aim is to calculate the impact of the different power generation and
demand levels of an operation day on the grid. This allows the reducing of the
processing times in comparison with the traditional methods used in the literature.

It is worth mentioning that, in this research, the following considerations are taken into
account. (i) The two DC distribution grids set as grid- (rural) and standalone (urban) areas
in Colombia are considered for the numerical validations. The rural area corresponds to a
standalone distribution network in the municipality of Capurganá, and a grid-connected
network in the metropolitan area of Medellín is taken into account. (ii) The PV generation
curve is set for each one of these areas while considering solar radiation and temperature
data provided by NASA, as well as polycristalline photovoltaic panels. (iii) The expected
daily power consumption is defined by considering historic data reported by distribution
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companies that operate the electrical networks in Capurganá and Medellín. In addition,
note that in order to validate the effectiveness of the SSA approach, numerical comparisons
with multiple combinatorial optimizers are carried out, namely with PSO, MVO, and CSA.

1.5. Paper Structure

This research article is organized as follows. Section 2 presents the general mathemati-
cal formulation of the energy management system that represents the problem regarding
the optimal operation of PV generation units in DC distribution networks while considering
different objective functions. Section 3 describes the general implementation of the SSA
approach to solve continuous optimization problems by presenting its generic mathemati-
cal structure, as well as the proposed codification vector that represents the PV expected
dispatch for each period of time. In addition, this section presents the proposed matrix
hourly power flow formulation. Section 4 shows the parametric information of the urban
and rural test systems under study, as well as the procedure followed to obtain the PV
generation and demand curves for the Colombian regions under study. Section 5 presents
all the numerical validations, including their analysis and discussion. These results include
a complete comparison with several well-known combinatorial optimization methodolo-
gies. Finally, Section 6 lists the main conclusions of this research, as well as some possible
future works.

2. Mathematical Formulation

This section presents the mathematical formulation for the optimal power dispatch
of PV sources in DC grids (i.e., the energy management system), including the objective
functions used and the set of constraints that represent a DC grid while considering
economic, technical, and environmental objective functions.

2.1. Objective Functions

As objective functions, three different grid indices were considered, namely the reduction
of operational costs (economic index), the reduction of power losses associated with the
transport of the energy in the electrical grid (technical index), and the reduction in CO2
emissions associated with the energy supplied by polluting generators (environmental index).

2.1.1. Reduction of Operational Costs

Equation (1) corresponds to the economic index. This objective function aims to
minimize the energy operating costs of the DC grids (Ecost) by considering the energy
purchasing cost of the conventional generators ( f1), as well as the maintenance costs of the
PV sources ( f2) for a day of operation in 1 h intervals.

min Ecost = f1 + f2 (1)

By using Equation (2), it is possible to calculate the energy purchasing costs of the
conventional generators, which is herein associated with the slack bus of the electrical
system. In this Equation, CkWh corresponds to the energy costs by kWh, ps

i,h denotes the
power supplied by the conventional generator located at node i at hour h, and ∆h is the
period of time in which the power is supplied by the generator. In this equation,H and N
represent the set of hours considered in the analyzed time horizon (24 h in this particular
case) and the total nodes that make up the electrical system, respectively.

f1 = CkWh

(
∑

h∈H
∑

i∈N
ps

i,h∆h

)
(2)

Equation (3) calculates the maintenance costs associated with the PV sources. In this
equation, CO&M represents the maintenance costs by kW produced by the PV sources, and
ppv

i,h denotes the power produced by the PV sources located at bus i, during the period of
time h.



Sustainability 2022, 14, 16429 6 of 25

f2 = CO&M

(
∑

h∈H
∑

i∈N
ppv

i,h∆h

)
(3)

2.1.2. Reduction of Energy Losses

Equation (4) allows the total energy losses related to the transport of energy in the
electrical system for a day of operation to be calculated. In this equation, Rl and Il denote
the resistance and current of branch l, while L represents the set of branches that make up
the electrical system.

min Eloss = ∑
h∈H

∑
l∈L

Rl I2
l ∆h (4)

2.1.3. Reduction of CO2 Emissions

Finally, this paper considers the minimization of CO2 emissions related to convectional
generators among the objective functions. This is possible by means of Equation (5).

min ECO2 = CEs

(
∑

h∈H
∑

i∈N
ps

i,h∆h

)
(5)

It is important to highlight that this work does not consider CO2 emissions by PV
sources, as this renewable energy source entails no emissions. Some works argue that
the construction of this technology generates environmental impacts, but these are not
considered when the PV sources are operating in the electrical grid [30].

2.2. Set of Constraints

The set of constraints that represent the problem addressed in this paper is presented
in Equations (6) to (10).

ps
i,h + ppv

i,h − Pd
i,h = vi,h ∑

j∈N
Gijvj,h (6)

Ps,min
i ≤ ps

i,h ≤ Ps,max
i (7)

Ppv,min
i ≤ ppv

i,h ≤ Ppv,max
i (8)

Vmin
i ≤ vi,h ≤ Vmax

i (9)

− Imax
l ≤ Il,h ≤ Imax

l (10)

ppv
i,h ≤ Ppv

i Cpv
h (11)

Equation (6) ensures the power balance in the DC grid. In this equation, ps
i,h and

ppv
i,h represent the power generated by the conventional and PV distributed generator

located at bus i in hour h; Pd
i,h denotes the power demand by the load connected at the

bus i in hour h; vi,h and vi,h are the voltage profiles at buses i and j at time h; and Gij is
the conductance associated with the branch that interconnects buses i and j. Box-type
inequality constraint (7) describes the power limits of the conventional generators, where
Ps,min

i and Ps,max
i represent the minimum and maximum power limits of the conventional

generator located at bus i in hour h. Inequality constraint (8) guarantees the technical
power limits of the DGs located in the DC grids. In this equation, Ppv,min

i and Ppv,max
i

are the power bounds associated to the PV sources, which depend on the PV technology
used and the weather conditions of the region where the electrical grid is installed (solar
radiation and environment temperature). Box-type inequality constraint (9) establishes
the voltage bounds of the nodal voltage, where Vmin

i and Vmin
i are the minimum and

maximum voltages allowed, respectively. In addition, inequality constraint (10) represents
the current that can flow through the branches. In this inequality, Imax

l corresponds to
the maximum current allowed in branch l. In this inequality, the limits of this value have
positive and negative magnitudes, as the current can flow in both directions in DC grids.
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Finally, inequality constraint (11) allows the PV sources to deactivate maximum power point
tracking, which will depend on the grid’s energy requirements. In this inequality constraint,
Cpv

h is the expected PV generation behavior curve for the area where the distribution grid
is located.

2.3. Fitness Function

In this paper, aiming to ensure that all constraints related to the DC grid’s integration
of PV sources are observed, as well as to improve the exploration of the algorithm, a fitness
function (FF) is used [15].

FF = OF + αPen (12)

Pen =

max
{

0, Vi,h −Vmax
i

}
−min

{
0, Vi,h −Vmin

i
}
−min

{
0, real(ps

i,h − Ps,min
i )

}
+min

{
0, real(ps

i,h − Ps,min
i )

}
+ max

{
0, Il,h − Imax

l
}

 (13)

Equation (12) penalizes the objective function if the technical or operating limits are
violated. In this equation, Pen is the penalization value (see Equation (13)), which is
calculated by using max and min functions that take a value of zero when the constraint
is satisfied; otherwise, they take the violation value. In the proposed FF, the constant α is
used to normalize the penalization value before it is added to the objective function OF.

3. Optimization Methodology

The problem regarding the optimal power dispatch of PV sources in DC grids is
addressed via a master–slave methodology. Here, the proposed approach uses SSA as the
master stage [31], in conjunction with the DC version of the successive approximations (SA)
power flow method as the slave stage [27]. The SSA is entrusted with defining the power
that each photovoltaic distributed generator (PV-DG) located in the network must generate
for each hour of operation. Therefore, this study uses the codification presented in Figure 1.
On the other hand, the SA deals with the constraints associated with the mathematical
model defined from (1) to (10).

0.82 0.91 0.13 … 0.91 0.63 0.09 0.96 … 0.28 … 0.55 0.96 0.16 … 0.14

h = 7 h = 8 h = 9 … h = 19 h = 7 h = 8 h = 9 … h = 19 h = 7 h = 8 h = 9 … h = 19

PV generator 1 PV generator 2 PV generator i

Figure 1. Codification used for the energy management of PV sources in DC networks.

Figure 1 depicts a vector of size 1× (i · H), where the number of columns corresponds
to the number of PV sources located in the network (i.e., i) for each hour of solar resource
availability (i.e., H). In the case of Colombia, the solar resource is available for 13 h a day,
i.e., from 7:00 to 19:00 [32]. Under these conditions, PV generators dispatch a power of
0.82 MW during hour 7, 0.91 MW during hour 8, 0.13 MW during hour 9, and 0.91 MW
during hour 19. Similarly, the PV generator i generates a power of 0.55 MW during hour
7, 0.96 MW during hour 8, 0.16 MW during hour 9, and 0.14 MW during hour 19. This
codification allows the proposed approach to provide the optimal operation of PV sources
while considering the hourly variation of the solar resource.

The next subsections describe each stage of the proposed solution methodology.

3.1. Salp Swarm Algorithm

The SSA is a bio-inspired metaheuristic method originally proposed in [31], which is
based on the behavior of salps in their natural habitat. Salps are fish that live in swarms
and form chains, which facilitates their movement through the deep ocean while searching
for food in hard-to-reach places. This behavior can be mathematically modeled through
some simple rules of evolution, which will be explained below [31,33–36].
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3.1.1. Initial Population

In the SSA, the initial population takes the structure shown in (14).

St =


st

11 st
12 · · · st

1Nv
st

21 st
22 · · · st

2Nv
...

...
. . .

...
st

Ni1
st

Ni2
· · · st

Ni ,Nv

, (14)

where St is the matrix containing the position of the salps at iteration t, Ni is the number
of individuals that make up the population, and Nv is the number of variables or the
dimension of the solution space, i.e., the product between the number of PV generators
located in the network and the hours of solar resource availability (i · 13).

To create an initial population of individuals while observing the structure shown in
Figure 1, Equation (15) is used, which generates a matrix of random numbers that contains
all the possible solutions within the operating range of the PV generators.

S0 = Yminones(Ni, Nv) + (Ymax −Ymin)rand(Ni, Nv) (15)

where ones(Ni, Nv) is a matrix filled by ones, rand(Ni, Nv) is a matrix of random numbers
that take values between 0 and 1 and are generated by means of a uniform distribution,
and Ymin and Ymax are vectors representing the lower and upper bounds of the solution
space, as shown below:

Ymin =
[
Ymin

1 , · · · , Ymin
i
]
,

Ymax =
[
Ymax

1 , · · · , Ymax
i

]
,

with Ymin
i and Ymax

i being the vectors that contain the lower and upper limits of the decision
variables associated with the dispatch of a PV generator i, as shown below:

Ymin
i =

[
ymin

i,1 , · · · , ymin
i,H

]
,

Ymax
i =

[
ymax

i,1 , · · · , ymax
i,H

]
.

When the initial population of salps is generated, the objective function of each of the
individuals is evaluated, as shown in (16).

FF(St) =


FF(St

1)
FF(St

2)
...

FF(St
Ni
)

 (16)

During this process, the population is rearranged according to the value of the fitness
function, and the best salp is selected as the leader, as shown in Equation (17), while the
others are considered to be followers.

St
l = St

best = FF(St
1) (17)

Remark 1. Since the problem addressed in this paper involves minimization, the values of FF(St)
are arranged from lowest to highest. Similarly, FF(·) represents the adaptation function to be
minimized, which may be the operating costs, the energy losses, or the polluting gas emissions,
according to the needs of the network operator.
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3.1.2. Salp Chain Movement

In the SSA, salps are divided into two groups: leaders and followers. The leader leads
the chain to the best food source found so far, while the followers follow each other, i.e.,
they follow the leader directly or indirectly. Depending on their position in the salp chain,
they can move in two different ways: (i) with respect to the leader’s position and (ii) based
on the principles of classical mechanics.

1. Case 1: Movement with respect to the leader’s position
In the first half of the population, the salp chain moves around the leader, as shown
in (18).

St+1
i,j =

{
St

l(1,j) + C1((Ymax
j −Ymin

j )C2 + Ymin
j ) C3 ≥ 0.5

St
l(1,j) − C1((Ymax

j −Ymin
j )C2 + Ymin

j ) C3 < 0.5
(18)

where St+1
i,j is the new position of salp i in the j-th dimension, St

l(1,j) is the position
of the leader in the j-th dimension, and C2 and C3 are randomly generated values
between 0 and 1.
In addition, C1 is the most important parameter in the SSA, as it is responsible for a
correct balance between the exploration and exploitation of the solution space. This
parameter is shown in (19), where t is the current iteration, and tmax denotes the
maximum number of iterations.

C1 = 2exp

(
−
(

4t
tmax

)2
)

(19)

2. Case 2: Movement based on the principles of classical mechanics
To update the position of the second half of the population, Newton’s laws of motion
are employed in order to represent their movement, as shown in (20).

St+1
i,j =

St
i,j − St

i−1,j

2
(20)

3.1.3. Leader Updating

Once the position of the salps has been modified based on the mechanisms described
above, it is necessary to update the position of the best food source in terms of the quality
of the food. Said position should be updated if there is a salp whose fitness function is
better than that of the leader, as shown by expression (21).

St+1
l =

{
St+1

i if FF(St+1
i ) < FF(St

l )

St
l otherwise

(21)

3.2. Matrix Hourly Power Flow

This method allows iteratively solving the active power balance equation shown in
(6). Therefore, the slave stage can evaluate the constraints established in the mathematical
model for each hour of operation of the DC network. In this way, it is possible to determine
the economic, technical, and environmental benefits of each of the individuals provided by
the SSA for an average day of operation (i.e., power injection vector for each PV generator
on an hourly basis). The recursive formula that allows solving the power flow formulated
in (5) is presented in (22).

Vm+1
d,h = −G−1

dd

[
diag−1(Vm

d,h)(Pd,h − Ppv,h) + GdsVs,h

]
(22)

where m is the iteration counter, Vd,h is the vector containing the voltage at the demand
nodes for each time period h, Gds is the component of the conductance matrix that associates
the slack node with the demand nodes, Gdd is the component of the conductance matrix
that relates the demand nodes to each other, Pd,h is the vector containing the active power
demand at the load nodes for each time period h, Ppv,h is the vector containing the active
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power generated by each PV unit for each time period h, Vs,h is the vector containing the
voltage at the substation node terminals for each time period h, which is a known parameter
for the power flow solution, and diag(z) is a diagonal matrix made up of the elements of
the vector z. Note that the value of Ppv is provided by the master stage and is a vector that
respects the codification shown in Figure 1. The iterative process ends when the maximum
difference of the demand voltage magnitudes between two consecutive iterations is less
than the maximum admissible error (i.e., convergence criterion), as shown in (23):

max
{
||Vt+1

d,h | − |V
t
d,h||

}
≤ ε (23)

where ε is the convergence error. In this paper, a value of 1× 10−10 was assigned to ε
since it ensures a correct convergence of the power flow method, which is suggested and
evaluated in [27]. The cited work mentions another important stopping criterion for power
flow methods: the maximum number of iterations (usually 1000). However, for this work,
ε was enough, as it guarantees an excellent convergence with short processing times.

Once the active power flow has been solved using SA for all time periods h, it is
possible to calculate the value of Eloss. To this effect, it is necessary to calculate the current
that circulates through the distribution lines in each time period h, as shown in (24).

Il,h = GpAT
[
Vs,h
Vd,h

]
(24)

where Il,h is the vector in the complex domain that contains the current flowing through
the distribution lines of the system, Gp is the primitive conductance matrix containing the
inverse of the resistance of each line on its diagonal, and A is the incidence matrix.

Similarly, to obtain the value of Ecost and ECO2 , it is necessary to calculate the active
power generated at the terminals of the slack node, as shown in (25).

Ps,h = diag(Vs,h)(GssVs,h + GsdVd,h) (25)

where Ps,h is the vector containing the active power produced at the slack node, and Gss is
the component of the conductance matrix associated with the slack node.

Note that in order to determine the value of the objective functions defined in (1), (4)
and (5), it is necessary to execute the SA power flow method hmax times, which is subject to
the operating period of the system. This document assumes a one-day operation, within
which the values of the power generated and consumed in the system by the PV sources
and the loads are updated on an hourly basis, i.e., hmax = 24. Thus, at the end of the day,
the total effect on economic, technical, and environmental indicators can be quantified. In
this vein, as hmax takes a higher value, the power flow method must be executed a greater
number of times, thus increasing the time taken by the slave stage to determine the value
of the aforementioned indicators.

To avoid this, a modification of the recursive formula shown in (23) is proposed, which is
based on the Hadamard matrix product and division, i.e., element-wise product and division,
respectively [37]. This modification allows the performing of operations element by element,
as long as the arrays to be operated the same size or are compatible in this regard. That is
to say if the element of the first array coincides with the element in the same location of the
second array [38]. For two matrices, A and B, with the same dimension m× n, the Hadamard
product is defined with the operator ◦. In the same way, the Hadamard division is defined by
the operator �, as shown in (26) and (27).

(A ◦ B)ij = AijBij (26)

(A� B)ij =
Aij

Bij
(27)
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These operators allow the evaluation of all the time periods hmax established for the
system’s operation in a single power flow. The modified recursive formula is shown in (28).

Vm+1
dh = −G−1

dd

[
(1�Vm

dh) ◦ (Pdh − Ppvh) + GdsVsh

]
(28)

where Vdh is a matrix containing the voltage at the demand nodes for each time period
h, Pdh is a matrix containing the active power demand at the load nodes for each time
period h, Ppvh is a matrix containing the active power generated by each PV unit for
each time period h, and Vsh is a matrix containing the voltage at the substation node
terminals for each time period h. Note that the parameters of the power flow changed
from column vectors to matrices whose dimension depends on the number of nodes of
the system n, as well as on the period of operation of the system hmax. For the purposes
of this document, the power flow method will be referred to as the matrix successive
approximations (MSA). Likewise, the solution of the MSA iterative formula is obtained
when the convergence criterion established in (23) is met by extending it to the matrix
formulation, i.e., max

{
max

{
||Vm+1

dh | − |V
m
dh||
}}
≤ ε.

In the same way, the Hadamard operators can be applied to calculate the current that
circulates through the distribution lines and the active power generated at the terminals of
the slack node, as shown in (29) and (30).

Ilh = GpAT ◦
[
Vsh
Vdh

]
(29)

Psh = Vsh ◦ (GssVsh + GsdVdh) (30)

Figure 2 provides a general description of the process adopted by the proposed master–
slave methodology in order to solve the problem regarding the optimal power dispatch of
PV sources in DC grids.

Start: Read
electrical data

Define parame-
ters Ni , Nv, tmax,

Ymin and Ymax

Create the initial
population using (15)

Calculate the fitness
function for each

individual using (12)

Select and update
the salp leader

using (17) and (21)

t ≥ tmax?

End: Report
Sl and FF(Sl)

Apply evolution
criteria defined
in (18) and (20)

no

yes

Figure 2. General implementation of the master–slave methodology to solve the optimal dispatch
problem for PV sources in DC networks.
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4. Test Systems, Input Data, and Considerations

This work considers two types of DC electrical networks: a grid-connected network
(GCN) that uses load demand and generation data for Medellín, a city located in Antioquia,
Colombia, which is connected to the national electrical grid and controlled by the electrical
company Empresas Públicas de Medellín (EPM); and a standalone network (SN) located
in Capurganá, a little town located in Chocó, Colombia, which operates by using diesel
and is regulated by the IPSE, a government organization entrusted with planning and
promoting energy solutions for standalone grids. The input data, electrical parameters, and
distributed energy resources considered for both electric networks are presented below.

4.1. Power PV Generation and Demand Curves

This section describes the power generation and demand behavior in the studied GCN
and SN. In order to obtain these values, the solar radiation and environment temperature
were considered, as well as the power demand behavior data for the connected and
standalone grids from 1 January to 31 December 2019. This year was selected with the aim
of studying a scenario from before the COVID-19 pandemic, which affected the energy
behavior of all users around the world.

To calculate the power production of a PV distributed generation system, the literature
widely uses Equations (31) and (32). This is explained by the fact that this mathematical
formulation considers the characteristics of photovoltaic technology and the effects of solar
radiation and environmental temperature on the hourly energy production, thus allowing
the behavior for a day of operation to be obtained.

ppv
i,h = Ppv

i fpv

(
GT

h

GT,STC
i

)[
1 + αp

(
Tc

i,h − Tc,STC
i

)]
(31)

Equation (31) allows the power generated by the PV systems located at the bus i in
the period of time h to be calculated. In this equation, Ppv

i is the nominal capacity of the
PV DG located at bus i, fpv is an efficiency factor that considers the external variation
related to the panel material and mismatching, among others, GT

h and GT,STC
i represent

the solar radiation in the PV systems in hour h and under standard test conditions (STC),
αp is the power coefficient related to the temperature, and Tc

i,h and Tc,STC
i are the surface

temperature of the PV system installed at node i in hour h and under STC, respectively.

Tc
i,h = Ta

h + GT
h

(
Tc,NOCT

i − Ta,NOCT
i

GT,NOCT
i

)(
1−

ηc
i

τα

)
(32)

To calculate Tc
i,h for each hour of operation, Equation (32) is used, where Ta

h denotes

the environment temperature in hour h; Tc,NOCT
i , GT,NOCT

i , and Ta,NOCT
i are the surface

temperature, the solar radiance level, and the environment temperature of the PV system
installed in bus i under nominal operating conditions, respectively; ηc

i is the efficiency; τ is
the solar transmittance; and α is solar absorption of the PV systems located at bus i.

Figure 3a illustrates the power generation of an average day for both DC networks:
GCN and SN. In order to obtain these PV power generation data, a PV polycrystalline
silicon panel was considered, which is widely used around the world [39,40], especially
in Colombia. The PV parameters reported for this kind of PV panels are the following:
Ppv

i (1 W), fpv (95%), GT,STC
i (1000 W/m2), αp (0.00451/◦C), d Tc,STC

i (25 ◦C), Tc,NOCT
i

(46 ◦C), GT,NOCT
i (800 W/m2, Ta,NOCT

i (20 ◦C), ηc
i , and τ α (0.9). Furthermore, in this

work, the average solar radiation and environment temperature reported in [41] for the
GCN and the SN were considered in the calculations. These values, as well as the power
generation behavior of this PV system in both analyzed regions, are presented in Table 2,
namely (from left to right) the hour analyzed, the average daily solar radiation GT and
environment temperature Ta, and the power generation in pu. Cpv, which was obtained by
using Equation (31).



Sustainability 2022, 14, 16429 13 of 25

Table 2. PV generation data: solar radiation (W/m2), environment temperature (°C), and PV power
generation in (pu) for the GCN and SN.

Region Medellín (GCN) Capurganá (SN)

Hour GT Ta Cpv GT Ta Cpv

1 0 16.14132 0 0 24.44252 0
2 0 15.90636 0 0 24.32474 0
3 0 15.68132 0 0 24.22545 0
4 0 15.46022 0 0 24.14674 0
5 0 15.27545 0 0 24.08422 0
6 0 15.10329 0 0 24.03482 0
7 46.02425 15.15718 0.04541 29.14570 24.10367 0.02770
8 190.83559 16.15636 0.18424 142.11066 24.78126 0.13277
9 362.83753 17.43868 0.34100 291.61926 25.68211 0.26622

10 526.64647 18.87312 0.48161 431.95384 26.63671 0.38547
11 640.99058 20.27438 0.57375 540.61581 27.47515 0.47362
12 709.05312 21.36342 0.62572 605.16362 28.10252 0.52397
13 701.86370 21.98721 0.61809 606.93027 28.46775 0.52442
14 626.82690 22.12107 0.55716 583.07479 28.56923 0.50519
15 499.86074 21.83071 0.45236 490.55904 28.42334 0.43065
16 346.26581 21.20351 0.32052 359.22033 28.03460 0.32148
17 186.66671 20.38668 0.17693 204.48775 27.44945 0.18722
18 52.33403 19.35951 0.05066 64.51775 26.69008 0.06034
19 0.50986 18.32258 0.00050 3.17460 25.89016 0.00300
20 0 17.72414 0 0 25.39227 0
21 0 17.29586 0 0 25.09285 0
22 0 16.96148 0 0 24.87663 0
23 0 16.67395 0 0 24.70841 0
24 0 16.40545 0 0 24.56926 0
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Figure 3. Average daily power generation and demand for the grid-connected and standalone
networks of the regions under study.

Finally, Figure 3b presents the average daily power demand for both regions under
study. To obtain said values, this work used the same period of time as the PV generation.
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This was based on data reported by EPM for the GCN located in Medellín [42] and by the
IPSE for the SN located in Capurganá [43].

4.2. Grid-Connected System

To study the GCN, the 33-bus test system reported in [26] was considered, along
with the integration of three PV sources at buses 12, 15, and 31, with a nominal power of
2400 kW. These are the locations suggested by the literature for this electrical system. The
electrical topology of the GNC system is illustrated in Figure 4. This test feeder is composed
of a single slack generator located at bus 1, 33 buses, and 32 branches, with a voltage of
12.66 kV and 100 kW as base values. The electrical parameters for the GCN are presented
in Table 3, namely (from left to right) the branch number, the sending node, the receiving
node, the resistance of the branch in Ω, the power demand at the receiving bus, and the
maximum current allowed in each line, which was calculated by using a power flow in the
base case and considering a scenario without PV distributed generation. With the currents
obtained by the power flow and table 310-16 of the NTC-2050 [44], (i.e., the Colombian
electrical code) the caliber for each one of the branches that make up DC grid was selected.
Finally, a maximum variation for the voltage profiles of +/−10% of the nominal voltage
was considered, as per the NTC-1340 [45].

Table 3. Electrical parameters of the grid-connected network.

Branch Node i Node j R (Ω) Pj (kW) Imax (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 17114 200 85
8 8 9 10300 60 70
9 9 10 10400 60 55
10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 14.680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 12890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 15042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 10590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20
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Figure 4. Grid-connected network composed of 33 buses.

To calculate the different objective functions under study, the parameters reported in
Table 4 were used [46,47]. This table presents, from top to bottom for the GCN and the SN,
the energy purchasing costs of the conventional generators, the maintenance costs of the PV
sources, and the CO2 emissions generated to produce a kW of power with the conventional
and PV distributed generators. It is important to highlight that, for PV technologies, an
emission level of zero was considered, as this kind of renewable energy resource does not
pollute during the energy production process [30].

Table 4. Objective function parameters.

Parameter GCN SN Unit

Costscg
i,h 0.1302 0.2913 USD/kWh

CB
i,O&M 0.2913 0.2913 USD/kWh

Cgd
i,O&M 0.0019 0.0019 Kg/kWh

CECG
i 0.1644 0.2671 Kg/kWh

CEgd
i 0 0 Kg/kWh

4.3. Standalone System

As for the standalone system, the DC version of the 27-node AC standalone network
was considered, which is widely used in the specialized literature [48]. To this effect, the
reactive components associated with the branches and power loads were eliminated, which
is a traditional method for generating DC test systems [14]. The standalone DC grid is
composed of a single generator at bus 1, 27 buses, and 26 branches, as shown in Figure 5.
Furthermore, this test system considers the integration of three PV sources located at nodes
5, 9, and 19, with a nominal power of 2400 kW, as well as a voltage of 12.66 kV and a power
of 100 kW as base values.

DC
1

2

3

4

5

6 7 8 9 10

17 18 19 20 21

22

23

24

11 12 13 14 15 16

25

26 27

Figure 5. Standalone network composed of 27 buses.

The parameters used for the standalone DC network are presented in Table 5. This
table follows the same order and implies the same voltage bounds and methodology for
obtaining the maximum branch currents as the ones proposed in Table 3.

Remark 2. In this paper, it is assumed that the electrical configuration of the DC equivalent systems
is monopolar, i.e., the voltage difference between the positive pole and the neutral wire is the same as
that assigned in the AC network [49].
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Table 5. Electrical parameters of the standalone network.

Branch Node i Node j R (Ω) Pj (kW) Imax (A)

1 1 2 0.0140 0 195
2 2 3 0.7463 0 145
3 3 4 0.4052 297.5 85
4 4 5 1.1524 0 70
5 5 6 0.5261 255 70
6 6 7 0.7127 0 55
7 7 8 1.6628 212.5 55
8 8 9 5.3434 0 20
9 9 10 2.1522 266.05 20
10 2 11 0.4052 85 70
11 11 12 1.1524 340 55
12 12 13 0.5261 297.5 40
13 13 14 1.2358 19,125 25
14 14 15 2.8835 106.25 20
15 15 16 5.3434 255 20
16 3 17 1.2942 255 55
17 17 18 0.7027 127.5 40
18 18 19 3.3234 297.5 40
19 19 20 1.5172 340 20
20 20 21 0.7127 85 20
21 4 22 8.2528 106.25 20
22 5 23 9.1961 55.25 20
23 6 24 0.7463 69.7 20
24 8 25 2.0112 255 20
25 8 26 3.3234 63.75 20
26 26 27 0.5261 170 20

Comparison Methods

In order to evaluate the effectiveness and robustness of the proposed methodology
in terms of solution quality, repeatability, and processing times, this paper adapted three
continuous optimization methods highly used in the literature for solving the optimal
power flow problem in DC networks while considering the operation of PV distributed
generators: MVO, PSO, and the CSA. These methodologies were selected due to their
excellent performance and high effectiveness [50]. The complete description and iterative
algorithms of said techniques are presented in the cited references. Finally, aiming for a fair
comparison between the optimization methods, the matrix hourly power flow proposed in
this paper was used in the slave stage of all solution methodologies. Furthermore, their
optimization parameters were tuned by using PSO, according to that reported in [14]. The
optimization parameters obtained for each optimization method are presented in Table 6.

Table 6. Optimization parameters used for all solution methodologies.

Method Optimization Parameter Value

SSA
Number of particles 141
Maximum iterations 1577
Non-improvement iterations 547

MVO

Number of particles 41
Maximum iterations 1326
Non-improvement iterations 188
Wep-min 0.68125
Wep-max 0.51768
P parameter 3

PSO

Number of particles 159
Maximum iterations 492
Non-improvement iterations 229
Maximum inertia (Wmax) 0.99456
Minimum inertia (Wmin) 0.32458
Cognitive component (C1) 0.061368
Social component (C2) 1.5456

CSA

Number of particles 177
Maximum iterations 471
Non-improvement iterations 295
Awareness probability (Ap) 0.65826
Flight length ( f l) 3.25058
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5. Simulation Results and Discussion
5.1. Matrix Hourly Power Flow Results

To demonstrate the effectiveness and applicability of the developed MSA hourly
power flow, this subsection compares its results against the traditional SA hourly power
flow. To this effect, the urban test system was implemented and solved without the presence
of PV sources. This was performed in MATLAB version 2022a while using our own scripts
on a Dell Precision 3450 workstation with an Intel(R) Core(TM) i9-11900 CPU@2.50 Ghz
and 64.0 GB RAM running Windows 10 Pro 64-bit. Aiming for a fair comparison, both
methods were evaluated 1000 consecutive times while considering a maximum permissible
error of 1× 10−10 in order to determine their computation times.

Table 7 shows the numerical results obtained for the MSA in comparison with the
traditional SA when calculating the system energy losses for one day of operation. After
1000 consecutive evaluations, the results allow the following remarks to be made. (i) The
developed MSA is faster in terms of average computational time when compared to the
traditional SA. It only takes the MSA 0.2405 ms to determine the operating state of the
system in a daily simulation scenario, which implies that it is at least 67.72% faster than
the SA. (ii) These time differences can be seen in the maximum number of iterations. The
SA takes a total of 185 iterations to determine the daily operational state of the system
(iterations are accumulated hour by hour), whereas the MSA takes only 8 iterations. (iii)
Finally, regarding the determination of the system’s energy losses, both methods arrive
at the same solution with an error of 1.28× 10−9, which is negligible. This means that
both of them are suitable for calculating the hourly power flow. However, our proposed
reformulation (i.e., MSA) is the most favorable approach due to its higher performance.

Table 7. Numerical results for the hourly power flow.

Method Avg. Time (ms) Total Iterations Energy Losses (kWh)

SA 0.7449 185 2186.2803
MSA 0.2405 8 2186.2803

5.2. Master–Slave Simulation Results

This section shows the results obtained by each optimization algorithm with regard to
the problem under study. This analysis allows the best method for solving the problem of
optimal power dispatch of PV sources in DC grids in terms of average solution, standard
deviation, and processing time while considering economic, technical, and environmental
indices as objective functions to be identified. This subsection begins with the GCN
simulations (Section 5.2.1), which consider a grid-connected system in the city of Medellín.
Then, a standalone network is analyzed (Section 5.2.2), i.e., an isolated system located in
Capurganá, Chocó. In both cases, the results are presented in terms of the average reduction
in the objective functions (expressed as a percentage): the energy losses associated with
energy transport in electrical systems (Eloss), the total operating costs (Ecost), and the CO2
emission levels associated with the grid and diesel generation (ECO2). Furthermore, the
standard deviation and the processing times of the solution methodologies are analyzed. To
this effect, all the simulations were performed on the aforementioned computer, executing
each optimization algorithm 100 times.

5.2.1. Grid-Connected System

Table 8 presents the results obtained by each optimization algorithm in the GCN
through the proposed energy management strategies. From left to right, this table shows
the solution optimization algorithm employed, the average power losses associated with
energy transport in kW (Eloss), the average energy purchasing costs of the conventional
generator in USD $ (Ecost) (in this particular case, the local energy cost is fixed by EPM), and
the average reduction in CO2 emissions in kg (ECO2). The first row of this table shows the
base case, which corresponds to the GCN without PV sources, and the simulation results
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obtained in terms of effectiveness, repeatability, and robustness are then presented for each
objective function, namely the average solution obtained and the reduction obtained by
each solution with respect to the base case, the standard deviation (%), and the processing
time required by the solution methodologies in seconds. Finally, it is important to note that
each of the answers obtained by the optimization algorithms observes the technical and
operating constraints involved in the problem studied herein. The proposed FF function
was used with α = 1000, a value that generates a big penalty factor, thus forcing the
optimization methods to converge to a feasible solution. This document does not report on
the voltage and branch current values obtained by each solution, as it represents a large
amount of data.

Table 8. Simulation results obtained by the optimization algorithms in the grid-connected system.

Average Solution

Algorithm Eloss (kWh) Costs (USD) Emissions (kgCO2)

Base case 2186.2803 9776.3892 12345.1497

SSA 1225.3323 7297.9712 9166.6746

MVO 1231.2531 7298.7157 9187.9682

PSO 1268.5973 7392.0432 9282.4081

CSA 1270.1562 7407.9046 9328.7685

Percentage of average reduction (%)

Algorithm Eloss Costs Emissions

SSA 43.9536 25.3511 25.7468

MVO 43.6827 25.3434 25.5743

PSO 41.9746 24.3888 24.8093

CSA 41.9033 24.2266 24.4337

STD (%)

Algorithm Eloss Costs Emissions

SSA 0.0131 0.7089 0.6306

MVO 2.2694 1.2190 1.5868

PSO 2.4065 2.2579 2.0891

CSA 1.3806 1.8500 1.6987

Time (s)

Algorithm Eloss Costs Emissions

SSA 20.8476 21.4690 21.2944

MVO 2.4479 2.4748 2.4791

PSO 5.9597 6.4713 6.5950

CSA 36.3663 36.4465 36.8687

Figure 6 shows the average reductions obtained by each solution methodology with
respect to the base case regarding the three objective functions used. Note that, for the
Eloss case, the SSA achieved a reduction of 43.9536%, surpassing MVO, PSO, and CSA by
0.2708, 1.9789, and 2.0502, respectively. In the case of Ecost, the SSA also obtained the best
solution, achieving a cost reduction of 25.3511% and surpassing MVO by 0.0076%, PSO
by 0.9622%, and CSA by 1.1245%. Finally, as for ECO2 , the SSA reports the best results,
with a reduction of 25.7468%, outperforming the other algorithms with an average value of
0.8077%. This analysis demonstrates that the SSA is the best method in terms of solution
quality for solving the problem of optimal power dispatch of PV in DC grids in the GNC.
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Figure 6. Average reductions obtained by the optimization methods in the economic, technical, and
environmental indices used for the grid-connected network.

To evaluate the accuracy and repeatability of the algorithms, Figure 7 shows the
standard deviation values obtained after 100 executions. In this figure, it is possible to
observe that the minimum standard deviation is obtained by the SSA for each objective
function analyzed. In terms of Eloss, the SSA reached a standard deviation of 0.0131%,
i.e., an average reduction of 2.0058% with respect to the comparison methods. For Ecost,
the proposed algorithm obtained a standard deviation of 0.7089%, surpassing the results
obtained by MVO by 0.5100%, those of the CSA by 1.1411%, and those of PSO by 1.5490%.
Finally, in the case of ECO2 , the SSA obtained a standard deviation value of 0.6306%,
surpassing the other methodologies by 1.1610% on average. This analysis shows that the
SSA is the most suitable technique to solve the problem under study in terms of repeatability
since it allows finding high-quality solutions every time that the algorithm is executed.
Moreover, it can be concluded that the SSA is the most appropriate technique to solve the
problem regarding the optimal power dispatch of PV sources in DC networks for each
objective function employed in the GCN.
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Figure 7. Standard deviation obtained by the optimization methods regarding the economic, technical,
and environmental indices used in the grid-connected network.
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5.2.2. Standalone System

The results obtained after evaluating the optimization methods in Capurganá’s stan-
dalone electrical network are presented in Table 9. This table has the same structure as
Table 8. Note that the base case is presented on the first row of Table 9, which corresponds
to the system without PV sources. As in the GNC results analysis, all solution methods
satisfy the technical and operating constraints, as an α value of 1000 was implemented. This
value was heuristically obtained in both scenarios. Figure 8 uses these results to compare
all of the algorithms’ solutions for each objective function.

Figure 8 presents the average solutions obtained by each algorithm with regard to the
three proposed objective functions. For Eloss, the SSA obtained a reduction of 26.4560%
when compared to the base case, surpassing MVO, PSO, and the CSA by 0.0358, 0.4488,
and 1.9090%, respectively. Regarding Ecost, the proposed algorithm reported a reduction of
34.6794% with respect to the base case, outperforming the other algorithms by an average
of 3.6275%. Finally, in the case of ECO2 , the SSA reduces the emissions reported by the base
case by 34.8747%, surpassing MVO by 0.5426%, PSO by 1.3450%, and CSA by 8.8184%.
These results demonstrate that the SSA achieves the best solutions for the studied problem
regarding technical, economic, and environmental indices in DC isolated systems.

Table 9. Simulation results obtained by the optimization algorithms in the standalone system.

Average solution

Algorithm Eloss (kWh) Costs (USD) Emissions (kgCO2)

Base case 489.3042 18485.0507 16951.2974

SSA 359.8537 12074.5543 11039.5781

MVO 360.0291 12231.1691 11131.5617

PSO 362.0496 12340.2908 11267.5734

CSA 369.1944 13663.8328 12534.4183

Percentage of average reduction (%)

Algorithm Eloss Costs Emissions

SSA 26.4560 34.6794 34.8747

MVO 26.4202 33.8321 34.3321

PSO 26.0073 33.2418 33.5297

CSA 24.5471 26.0817 26.0563

STD(%)

Algorithm Eloss Costs Emissions

SSA 0.0230 0.4363 0.4329

MVO 0.2356 2.4301 2.0192

PSO 0.4095 1.7711 1.6491

CSA 1.7548 2.3077 2.1093

Time (s)

Algorithm Eloss Costs Emissions

SSA 12.5902 12.9024 13.1151

MVO 2.0234 1.7957 1.8956

PSO 4.2122 4.4286 4.4410

CSA 6.5367 6.7566 6.7413
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Figure 8. Average reductions obtained by the optimization methods in the economic, technical, and
environmental indices used for the standalone network.

To demonstrate the accuracy and repeatability of the algorithms, Figure 9 analyzes
the standard deviation value obtained after 100 executions. In the first case (Eloss), SSA
reached a standard deviation value of 0.0230%, surpassing the results reported for MVO
by 0.2126%, for PSO by 0.3865%, and for CSA by 1.7317. As for Ecost, the SSA obtained
a standard deviation of 0.4363%, outperforming the other methodologies by an average
of 1.7333%. Finally, for ECO2 , the SSA obtained a reduction of 0.4329% with respect to the
base case, surpassing PSO by 1.2162%, MVO by 1.5863%, and the CSA by 1.6764%. These
results show that the proposed method is highly efficient and ensures solutions of excellent
quality every time it is executed with respect to any technical, economic, and environmental
objective function in standalone systems.
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Figure 9. Standard deviation obtained by the optimization methods regarding the economic, technical,
and environmental indices used in the standalone network.
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5.2.3. Processing Time Analysis

This subsection analyzes the processing times required by each optimization algorithm
to solve the problem regarding the optimal dispatch of PV distributed generation in DC
power grids. By observing Tables 8 and 9, it can be noted that the SSA obtains average
processing times of 21.2037 and 12.8692 s for CGN and the SN, respectively.

In the case of the GCN, MVO and PSO are the fastest optimization algorithms, but they
are trapped in local optima, obtaining solutions of lower quality in comparison with the
SSA. The proposed method ranks third, with the worst performance in terms of processing
times. However, it obtained the best solution to the problem for each objective function in
the GCN networks, taking only around 21 s to perform its task.

In the standalone network, the MVO, PSO, and CSA ranked first, second, and third,
respectively, achieving excellent performance in terms of processing times. However, the
three aforementioned algorithms continue to be stuck at local optima due to low quality in
the exploration stage. In contrast, SSA takes around 13 s to reach a solution, albeit with
excellent performance in the exploration stage, which is reflected in the response obtained
when solving the problem.

Based on the results, it is possible to conclude that the proposed methodology exhibits
higher processing times to solve the problem of optimal power dispatch of PV sources in
GCN and SN. However, this constitutes an adequate trade-off between solution quality and
processing times. Furthermore, the effectiveness of the matrix hourly power flow proposed
in this paper was demonstrated, as all methodologies performed as expected, which can be
validated by analyzing the results reported in [27].

6. Conclusions and Future Work

This document addressed the problem regarding the optimal power dispatch of
photovoltaic (PV) distributed generators (DGs) in order to reduce energy losses, operating
costs, and emissions by using an energy management system based on a continuous
optimization algorithm that employs sequential programming. Reductions in energy
losses, grid operating costs, and greenhouse gas emissions were considered objective
functions. A master–slave strategy involving the salp swarm algorithm (SSA) and a
matrix formulation based on the successive approximations method was implemented on
two types of networks (grid-connected and standalone network), considering the typical
generation and power demand behavior of Colombia for a day of operation. The study used
the data on energy costs and emissions reported by the local electrical operators for both
electrical systems. PSO, MVO, and CSA were used for comparison, and all algorithms were
tuned via a PSO reported in the literature, with the aim of obtaining the best performance
in each solution methodology.

The results obtained in both test systems demonstrate that energy management based
on SSA and the proposed matrix hourly power flow reached the best solutions in terms
of quality, objective function impact, and repeatability. In numerical terms, the proposed
methodology achieved the best average solution and the lowest standard deviation, namely
a reduction of 31.68% in the GCN, as well as an average standard deviation of 0.4509%.
In SN, an average reduction of 32% was obtained with respect to the objective function.
Furthermore, when it was employed, the energy management system obtained an average
standard deviation values of 0.45 and 0.29% for the GNC and the SC, respectively. These
values ensure that the SSA will find a high-quality solution each time it is executed. In
terms of processing times, SSA ranked third in the urban network, with an average time
of 21.2037 s, and last in the rural grid, with an average time of 12.8692 s. However, it is
important to note that, despite these results, the solutions are obtained in less than 21.5 s,
which is still considered to be a short time when dealing with energy management in a
grid-connected or standalone grid for a whole day of operation. In conclusion, this work
demonstrates that the proposed energy management system, which is based on SSA and a
matrix power flow, is the best-performing algorithm when solving the problem of optimal
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power dispatch of PV sources in grid-connected and standalone DC networks in Colombia,
while improving technical, economic, and environmental indices.

As future work, this document proposes the implementation of new solution method-
ologies to improve economic, technical, and environmental indices in grid-connected and
standalone networks. Additionally, SSA could be implemented within a multi-objective
strategy that analyzes several objective functions. Furthermore, the implementation of
energy storage systems can be considered, thus boosting the economic conditions of the
grid and eliminating the variability related to renewable energy sources. Finally, an analysis
could be carried out regarding the optimal integration of PV distributed generators and
energy storage systems.
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