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A B S T R A C T   

The integration of distributed generation (DG), energy storage systems (ESS), and controllable loads near the 
place of consumption has led to the creation of microgrids. However, the uncertain nature of renewable energy 
sources (wind and photovoltaic), market prices, and loads have caused issues with guaranteeing power quality 
and balancing generation and consumption. To solve these issues, microgrids should be managed with an energy 
management system (EMS), which facilitates the minimization of operating (performance) costs, the emission of 
pollutants, and peak loads while meeting technical constraints. To this effect, this research attempts to adjust 
parameters by defining indicators related to the best possible conditions of the microgrid. Generation planning, 
the storage of generated power, and exchange with the main grid are carried out by defining a dual-purpose 
objective function, which includes reducing the operating cost of power generation, as well as the pollution 
caused by it in the microgrid, by means of the SALP optimization algorithm. Moreover, in order to make the 
process more realistic and practical for microgrid planning, some parameters are considered as indefinite values, 
as they do not have exact values in their natural state. The results show the effect of using the introduced 
intelligent optimization method on reducing the objective function value (cost and pollution).   

1. Introduction 

Evaluating the capabilities of power systems with regard to supply-
ing the network load at the permissible bus bar voltage and line loading 
values is one of power companies’ primary goals. The constant change in 
system conditions due to various reasons and the increased influence of 
wind turbine production are highly effective on the correctness of 
judgments when it comes to planning the development of transmission 
systems. In this context, the use of approaches such as load flow is 
recommended as a suitable tool for analyzing systems under different 
operating conditions and as a suitable criterion power systems planning. 

Considering the importance of the subject, random planning and 
microgrid performance in a short period of time in the distribution 

system can have effective results. Therefore, the functioning of the 
microgrid as an island, certainty and uncertainty is an important chal-
lenge for this purpose, by defining the parameters for the microgrid, it is 
tried to select the best mode by adjusting its parameters. 

1.1. Literature review 

In [1], an energy management system is proposed to optimize the 
microgrid (MG) performance in the short term while in the presence of 
random Renewable Energy Sources (RESs). In Ref. [2], energy man-
agement in MGs is performed while considering economic efficiency and 
environmental constraints, as well as improving reliability through 1) 
optimizing the type and capacity of Distributed Generation (DG) re-
sources and Storage Devices (SDs), and 2) creating an Operational 
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Strategy (OS). In Ref. [3], real-time energy management is carried out 
for a micro-grid with a renewable generation system, an energy storage 
system, and an integrated load., aiming to minimize the total cost of 
energy. To solve the problem in real time, a new offline optimization 
approach is used in order to derive the online algorithm. In Ref. [4], an 
algorithm-based method is proposed to determine the size of Energy 
Storage Systems (ESS) in microgrids. The main goal of this method is to 
determine the energy capacity and power of the storage system, which 
minimizes the operating costs of the microgrid. The work by Ref. [5] 
presents the 24-h power distribution optimization problem for a 
microgrid with Distributed Energy Resources (DERs), including variable 
loads with direct control. In Ref. [6], the technical background of 
microgrid scheduling optimization methods is reviewed, and guidelines 
are defined for innovative scheduling methods, focusing on economic 
feasibility. In Ref. [7], a robust optimization-based approach for optimal 
microgrid management is presented with regard to wind energy uncer-
tainty. In Ref. [8], a new multi-objective energy management method 
for microgrids is presented, which includes RESs, diesel generators, 
battery storage, and different loads. In Ref. [9], a new battery perfor-
mance cost is presented, considering the battery and a generator with 
equivalent fuel consumption to charge it, as well as proposing a unit 
contribution problem. The authors of [10] a two-stage framework is 
presented for the economic operation of a microgrid-like Electric 
Vehicle (EV) with renewable energy generation (rooftop with photo-
voltaic panels). In Ref. [11], an energy management system for a smart 
microgrid is presented. The work by Ref. [12] proposes a multi-objective 
load distribution with the presence of a Plug-in Electric Vehicle (PEV) as 
storage unit. Energy storage planning is designed as a Mixed Integer 
Linear Programming (MILP) model according to PEV requirements, 
minimizing three different objectives and analyzing three different 
criteria. In Ref. [13], a design approach is evaluated with the aim of 

integrating the energy management and sizing of a small microgrid in 
the presence of storage systems. The authors of [14] consider the prin-
ciples of energy management for supply/demand coordination, showing 
that this concept is effective in managing energy demand response and 
dynamic data flow in the field of microgrid energy systems. A detailed 
description of the progress in demand-side management, demand 
response programs, DG, technical issues in process, and its key benefits 
in microgrids is provided by Ref. [15]. In Ref. [16], the Net Present 
Value (NPV) is considered to minimize the total expected costs over a 
multi-year period, given the optimal performance of an Optimal Battery 
Energy Storage System (OBESS), as well as according to a new matrix 
that represents the reduction of BESS energy capacity. The work by 
Ref. [17] describes the two-level formulation of a planning problem 
concerning microgrid and stored energy capacity in the vicinity of the 
Distribution System Operator (DSO). In Ref. [18], a stochastic pro-
gramming model is proposed to optimize the performance of a smart 
microgrid in the short term, aiming to reduce operating costs and 
emissions with renewable resources. The authors of [19] present an 
approach for optimal microgrid planning, which includes various 
distributed resources such as databases and DG units. In Ref. [20], the 
energy management of home smart AC/DC hybrid micro-grids with the 
ability to change the structure is considered with respect to combined 
thermal and electrical loads (CHP) such as the charging/discharging 
behavior of electric vehicles. The work by Ref. [21] proposes a powerful 
mathematical formulation for the energy management systems of 
islanded microgrids while including renewable energy sources, energy 
storage, and interruptible loads. In Ref. [22], production units and 
microgrid subscribers are modeled as independent agents who are able 
to make local decisions for their maximum efficiency in a multi-agent 
environment. The authors of [23] study a network-connected micro-
grid with a BESS, PV generation, and different loads. Finally, in 

Nomenclature 

MG Miro Grid 
RES Renewable Energy Sources 
DG Distributed Generation 
SD Storage Device 
OS Operational Strategy 
ESS Energy Storage System 
DER Distributed Energy Resource 
ARMIA Auto Regressive Integrated Moving Average 
EV Electric Vehicle 
I-DEMS Intelligence Dynamic Energy Management System 
PEV Plug-in Electric Vehicle 
MILP Mixed Integer Linear Programming 
NPV Net Present Value 
OBESS Optimal Battery Energy Storage System 
DSO Distribution System Operator 
RLA Reinforcement Learning Alghorithm 
AA Affine Arithmetic method 
CERTS Consortium for Electric Reliability Technology Solutions 
SC Super Capacitor 
PCC Point of Common Connection 
NFL Not Free Launch 
SSA Salp Swarm Alghorithm 
Pi(t) amount of generation 
πi(t) generation cost 
Ii(t), IBUY(t), and ISell(t) binary variables 
SUi(t) specifies the cost of starting 
PGrid− Buy and PGrid− Sell amount of power received or sent 
PDemand(t) power demand 
x1

j leader in the jth dimension 

Fj the location of the food source in the jth dimension 
ubj, lbj Upper and lower limit of the jth dimension 
c1, c2, and c3 random numbers 
i iteration 
L maximum number of iterations 
vo initial speed 
f(w) Weibull probability distribution function 
r related to the shape 
q scale parameter 
wmean mean 
σ2 variance 
Γ(x) gamma function 
w wind speed 
ρ air concentration 
R rotor radius 
Cp coefficient 
w1, wr, and wcut out cut-in, nominal, and cut-out speeds 
k1 and k2 constant coefficients 
Pnom nominal power of the turbine 
si amount of radiation 
ηPV panel efficiency 
ηPV and APV panel efficiency and area 
μsi and σ2

si mean and the variance of the radiation 
Ldmean and σ2

Ld
mean and variance of the consumer demand 

ηdisCharge and ηCharge battery discharge and charge efficiency 
IdisCharge and ICharge binary variables that cannot have a value of one at 

the same time 
π_ (Grid-Buy) (t) and π_ (Grid-Sell) (t) the prices of power units 

exchanged between the MG and the main grid  
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Ref. [24], a mathematical formulation for islanded microgrid energy 
management systems is presented, which considers the uncertainties of 
the consumption load and the power of renewable energy sources by 
means of the Affine Arithmetic (AA) method. In Ref. [25], Application of 
the arithmetic optimization algorithm to solve the optimal power flow 
problem in direct current networks, In Ref. [26] An innovative synthesis 
of optimization techniques (FDIRE-GSK) for generation electrical 
renewable energy from natural resources and in Refs. [27,28] The 
effectiveness of the wind barrier in mitigating soiling of a 
ground-mounted photovoltaic panel at different angles and particle in-
jection heights, Parametric optimization of novel solar chimney power 
plant using response surface methodology studied. 

1.2. Contribution and paper organization 

This research considers distribution network subsystems consisting 
of DERs, ESSs, and connected loads that are operated via a single control 
system that is either connected or isolated from the grid. The ever- 
increasing need to effectively meet the energy demand has aroused 
much interest in the concept of microgrids. MGs can effectively manage 
and coordinate distributed load generation resources, as well as support 
a high penetration of RESs. 

This paper is divided into six sections.  

• The suggested methodology provides optimal operation for the 
microgrid considering the uncertainty in generation, load, and price.  

• The proposed methodology takes into account the generation cost 
and emission cost of different resources.  

• The introduced technique is applied to grid-connected and grid- 
islanded microgrids.  

• The optimization problem is a mixed integer, which is handled 
efficiently using the proposed slap swarm optimization algorithm. 

In section 2, microgrids including (AC microgrids, DC microgrids and 
hybrid microgrids) are presented. In section 3. Optimization problem is 
discussed. In section 4 of the method, the investigation of the equations 
of the sources and the studied system will be investigated. Section 5. The 
simulation results are fully discussed. Finally, some conclusions will be 
drawn from the article. 

2. Microgrids 

The concept of microgrid was coined by the CERTS Institute [29]. A 
MG is defined as a local entity consisting of DERs and controllable 
thermal and electrical loads. To receive power, these loads are con-
nected to the upstream grid, which may use solar panels (PV), wind 
power plants, fuel cells, diesel generators, and micro-turbines with a 
storage device (such as a battery or a Super-Capacitor (SC) [30]. From an 
operation perspective, MGs can be regarded as a controlled cell or bat-
tery. From a consumer (customer) perspective, a MG is designed to meet 
reliability conditions, reduce feeder losses, improve efficiency, and 
minimize voltage drops and guarantee a continuous power supply [31]. 
In general, the types of MGs in power systems can be divided into two 
parts, AC and DC, which is discussed below. 

2.1. AC microgrids 

In an AC microgrid, distributed generators and energy storage sys-
tems are connected to the AC bus through power electronic devices. By 
using the on/off control at the Point of Common Connection (PCC), the 
MG can be switched to two modes: grid-connected or islanded. Fig. 1 
shows an AC microgrid [32]. 

2.2. DC microgrids 

AC and DC loads at different voltage levels can be fed with a DC 

microgrid through power electronic converters. Changes in the power 
generation of distributed sources and the power consumption of loads 
can also be adjusted by using ESSs connected to the DC bus. In a DC 
microgrid, DG sources are connected to the DC bus through a voltage 
converter. This structure is more economical when there are many DC 
power sources and loads in the system. Fig. 2 shows the structure of a DC 
microgrid [32,33]. 

2.3. AC-DC hybrid microgrids 

A hybrid AC-DC microgrid consists of DC and AC buses and feeds 
both DC and AC loads. Hybrid MGs can be considered as an AC micro-
grid where the DC grid is connected to the AC bus through an inverter 
and acts as a power source. A hybrid AC-DC microgrid has the charac-
teristics of both AC and DC microgrids and can better feed different 
loads. The structure of this type network is shown in Fig. 3 [32]. 

Fig. 1. AC micro-grid with the ability to connect to the network or operate in 
islanded mode. 

Fig. 2. DC microgrid with the ability to connect to the network or operate in 
islanded mode. 
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3. Optimization problem 

Traditional methods for solving optimization problems, which are 
known as exact optimization methods, have a high computational 
complexity. Collective intelligence algorithms based on the collective 
behavior of agents have partially solved this problem, and the results 
obtained by these algorithms are very close to optimal solutions [34,35]. 
The standard form of an optimization problem (continuous) is expressed 
in Eq. (1). 

min
x

f (x)gi(x)≤ 0hi(x) = 0 (1)  

Where f(x) : Rn→R is the objective function that tends to be minimized 
on the vector variable x, gi(x) ≤ 0 i = 1, 2,…,m are the constraints of 
the inequalities and, hi(x) = 0, i = 1, 2,…, n are the equality constraints. 

The main characteristic of this optimization problem (1) is that it 
looks for a vector x proportional to the dimensions of the problem, with 
two important properties. First, it must satisfy both sets of constraints, i. 
e., gi(x) ≤ 0 i = 1, 2,…,m and hi(x) = 0, i = 1,2,…, n. Secondly, the 
value of the function f(x) for the desired x must be at its lowest value. 
Some problems deal with the maximization of an objective function, 
which can be replaced by a minimization problem, as shown in Eq. (2). 

max f (x)=min(− f (x)) (2) 

In solving the above optimization problem, the constraints of the 
problem are prioritized. In other words, (i) the constraints determine the 
range of the vector x in the n-dimensional space, and (ii) the value of x is 
selected from this range, for which the function f(x) is at the lowest 
value. In some cases, when the two sets of inequality and equality 
constraints do not have a common point, the problem is dubbed 
impossible, and it cannot be solved under the desired conditions. To solve 
the optimization problem in the form of (1), many metaheuristic 
methods have been introduced, in addition to the mathematical methods 
described in the previous subsection. 

4. Methodology 

This section describes the role of the SALP Swarm Algorithm (SSA) in 
the energy management and performance of microgrids. 

4.1. SALP Swarm Algorithm (SSA) 

Salps belong to the family Salpidae, and they are creatures with a 
transparent and tubular body (Fig. 4a) [36,37]. Their body texture is 
very similar to that of jellyfish, and they move much like them, pumping 
water through their bodies to provide forward thrust. The SSA imitates 
their social and chain-like behavior, as their movement involves rapid 
and coordinated changes for chasing food. 

Fig. 3. AC-DC micro-grid with the ability to connect to the network or operate in islanded mode.  

Fig. 4. (a) Single salp, (b) salp chain [37].  
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4.1.1. Proposed mathematical model 
Similar to other collective methods, the position of salps is defined in 

an n-dimensional search space, where n is the number of variables of a 
given problem. Thus, the position of all salps is stored in a two- 
dimensional matrix (x). It is also assumed that there is a food source 
(F) in the search space, which constitutes a collective purpose. To update 
the position of the first salp (leader), Eq. (3) is used. 

xi
j =

{
Fj + C1

( (
ubj − lbj

)
C2 + lbj

)
.C3 ≥ o

Fj − C1
( (

ubj − lbj
)
C2 + lbj

)
.C3 < o (3)  

Where x1
j represents the position of the leader in the jth dimension; 

Fj is the location of the food source in the jth dimension; ubj rep-
resents the lower limit of the jth dimension; and c1, c2, and c3 are 
random numbers. Eq. (3) shows that the leader only updates its 
position relative to the food source. The coefficient c1 is the most 
important parameter in the SSA algorithm because it balances 
exploration and exploitation, which is defined by Eq. (4). 

c1 = 2e
−

(

۴i
l

)2

(4)  

Where i is the current iteration and L is the maximum number of 
iterations. Parameters c2 and c3 are random numbers generated 
uniformly in the interval [0, 1]. These indicate whether the next 
position in the jth dimension should be towards positive infinity or 
negative infinity, and the also specify the step size. To update the 
salp followers’ position, Eq. (5) are used (Newton’s law of motion). 

xi
j =

1
2

at2 + vot (5)  

Here, i ≥ 2 indicates the position of the ith follower in the jth 
dimension; t is the time; vo is the initial speed; and a =

vfinal
vo 

(Eq. (6)). 

vo =
x − xo

t
(6)  

Because time and iterations are the same thing in the context of 
optimization, the difference between iterations is equal to 1. Thus, 
assuming vo = 0, this equation can be written by Eq. (6). 

xi
j =

1
2

(
xi

j + xi− 1
j

)
(7)  

Where i ≥ 2, and xi
j indicates the position of the ith follower in the 

jth dimension. The SSA is able to move salps to the food source and 
update them in each iteration. However, this algorithm is unable to 
solve multi-objective functions for two reasons: (i) the SSA cannot 
store multiple solutions for a multi-objective function, and (ii) it 
updates the food source with the best solution in each iteration, but 
there is no single best solution for multi-objective functions. The 
higher the number of responses neighboring a solution (i.e., the 
larger the rank number), the more likely it is to be removed from 
the pool. The pseudo-code of the SSA is shown in Algorithm 1 [37]. 

Algorithm 1 
SSA pseudo-code [37].  

Initialize and create the initial population of salps according to the upper and lower 
bounds of lb, ub while (until the stopping condition is met) 
Calculate the objective function for each agent 
Select the best search factor 

(continued on next column) 

Algorithm 1 (continued ) 

Update c1 using Eq. (4) for loop for each salp 
if (i==1) 
Update the position of the leader according to Equation (3) 
Otherwise 
Update follower position using Eq. (5) end 
end 
Check the position of salps in the range of lb, ub end  

4.2. Modeling wind system uncertainty 

The output power of the wind turbine depends on parameters such as 
wind accessibility, the wind turbine power curve, wind speed, and the 
shape and size of the turbine. Therefore, since the wind speed is random, 
the Weibull probability distribution function is suitable for modeling it 
at any given moment. The Weibull can model wind speed changes 
caused by different weather changes. This function is presented in Eq. 
(8) [38]. 

f (w)=
r
q

(
w
q

)r− 1

exp
(

−

(
w
q

)r)

(8) 

In the above equation, f(w) is the Weibull probability distribution 
function for the wind speed, the parameter r is related to the shape, and 
q represents the scale parameter. In addition, the relationship between 
the parameters of the Weibull function and the mean and the variance of 
the distribution function (Eq. (9) and Eq. (10)). 

wmean = qΓ
(

1+
1
r

)

(9)  

σ2 = q2

(

Γ
(

1+
2
r

)

−

(

Γ
(

1 +
1
r

))2
)

(10)  

Where, wmean,σ2, and Γ(x) are the mean, the variance of the probability 
function, and the gamma function, respectively. The mean and variance 
of the parameters r and q are calculated according to Eq. (11) and Eq. 
(12) [38]. 

r=
(

σ
wmean

)− 1/086

(11)  

q=
wmean

Γ
(
1 + 1

r

) (12) 

In this way, the wind turbine production power can be obtained, 
which depends on the wind speed (w), air concentration (ρ), rotor radius 
(R), and performance coefficient (Cp), as shown in Eq. (13). 

SWT(w)=
1
2

ρπR2Cp(λ)w3 (13) 

Finally, the amount of power produced by the wind turbine can be 
linearly estimated according to Eq. (14). 
⎧
⎨

⎩

o . 0 ≤ w ≤ w1 . w ≥ wcut out
Pnom(k1 + k2w) . w1 ≤ w ≤ wr

Pnom . wr ≤ w ≤ wcut out
(14)  

Where w1, wr, and wcut out are the low cut-in, nominal, and cut-out 
speeds. Moreover, k1 and k2 are two constant coefficients related to 
the wind turbine, and Pnom is the nominal power of the turbine. 
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4.3. Modeling PV system uncertainty 

The amount of power produced by a solar panel depends on the 
amount of radiation it receives. In this vein, the amount of power, which 
is dependent on the panel surface, the efficiency percentage, and the 
amount of radiation, can be determined through Eq. (15). 

SPV(si)= ηPV APV si (15)  

Where si is the amount of radiation in kilowatts per square meter; and 
ηPV and APV are the panel efficiency and area, respectively. As it is 
known, the amount of radiation received by the panel is uncertain, so 
the probability distribution function for the amount of radiation is 
defined in a different way, as shown in Eq. (16) [38]. 

fb(si)=

⎧
⎨

⎩

Γ(α + β)
Γ(α)Γ(β) si(α+1)(1 − si)(β− 1) for 0 ≤ si ≤ 1 و α ≥ و0 β ≥ 0

۰ o۰w.
(16) 

Furthermore, the two parameters α and β in the above relationship 
are determined according to Eq. (17) and Eq. (18). 

β=(1 − μsi)

(
μsi(1 + μsi)

σ2
si

− 1
)

(17)  

α= μsi ∗
β

1 − μsi
(18)  

In these two relationships, μsi and σ2
si are the mean and the variance of 

the radiation, respectively. 

4.4. Modeling consumption load uncertainty 

In this section, three types of consumers are considered for the 
network: residential, commercial, and industrial. Their consumption, 
like the amount of radiation or wind speed, is always somewhat un-
certain [39,40], which must be considered in the model. Eq. (19) shows 
the load probability distribution function. 

fload(Ld)=
1
̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

Ld

√ exp

(

−
(Ld − Ldmean )

2

2σ2
Ld

)

(19)  

Where Ldmean and σ2
Ld 

are the mean and variance of the consumer demand, 
respectively. 

4.5. Modeling the uncertainty of electricity pricing 

Eq. (20) shows the probability density distribution function of elec-
tricity pricing, where pricemean is the average price and σ2

price represents 
its variance. Usually, each MG connected to the upstream grid buys 
power from the main grid when there is a shortage, and it sells it to the 
grid when there is excess power generation. In this research, it is 
assumed that the buying and selling prices are equal, and it is also 
assumed that the price is uncertain, which is calculated according to Eq. 
(20). 

fMarketPrice(price)=
1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

price

√ exp

(

−
(Ld − pricemean)

2

2σ2
price

)

(20)  

4.6. Operating costs function 

This function is shown in Eq. (21). Certain operating costs include 
fixed start-up costs, the costs of turning on DG sources, and the costs of 
exchanging power with the upstream network. Eq. (22) expresses the 
CC(t) term of the above cost function. 

F1(x)=
∑24

t=1
(CC(t)) (21)  

CC(t)=
∑NDG

i=1
(Pi(t)πi(t)Ii(t) + SUi(t)|Ii(t) − Ii(t − 1)|)

+ IBUY (t)PGrid− Buy(t)πGrid− Buy(t) − ISell(t)PGrid− Sell(t)πGrid− Sell(t)
(22) 

In this relation, Pi(t) is the amount of generation and πi(t) is the 
generation cost of the ith unit at time t. Ii(t), IBUY(t), and ISell(t) are binary 
variables that indicate the presence or absence of the corresponding 
term at the tth moment in the objective function. SUi(t) also specifies the 
cost of starting up or shutting down the ith unit at time t. Also, PGrid− Buy 

and PGrid− Sell show the amount of power received or sent. One of these 
two values can be non-zero at any time. π_ (Grid-Buy) (t) and π_ (Grid- 
Sell) (t) are the prices of power units exchanged between the MG and the 
main grid. As previously mentioned, these two parameters are consid-
ered equal in this research. 

4.7. Emission cost function 

The pollution emission function includes the amount of pollution 
caused by DG units and that caused by the network in energy purchas-
ing. The considered pollutants include SO2, CO2, and NOx. The mathe-
matical model of the pollution emission function is expressed in Eq. (23). 

F2(x)=
∑24

t=1
(EMIDG(t)+EMIGrid(t)) (23) 

The average pollution caused by non-renewable distributed genera-
tion units can be calculated according to Eq. (24). Where ECO2 (i), ESO2 (i), 
and ENOx (i) are the emitted amounts of the above-mentioned gases. In 
the same way, the pollution caused by the network when buying energy 
is determined via Eq. (25). 

EMIDG(t) =
∑24

i=1
(ECO2 (i)+ESO2 (i)+ENOx (i))Pi(t) (24)  

EMIGrid(t) =
∑24

t=1

(
EGrid

CO2
+EGrid

SO2
+EGrid

NOx

)
PGrid(t) (25)  

4.8. Limitations of the planning problem 

MG planning involves limitations that must be observed while 
determining the grid’s parameters. The following subsections discuss the 
constraints to be considered for generation planning. 

4.9. Power equality constraint 

The total power produced by DG sources and that purchased from the 
network in each interval and scenario must be equal to the total demand 
load (Eq. (26)). In this equation, PDemand(t) is the power demand at any 
time t. 

∑NDG

i=1
PDG(t) + PGrid(t)=

∑Ns

l=1
PDemand(t) (26)  

4.10. Generation power limitation 

The maximum and minimum power produced by each unit is limited 
according to Eq. (27). 

Pmin
DG,i ≤PDG,i(t) ≤ Pmax

DG,i (27)  
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4.11. Battery limitations 

Regarding the battery, there are three basic limitations that must be 
considered during planning (Eq. (28), Eq. (29) and Eq. (30)) [41]. 

Wess(t)=Wess(t − 1) −
1

ηdisCharge
IdisCharge(t)PdisCharge + ηChargeICharge(t)PCharge

(28) 

Wess shows the amount of energy stored in the battery, and ηdisCharge 

and ηCharge represent the battery discharge and charge efficiency, 
respectively. In this regard, IdisCharge and ICharge are binary variables that 
cannot have a value of one at the same time (Eq. (29)). 

ICharge + IdisCharge ≤ 1 (29) 

Eq. (30) shows the battery capacity, which can change depending on 
the amount of energy charged and discharged per hour. 

Wmin
ess ≤Wess(t) ≤ Wmax

ess Pcharge(t) ≤ Pmax
chargePdischarge(t) ≤ Pmax

discharge (30)  

4.12. Studied system 

In this section, a sample MG is examined, and the proposed algorithm 
is simulated on it. This MG comprises a solar cell generator with an area 
of 10 m2 and an efficiency of 18.6%. A 25 kW SOLAREX MSX solar cell 
consisting of 10 2.5-kW solar panels has been selected. The amount of 
radiation received by the solar cell is shown in Fig. 5. Of course, as stated 
before, the amount of solar radiation is always uncertain. The proba-
bility density function described above is also given in Fig. 5, i.e., the 
radiation curve and its uncertainty. It should be noted that the power 
factor of the solar panel is assumed to be 1. 

The wind speed for a 24-h cycle is considered (Fig. 6), in addition to 
its uncertainty. 

Another parameter considered for the sample MG is the load 
consumed per hour. As mentioned earlier, residential, commercial, and 
industrial loads are considered, which are also subject to uncertainty. 
The nominal value is given in Fig. 7. In addition, Fig. 8 shows the 
nominal total with the uncertainty of the three consumer categories per 
hour. The total load considered for a 24-h period is 4034 kW. 

Here are two points to consider regarding the price of power ex-
change between the main grid and the MG. 

Fig. 5. Nominal amount of radiation received by the solar cell along with the 
uncertainty for one day and one night. 

Fig. 6. Nominal wind speed and uncertainty for during one day and one night.  

Fig. 7. Nominal power characteristics of three residential, industrial, and 
commercial loads for a day of operation. 

Fig. 8. Nominal power consumer demand (load) and uncertainty for a day and 
a night. 
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1) The price of power exchange is not the same for all 24 h. At some 
points, due to time sensitivity, the price increases.  

2) The nominal value of the price with uncertainty (Fig. 9) is under the 
influence of the market. 

Other elements in the MG, namely the micro turbine, diesel gener-
ator, and battery, also include parameters that are not considered un-
certain. Table 1 shows the cost of power generation by MG component, 
harmful gas emissions, and the power limit of each component. 

As shown in the table, battery charging and discharging are limited 
to +30 and − 30 kW, respectively. The value of battery charge and 
discharge efficiency is assumed to be 0.94. Simulations were carried out 
in several stages, as explained in the introduction of this paper. 

5. Results 

All simulations were run in MATLAB. The parameters of the imple-
mented algorithm, apart from its number of variables, were completely 
fixed, which is explained below. The maximum iterations were set as 
1000. The initial population was 100. 

Moreover, the number of variables for when the MG is isolated from 
the main grid is related to photovoltaic, wind turbine, diesel generator, 
fuel cell, and microturbine generation, as well as to the charge and 
discharge rate of the battery. 

5.1. Operation of an islanded microgrid with parameter certainty 

In the first case, it is assumed that all MG parameters are certain, 
including photovoltaic and wind turbine generation, as well as the 
amount of power demanded by consumers, and the microgrid does not 

exchange any power. The parameters of the optimization algorithm 
were chosen according to the previously presented information, and the 
number of variables was set to 6. The results for the objective function 
value are given in Fig. 10. 

According to Fig. 10, the final and optimal value for the objective 
function is 4200.42 units. This, as previously stated, includes two 
separate terms: the cost of operation and the cost of pollutant produc-
tion, which amount to 816.2 and 1170.54 units of the total value. 
Therefore, production equal to demand will be 2213.68. Fig. 11 is a 
diagram of the production power values of the resources. 

5.2. Operation of an islanded microgrid with parameter uncertainty 

In this case, it is assumed that the parameters of load and photo-
voltaic, wind turbine generation are uncertain. The other parameters are 
treated as in case 1. Note that, in this mode, the MG operates indepen-
dently and feeds its own loads. This objective function also includes 
terms: operating and production costs, the costs implied by the pro-
duction of polluting gases, and the penalty for the inequality of pro-
duction and demand. The total optimal cost obtained from the algorithm 
is 4240.63 units, out of which 803.24 and 1023.56 are related to the first 
two costs, and the rest is related to the third term. The cost increase 
compared to the first case is due to the uncertainty in the power gen-
eration of wind turbines and photovoltaic panels. The results of this 
section are shown in Fig. 12. 

5.3. Operation of a grid-connected microgrid with parameter certainty 

The third case is the same as the first state, with the difference that 
the MG has the possibility of exchanging power with the main grid. In 

Table 1 
MG parameters [42].   

Unit type Bid (Euro/ 
kWh) 

Start-up/shut-down cost 
(Euro) 

CO2 (kg/ 
MWh) 

SO2 (kg/ 
MWh) 

NOx (kg/ 
MWh) 

Low power limit 
(kW) 

High power limit 
(kW) 

1 Diesel generators 0.586 0.15 890 0.0054 0.23 30 300 
2 Microturbines 0.457 0.96 720 0.0036 1.0 6 30 
3 Fuel cells 0.294 1.65 460 0.003 0.0057 3 30 
4 Photovoltaic 

panels 
2.584 0 0 0 0 0 25 

5 Wind turbines 1.073 0 0 0 0 0 15 
6 Batteries 0.38 0 10 0.0002 0.0001 − 30 30 
7 Network 0 0 950 0.5 1.2 − 30 30  

Fig. 9. Real-time Market Price Nominal value and uncertainty for the exchange 
of power between the MG and the main grid during a day and a night 
of operation. 

Fig. 10. Results for the objective function value.  
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this way, when there is excess generation, it can sell it to the network, 
and it can receive power if there is a shortage. The price of power ex-
change between the main grid and the MG has already been stated, and 
the remaining parameters are set as in case 1. 

Three different terms have been considered for the objective function 
of this algorithm. The final and optimal value of the total objective 
function is 4157.63 units, with 803.24 and 1023.56 being the cost of 
operation and the production of pollutants, respectively. The main 

difference lies in the fact that more iterations were required than in the 
two previous scenarios. In the two previous cases, there was a decreasing 
trend until about 100 iterations, and then the objective function value 
was almost constant. The results obtained in this case are explained by 
the higher complexity of the problem, as it adds a variable. According to 
the results, in the hours when the electricity market price is high, the MG 
sends power to the main grid, thus increasing microturbine generation. 
This also means less charging of the battery. Moreover, the connection to 

Fig. 11. Power generation diagram for case 1.  

Fig. 12. Power generation diagram for case 2.  

Fig. 13. Power generation diagram for case 3.  
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the network reduces the analyzed costs, which results in the reduction of 
the overall objective function and power generation diagram case 3 
show in Fig. 13. 

5.4. Operation of a grid-connected microgrid with parameter uncertainty 

In this scenario, the MG is connected to the main grid for 24 h, and 
the parameters are uncertain. These parameters include the PV and wind 
turbine generation, as well as the load and the price of power exchange. 
The optimal value of the objective function for this scenario is 4121.52 
units, out of which 810.34 and 1117.6 are related to operation costs and 
pollution. Fig. 14 shows the power generation. 

5.5. The operation of microgrid with uncertainty considering the cost of 
production and operation 

This scenario is similar to the previous one, with the difference that 
the objective function includes only the cost of production and opera-
tion. Table 2 shows the power generation for case 5 and Table 3 shows 
the power generation for case 6. 

5.6. The operation of the microgrid with uncertainty considering the 
amount of pollution 

This scenario is similar to case 4, but the objective function only 
includes the cost of pollution. By comparing cases 5 and 6, it can be seen 
that, if the goal is to reduce the costs of production and operation of the 
network, the production rate of the photovoltaic system will decrease, 
and solar energy will have higher costs. If the goal is to reduce emissions, 
the production rate of the diesel generator unit will decrease, power 
generation and storage planning in the microgrid for case 6 in Table (3). 

6. Conclusion 

The article introduced a metaheuristics technique, Salp Swarm al-
gorithm, for the optimal operation of a microgrid during different sce-
narios, such as grid-connected and grid-islanded operation modes. 
Moreover, the proposed technique minimized the generation cost and 
the emission cost considering the uncertainties of generation, load, and 
energy price. The introduced optimization algorithm, which is an 
adaptation of the behavior of salps in nature, proved its efficiency in 
handling the optimization problem, which has continuous variables 

Fig. 14. Power generation diagram for case 4.  

Table 2 
The results of power generation and storage planning in the microgrid for case 5.  

Hour Grid (kW) Battery (kW) Wind Turbine (kW) Photovoltaic (kW) Fuel cell (kW) Micro turbine (kW) Diesel generator (kW) 

1 12.46 1.01 0 0 11.76 8.02 31.34 
2 .99 2.18 0 0 3.96 6.20 58.27 
3 − .28 − 4.37 .01 0 17.02 12.70 43.35 
4 .30 5.39 .27 0 10.27 6.96 43.61 
5 3.81 2.24 2.04 0 7.61 7.22 48.09 
6 2.87 4.27 .07 0 3.90 9.90 71.61 
7 28.28 − .48 .07 .08 3.73 9.54 72.70 
8 17.99 − 6.90 .48 .82 3.63 15.74 146.30 
9 26.62 − 1.84 1.51 .31 13.24 6.26 164.22 
10 25.09 .02 .30 .47 5.08 23.96 165.91 
11 29.75 .13 .69 1.74 29.70 26.47 140.06 
12 25.61 .30 .05 .05 3.60 10.56 183.63 
13 29.76 .01 .85 .15 21.51 7.86 183.00 
14 11.02 .57 1.14 .87 14.07 8.71 215.77 
15 29.55 1.46 .03 .04 14.46 9.46 172.09 
16 29.88 .01 5.43 .22 3.28 28.90 147.76 
17 28.88 4.21 6.95 .31 24.05 14.94 125.69 
18 23.81 2.38 1.93 .411 19.65 14.28 155.54 
19 29.33 .81 1.84 .02 8.20 20.56 147.41 
20 29.31 6.58 .45 0 4.40 18.68 150.97 
21 29.89 − 1.22 .65 0 13.44 23.44 118.69 
22 2.59 5.85 2.13 0 9.53 6.20 137.25 
23 27.52 4.72 .20 0 26.39 11.89 51.98 
24 3.33 3.45 .48 0 13.71 6.95 57.07  
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(generation power) and discrete variables (battery charge and discharge 
states). It was also observed that the operating and pollution costs of 
microgrids can be controlled and that a compromise can be made be-
tween the two in both grid-islanded and grid-connected modes. More-
over, it was found that, in grid-connected operation, the analyzed costs 
can be reduced to some extent. On the other hand, by applying uncer-
tainty to the nominal value of some microgrid parameters, whose value 
is not exactly known in the natural state, an attempt was made to make 
the results of the proposed algorithm more realistic, and it was observed 
that the algorithm can obtain the optimal solution. 
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