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Abstract: This document presents a master–slave methodology for solving the problem of optimal
operation of photovoltaic (PV) distributed generators (DGs) in direct current (DC) networks. This
problem was modeled using a nonlinear programming model (NLP) that considers the minimization
of three different objective functions in a daily operation of the system. The first one corresponds
to the minimization of the total operational cost of the system, including the energy purchasing
cost to the conventional generators and maintenance costs of the PV sources; the second objective
function corresponds to the reduction of the energy losses associated with the transport of energy in
the network, and the third objective function is related to the minimization of the total emissions of
CO2 by the conventional generators installed on the DC grid. The minimization of these objective
functions is achieved by using a master–slave optimization approach through the application of the
Vortex Search algorithm combined with a matrix hourly power flow. To evaluate the effectiveness
and robustness of the proposed approach, two test scenarios were used, which correspond to a grid-
connected and a standalone network located in two different regions of Colombia. The grid-connected
system emulates the behavior of the solar resource and power demand of the city of Medellín-
Antioquia, and the standalone network corresponds to an adaptation of the generation and demand
curves for the municipality of Capurganá-Choco. A numerical comparison was performed with
four optimization methodologies reported in the literature: particle swarm optimization, multiverse
optimizer, crow search algorithm, and salp swarm algorithm. The results obtained demonstrate
that the proposed optimization approach achieved excellent solutions in terms of response quality,
repeatability, and processing times.

Keywords: direct current networks; grid-connected network; standalone network; metaheuristic
optimization methods; master–slave methodology; photovoltaic generation; minimization of operating
costs; minimization of energy losses; minimization of CO2 emissions

MSC: 65K05; 90C26; 90C27

1. Introduction
1.1. General Context

These days, it is possible to appreciate how electrical energy has become a fundamental
basis for the development of human societies, increasing the consumption of electrical
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energy worldwide [1–3]. Accordingly, power generation plants (mainly thermal power
plants) increase their dependence on fossil fuels to meet growing demand, by increasing the
emission of polluting gases and negatively impacting the environment [4,5]. To mitigate this
problem, different governmental entities around the world have promoted the development
and implementation of technologies based on renewable energy sources and energy storage
systems (i.e., distributed energy resources). Likewise, the inclusion of these devices has
been facilitated by the fact that construction and production costs have decreased in recent
years due to the different technological advances in power electronics [6,7].

As a result of these technological advances, the implementation of direct current (DC)
networks is now a viable alternative at the transmission and sub-transmission stages to
meet the demand of end users (i.e., residential, industrial, and commercial) at medium and
low voltage levels. Thus, the advantages of DC networks over traditional AC networks are
as follows [8,9]: (i) higher efficiency, since the absence of reactive elements (i.e., inductive
reactance and reactive power flows) reduces power losses and improves voltage profiles;
(ii) reduction of operating and investment costs associated with network maintenance; and
(iii) simple integration of distributed energy resources into the network, as most of them
operate in DC. For the last reasons, the implementation of technologies based on renewable
resources, such as solar photovoltaic (PV) and wind power generation systems, has been
growing in recent years, in addition to the fact that their zero-emission operation makes
them a viable opportunity for the global energy transition [10].

1.2. Motivation

The Colombian case is no stranger to this situation; in recent years, through regula-
tions and legislation such as Law 1715 of 2014, CREG 030 of 2018, and 068 of 2020, the
development of large-scale projects related to the integration and operation of photovoltaic
(PV) generation sources within conventional grids has been promoted [11]. This growing
interest is related to its geographical location and the abundant solar resource that is cur-
rently far from being fully exploited [11,12]. Additionally, analyzing the country’s energy
matrix, it is possible to observe that 69.4% of the country’s electricity is generated from
renewable energy sources (hydroelectric, solar, and wind, among others), where less than
0.76% is generated from solar resources. However, approximately 30.7% of electricity is
generated from fossil fuels, such as coal (9.6%), diesel (7.8%), and natural gas (13.3%), which
contribute significantly to the emission of CO2 into the atmosphere [13]; this generates an
exceptional scenario for the inclusion of renewable energies.

For the last reasons, the main motivation of this research is to propose an optimiza-
tion methodology that allows taking advantage of the abundant solar resource existing
in Colombia. Thus, it is expected that through the correct operation of distributed PV
generators located along grid-connected or standalone DC distribution, the technical (re-
duction of energy losses), economical (reduction of operating costs), and environmental
(reduction of CO2 emissions) conditions will be improved. Furthermore, this research
also aims to propose solutions that will allow a country such as Colombia to achieve
an energy transition that reduces emissions of polluting gases while providing a high-
quality service, as economically as possible, to all users located in both grid-connected and
standalone networks.

1.3. State of the Art

In recent years, in the specialized literature, different works have been reported
related to operation of PV DGs in DC distribution networks. This problem can be oriented
towards meeting technical, economical, or environmental criteria. Some of these works are
presented below.

In [14], the economical dispatch problem was formulated with the objective of mini-
mizing the total cost operation in a DC grid. This cost was associated with conventional and
renewable-energy-based generators (e.g., PV and wind generators), and the cost efficiency
of the system, by considering the demand response requirements. This solution was tested
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in a six-node test system using the genetic algorithm as optimization methodology, demon-
strating that, under a variable renewable energy scenario, the proposed methodology
reduces the operating costs by an important percent without using comparison methods
and processing time analysis. In [15], a new methodology was presented to evaluate the
technoeconomical feasibility of the integration and operation of large-scale PV genera-
tors in AC/DC distribution networks, whereby the objective functions considered were
the minimization of operating costs and power losses. The nondominant sorting genetic
algorithm-II was used to solve this problem. The numerical results were obtained in the
33 bus test, a grid-connected electrical system with grid-connected conditions, demonstrat-
ing the feasibility of the proposed methodology. The authors of [16] presented an optimal
dispatch model for the operation of a generation system composed of wind, PV, and ther-
mal energy sources. In this paper, the dispatch could be performed in five different ways in
order to minimize the generation costs, while at the same time reducing the emissions of
polluting gases. This model was applied to a real DC system located in Tianzhong-Xinjiang,
China, where it was found that it is possible to maximize the energy generated from the
energy sources by reducing the environmental impact of the grid operation. In [17], the
authors proposed the memory-based gravitational search algorithm for minimizing en-
ergy generation costs in a DC grid. The authors employed the 37 bus IEEE test system
to optimize the power generation from different types of generation, such as PV systems,
cogeneration systems, and diesel generators. The results obtained in this work showed that
the proposed methodology presented a better performance to solve the addressed problem
in comparison with other metaheuristic algorithms, such as artificial bee colony, genetic
algorithm, and particle swarm optimization. They demonstrated the effectiveness of the
proposed methodology without analyzing the processing time required for the solution
methods used.

The authors of [8] presented a second-order conic programming model to solve the
optimal dispatch problem of distributed generators in DC grids. The objective of this
work was the minimization of power losses for DC systems in a single hour of operation.
This methodology was applied in different test systems with radial and meshed topology,
where the numerical results were compared with two metaheuristic methods, demon-
strating the efficiency and robustness of the proposed methodology. In references [18,19],
a master–slave methodology was presented to solve the problem of optimal dispatch of
distributed generation sources in DC networks. These research papers aimed at mini-
mizing system power losses. In both works, they analyzed the repeatability and quality
of the solution obtained by the solution methodologies proposed, with consideration of
the processing times required for these. In [18], the black hole optimization was used in
conjunction with the classical Gauss–Seidel power flow method for solving the problem of
optimal power dispatch in DC grids, to reduce the power losses, while in [19], the authors
used the Ant Lion Optimizer in conjunction with the successive approximations method.
Both papers demonstrated the efficiency and robustness of the proposed methodologies
by solving the problem posed on the 21 bus and 69 bus test systems. The authors of [20]
proposed a hybrid methodology between the particle swarm optimization algorithm and
the gravitational search algorithm for solving the integration and dispatch problem of
renewable energy sources based mainly on PV and wind generation in DC grids. The main
objective of this paper was to minimize the energy losses of the grid and maximize the profit
of the owners of renewable energy sources, by avoiding the implementation of commercial
software. Numerical results were derived on the 69 bus test system, demonstrating the
efficiency and applicability of the proposed methodology, in terms of solution quality and
processing times, compared to other population-based metaheuristic algorithms. Finally,
in reference [21], a mixed-integer nonlinear programming model for the integration and
operation of PV generators in DC networks was presented. Variable generation and de-
mand curves were considered in this paper. The objective of this paper was to minimize
the total CO2 emissions produced by diesel generators in isolated areas. This model was
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solved using GAMS software. Numerical results on the 21-node test system demonstrated
the applicability and effectiveness of the proposed methodology.

By analyzing the state-of-the-art works presented, it is possible to notice that the main
characteristics of the optimization methodologies reviewed are the following: (i) most
of the reported methodologies focus on minimizing operating costs, reduction of power
or energy losses, and, finally, to minimize the pollutant gas emissions; (ii) there is no
evidence of solution strategies that evaluated the effects for improving all conditions, such
as technical, economical, and environmental, to give grid operators the possibility to select
and optimize one of these conditions according to their policies and needs; (iii) not all of the
technical–operational restrictions that represent the operation of a DC distribution system
under a PV generation environment are considered, and it is important to know and respect
the thermal limits of the existing conductors in the network when operating PV systems;
(iv) for calculating the values of the objective functions, in the operation of PV generators,
the maximum power point is used, which forces these generators to generate the maximum
power available in all periods of time, which can affect the stability of the grid in case the
power generated with the solar resource exceeds the power demanded by the users. Finally,
it is identified that there is a need to evaluate the performance of the solution methodologies
proposed by analyzing the average solution, standard deviation, and processing times,
with the aim of guaranteeing that each time the proposed methodology is executed, there
is a solution of good quality in terms of solution, repeatability, and processing times. This
kind of analysis is widely used in the literature to evaluate the effectiveness of proposed
solutions to power flow problems in electrical systems [22,23].

1.4. Scope and Main Contributions

This document proposes the implementation of a master–slave methodology with the
primary objective of improving the technical, economical, and environmental conditions
associated with the daily operation of electrical DC distribution networks. Considering
the review of the state of the art presented above, the main contributions of this paper are
listed below:

i. A new master–slave approach to solve the NLP model that represents the problem
under study in grid-connected and standalone DC networks. The master stage uses
the Vortex Search algorithm (VSA) with a continuous codification to define the output
power of the PV distributed generators without obliging the electrical system to follow
the maximum power point every time. This allows a flexible power injection by the
PV DGs.

ii. In the slave stage, a matrix successive approximation power flow method is proposed
to evaluate the objective functions proposed and the constraints that comprise the
problem, by considering an variable power generation and demand scenario. This
matrix formulation of power flow guarantees the convergence of the solution and
reduces the processing time required when compared with a classical hourly power
flow reported in the literature.

iii. A methodology that presents the best trade-off between the quality solution and
processing times when analyzing economical, technical, and environmental indexes in
DC grids.

iv. Two grid-connected and standalone test systems based on the operative conditions of
Colombian regions.

1.5. Paper Organization

This document is structured as follows: Section 2 presents the mathematical formula-
tion that represents the problem of optimal operation of PV distributed generation units
in DC distribution networks considering different objective functions. Section 3 describes
the implementation of the proposed master–slave methodology that integrates the VSA
with the proposed matrix hourly power flow method based on successive approximation.
Section 4 presents the main characteristics of the 33 bus test system for the grid-connected
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case and the 27 bus test system for the standalone case, the typical PV generation and
demand curve for both test feeders, and the parametric information required to calculate
the value of the economical, technical, and environmental conditions. Section 5 shows the
numerical results, validations, analysis, and discussion regarding the optimal operation of
PV distributed generation units for both DC test systems. Finally, Section 6 lists the main
conclusions and future works derived from this research.

2. Mathematical Formulation

In this section, we present the mathematical formulation of the problem of optimal
operation of PV DGs in DC grids for improving the economical, technical, and environmen-
tal conditions in grid-connected and standalone networks, by considering variable power
generation and demand for a day of operation (24 h in intervals of one hour).

min Ecost = f1 + f2, (1)

f1 = CkWh

(
∑

h∈H
∑

i∈N
ps

i,h∆h

)
, (2)

f2 = CO&M

(
∑

h∈H
∑

i∈N
ppv

i,h∆h

)
, (3)

Equation (1) presents the objective function related to the reduction of operational
costs of the grid Ecost. This equation is composed of the energy purchasing cost of the
conventional generators located in the DC grid ( f1), and the maintenance costs of PV
distributed generators ( f2). For calculating f1, we use Equation (2), in which CkWh is the
energy purchasing costs per kW in USD, ps

i,h is the power supplied by the conventional
generator located in the bus i in the hour h, and ∆h is the duration of the period of time
analyzed; in this particular case, one hour. H and N are the set that contain the total
number of hours considered in the horizon time (24 h) and buses that make up the DC
grid. To calculate f1, we use Equation (2). In this equation, CO&M corresponds to the PV
maintenance cost in USD per kW produced, while ppv

i,h is the power produced by the PV
distributed generator located in the bus i in the hour h.

min Eloss = ∑
h∈H

∑
l∈L

Rl I2
l ∆h, (4)

Equation (4) describes the objective function related to improving the technical con-
ditions of the grid, by considering, in this particular case, the reduction of energy loss
associated with the energy transport in the electrical network (Eloss). In this equation, Rl
and Il represent the resistance and flow current of the l branch that belong to the set of
branches that comprise the DC grid (L).

min ECO2 = CEs

(
∑

h∈H
∑

i∈N
ps

i,h∆h

)
, (5)

Equation (5) is responsible for reducing the CO2 emission related to the energy produc-
tion in the DC grid by the conventional generators ECO2 , where CEs denotes the coefficient
of emission of the conventional generators; in the particular case of grid-connected net-
works, this coefficient is supplied by the grid operator, while in standalone grids, it is
associated with the fossil energy resource used.

ps
i,h + ppv

i,h − Pd
i,h = vi,h ∑

j∈N
Gijvj,h (6)

Ps,min
i ≤ ps

i,h ≤ Ps,max
i (7)

Ppv,min
i ≤ ppv

i,h ≤ Ppv,max
i (8)
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Ppv,max
i ≤ Ppv

i Cpv
h (9)

Vmin
i ≤ vi,h ≤ Vmax

i (10)

− Imax
l ≤ Il,h ≤ Imax

l (11)

The set of technical and operation constraints that represent the problem are illustrated
by Equations (6)–(11). Equation (6) is related to the power balance of the grid. In this
equation, Pd

i,h and vi,h are the power demanded and the bus voltage profile in the bus i at
the hour h, while Gij is associated with the conductance of the branch connected between
the buses i and j, and vj,h is the bus voltage profile in the bus j at the hour h. Equation (7)
represents the power limits of the conventional generator located in bus i. In this equation,
Ps,min

i and Ps,max
i denote the minimum and maximum limits. In the same way, Equation (8)

is associated with the power bound of PV distributed generators; in this equation, Ppv,min
i

and Ppv,max
i correspond to the maximum and minimum power to be supplied by the PV

distributed generator located at bus i. Here, Ppv,min
i takes a value of 0 kW, while Ppv,max

i
is calculated using Equation (9), which is a function of the nominal power of the PV
distributed generator located in the bus i and the power capacity of PV system in the hour
h; this value is related to the solar radiance, environmental temperature, and PV technology
used (see Section 4). Finally, Equations (10) and (11) present the operative constraints
associated with the voltage and branch current. The first equation guarantees that the DC
grids operate between the maximum (Vmax

i ) and minimum (Vmin
i ) voltage profile allowed,

while the second one establishes that the current that circulates on the branch l at the hour
h (Il,h) must be smaller than the maximum current allowed in this branch Il max in both
flow directions (+ or −).

FF = OF + α




max
{

0, Vi,h −Vmax
i

}

−min
{

0, Vi,h −Vmin
i
}

−min
{

0, real(ps
i,h − Ps,min

i )
}

+min
{

0, real(ps
i,h − Ps,min

i )
}

+max
{

0, Il,h − Imax
l
}




(12)

To guarantee all constraints that comprise the problem studied here, we used the fitness
function (FF) presented in Equation (12). It is important to mention that a fitness function
is a common adaptation of the objective function used when working with metaheuristic
techniques and should be evaluated using the constraints for each individual proposed by
the master stage [24,25]. The implementation of a fitness function (instead of the original
objective function) allows efficient exploration and exploitation of the solution space by the
algorithm, since exploring not-feasible regions increases the chances of finding a solution
of good quality, by reducing processing times in the majority of the cases [26,27].

In this work, this equation considers the penalization of the objective function if any
constraint is violated, by comparing the maximum and minimum values allowed with
the values generated for the different solutions proposed by the solution method. It is
worth clarifying that the objective function in this research paper could be the economical,
technical, or environmental condition of the grid, depending on the needs of the network
operator. When the solution obtained by an individual is feasible and within the solution
space, the original objective function and the adaptation function reach the same numerical
value, otherwise penalty factors will be applied to the original objective function to worsen
the quality of the response. Finally, with the aim of normalizing the penalization values
in relation to the objective functions used, and penalizing the solutions that violate the
set of constraints inside the iterative process, the constant α was employed, which, in this
particular case, takes a value of 1000 fixed in a heuristic way. This value allows the VSA to
explore not-feasible regions, guaranteeing that at the end of the iterative process a feasible
solution of good quality will be obtained.
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3. Codification and Optimization Methodology

This section describes the codification and solution methodology proposed for solving
the problem of optimal dispatch of PV generators in DC grids for improving economical,
technical, and environmental indexes.

3.1. Codification Problem

The codification proposed for the problem of optimal operation of PV DGs in DC grids,
by considering variable power generation related to the PV technology, solar radiation, and
environmental temperature of the region where the PV systems are located, is illustrated
in Figure 1. This codification uses a vector of size 1xC, where C = SRH ∗ Npv, and SRH
and Npv correspond to the number of solar radiation hours present in the region where
the electrical systems are located, and the total of PV DGs installed on the grid. The
example shown in Figure 1 is related to PV systems located in Colombian regions, where
the SRH is equal to 13 h. This value is obtained with the sun total hours within the horizon
time generated from 6 to 19 h, respectively, by generating for 3 PV distributed generators
installed on DC grids a total of 39 variables for the codification of the problem. In an
example model, in this figure, for the PV distributed generator 1, we consider the injection
of 0, 0.3, 1.1, and 0.7 kW at the hours 6, 7, 18, and 19. In the case of the PV distributed
generator 2, we propose a power supply of 0.1, 0.4, 1.2, and 0.95 kW at the hours 6, 7, 18,
and 19, respectively. Finally, for the PV distributed generator 3, we consider a power of
0, 0.5, 1, and 0.8 kW at the hours 6, 7, 18, and 19. This power configuration represents
a possible solution for the problem studied here, with the values generated between the
maximum and minimum power allowed for the PV DGs located in the grid, which are
calculated by using the PV technology, nominal power, solar radiation, and environmental
temperature (see Section 4).

Figure 1. Codification used for solving the problem of optimal operation of PV DGs in DC grids.

3.2. Solution Methodology

The aim is to find the power values for the codification proposed that allow to obtain
the best possible solution for solving the problem of optimal operation of PV distributed
generators in DC grids by considering the economical, technical, and environmental indexes
reported in Section 2. In this paper, we consider a master–slave strategy as a solution. In the
master stage, we use the Vortex Search algorithm (VSA) entrusted to find the power values
to be injected by each distributed generator by using the codification described in the last
paragraph. In the slave stage, we propose a matrix hourly power flow (MHPF) responsible
for calculating the effect of the power values provided by each solution proposed by the
VSA from the technical, economical, and environmental points of view, by considering
all constraints that represent the problem. Figure 2 describes the dynamic between the
master–slave strategy, where the arrow green identifies the sending of solution information,
while the red arrow represents the fitness function received by the VSA from the MHPF.
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Figure 2. Master–slave methodology proposed.

3.2.1. Vortex Search Algorithm

The VSA is inspired by the vertical behavior of stirred fluids [28], which explore the so-
lution space, spreading the individuals of a population within the solution space through a
Gaussian distribution that guarantees an adequate exploration from the mathematical point
of view. As the iterative process of the algorithm advances, the diameter size is reduced,
changing the center of this to a function of the best solution, with the aim to converge in
the best possible solution. The selection of this optimization algorithm was based on the
excellent results reported in the literature for solving the operation of distributed energy
resources in electrical systems [29–31]. The description of the iterative process related to
the VSA is presented in Algorithm 1.

Algorithm 1: Pseudocode vortex search algorithm.

Data: Read data electrical system and VSA and optimization parameters;
1 if t = 0 then
2 Define µ0 and r0 for the vortex;
3 Generate the individual of the population in a random way;
4 Calculate the FF for each individual of the initial population→Matrix hourly

power flow;
5 Find the incumbent s0

best;

6 for t = 1 : tmax do
7 Update the center µt = st

best;
8 Calculate the radius rt;
9 Generate new individuals of the potulation st+1

i ;
10 calculate FF for each individual st

i →Matrix hourly power flow;
11 Find the incumbent st

best;
12 if t ≥ tmax then
13 Select µt as the solution to the problem;
14 Return the solution and FF to the master problem;
15 Break;

The VSA starts reading the data of the electrical system analyzed and the optimization
parameters that were tuning by using the methodology based on the particle swarm
optimization algorithm proposed in [22]. The electrical and optimization parameters are
presented in Section 4.

The iterative process of the VSA starts calculating the initial center (µ0) and radius
(r0) in the iteration zero of the algorithm (t = 0) or initial state. In this iteration, the VSA
calculates µ0 by using Equation (13), where xmax and xmin correspond to the maximum and
minimum values of the variables associated with the problem studied—in this particular
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case, the maximum and minimum power generated by the PV DGs in each hour within the
horizon time.

µ0 =
(xmax + xmin)

2
(13)

To obtain r0, we use Equation (14), where t is the current iteration, tmax is the maximum
number of iteration of the algorithm, and a denotes a constant parameter that controls the
step-down speed of the vortex radius that represents the solution space. Due to t = 0, in
this initial state, the radius is a function of the matrix of covariances σ0, simplified to be
equal to µ0 in this particular case, by generating that the radius of each variable be equal to
the distance to the initial center.

rt+1 = σ0(1−
t

tmax
)ε(−a t

tmax ) (14)

After obtaining µ0 and r0, we generate the initial population for which we consider
random values between the maximum and minimum values assigned for each variable, by
verifying that all individuals satisfy the limits fix. Then, we evaluate the fitness function
for each individual by using the slave stage; in this work, employing the MHPF, which
evaluates the effect of the PV power injected to the DC grid by the distributed generations,
by considering the power demand and conditions associated with the electrical test systems.
Finally, with the FF values, we identify and select the individual with the best solution as
incumbent of the problem S0

best.

st
i = p(ζt

i , µt, υ) = ((2π)d|υ|)(1/2)e

(
− 1

2
(ζt

i−µt)
T (ζt

i−µt)
υ

)

(15)

From the first iteration until the end of the iterative process, the VSA updates the
center of the vortex (µiter) with the variables that comprise the incumbent in each iteration
st

best. After that, the VSA calculates the rt and generates the new population by using
Equation (15). In this Equation, st

i corresponds to the ith individual of the population, ζt
i

denotes a vector of random variables, and υ is a matrix of covariances. rt is important in
VSA since it limits the ζt

i random vector. After generating the new population, the FF of
all individuals is evaluated by using the slave stage. Subsequently, the incumbent of the
problem is updated in the current iteration st

best. If the number of tmaximum is achieved,
the optimization process finishes, selecting st

best as the variables (power dispatch of PV
distributed generators) that obtain the best solution for the problem by returning the FF,
generating the best economical, technical, or environmental index. In other cases, other
iterations are carried out.

3.2.2. Matrix Hourly Power Flow

To evaluate the impact of the PV hourly power proposed for the different solutions
provided by the master stage (VSA), we propose a matrix hourly power flow (MHPF) that
uses the PV generation, power demand, and data of a test electrical system for calculating
the FF. The main idea behind using this methodology is reducing the processing times
associated with the operation of the slave stage, since the evaluation of FF is the stage
inside the optimal operation of distributed energy resources that requires more time. We
traditionally use an hourly power flow based on an iterative algorithm to calculate the
effects in the objective function in each period of time, summarizing the FF function
obtained for the whole operation day [22,31], as presented in Algorithm 2.
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Algorithm 2: Traditional hourly power flow based on successive approximation
method (SA).

Data: Data reading and assignment of HSA parameters
16 for h = 1 : 24 do
17 Load the power demanded by the loads during period h;
18 Load the active power provided by the PV DGs during period h;
19 Solve the DC power flow for period h using the successive approximation

method reported in [32];
20 Calculate the objective function for period h
21 Evaluate the constraints for period h;
22 Calculate the FF for period h;

23 Add the FF values of all the periods;
24 Return the FF value to the master stage;

The traditional hourly power flow uses the power flow method based on successive
approximations [32]. This method solves Equation (16) through an iterative process; by
using a maximum iteration number of 2000 and a convergence error of 1× 10−10, these
values were obtained in a heuristic way. In Equation (16), the variables of interest are the
voltage profiles in the demand buses at the period h at the current iteration (Vt+1

d,h ), while
the voltages in the slack buses are known, represented by Vs,h. This equation is a recurrent
mathematical formulation that requires the values of the demand voltage profiles in the
last iteration to be solved (Vt

d,h). The other elements that make up the equation correspond
to the component of the conductance matrix associated with the slack buses, the demand
buses Gds, and the component of the conductance matrix that relates the demand nodes to
each other (Gdd). Furthermore, Pd,h is the vector that contains the active power demanded
by the loads connected to the different buses of the electrical systems at the hour h, and
Ppv,h is the vector that contains the active power generated by the PV distributed generators
located in the grid at the hour h. Finally, in this equation, diag is a diagonal matrix that
allows matrix products of the Equation (16).

Vt+1
d,h = −Gdd

[
diag(Vt

d,h)(Pd,h − Ppv,h) + GdsVs,h

]
(16)

The proposed MHPF takes advantage of the power flow method based on SA by
proposing a unique matrix equation that eliminates one of the iterative processes used
for the traditional hourly power flow, by corresponding to the analysis of each period of
time, reducing, in this way, the processing time required by the solution. To obtain the
matrix equation of the successive approximation power flow method, this paper used
the Hadamard product (◦) and division (�) that allow to take two matrices of the same
dimensions and produce another matrix of the same dimension that contains the product
or division of the element of the same position ij. An example of this is presented in
Equations (17) and (19), respectively.

(A ◦ B)ij = AijBij (17)

(A� B)ij =
Aij

Bij
(18)

Equation (19) allows obtaining the MHPF. This equation uses matrices of size |d|x|H|,
where |d| denotes the number of demand buses and |H| describes the total period analyzed
inside the horizon time. The main difference, with respect to the traditional SA, is related
to the possibility of obtaining a matrix of voltage demand that contains all voltages in the
different period of time Vt+1

dh , with t+ 1 being the iteration in the analysis and t being the last
iteration. This is made possible by using a ones matrix (ones) that has Hadamard division
operation with Vt

dh, by generating a Hadamard product with the difference between the
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matrix that contains the power demanded and PV generation in each bus for the different
periods of time. This matrix presents a size of |d|x|H|, too. Vsh is the matrix with the same
size that contains the voltage in the slack buses for all hours, this value being constants.

Vt+1
dh = −G−1

dd

[
(ones�Vt

dh) ◦ (Pdh − Ppvh) + GdsVsh

]
(19)

Finally, to solve the hourly power flow by using the matrix version proposed here, it is
necessary to run an iterative algorithm using the same number of iteration and convergence
error as SA, allowing, in this way, eliminating an iterative process with respect to the SA. As
example, in this paper, we calculated the hourly power flow for the grid-connected network
in a scenario without PV distributed generation by using the traditional methodology and
the matrix version proposed here. The results obtained are reported in Table 1, where it
can be appreciated that the MHPF achieved a reduction in processing times of 67.71% with
respect to the SA. Furthermore, in this table, it is possible to appreciate that the MHPF
required 178 fewer iterations than SA, converging to the same solution in terms of energy
loss. With the last analysis, the authors of this work demonstrated the effectiveness of the
proposed MHPF and the importance of this for solving the problem of optimal power flow
of distributed energy resources in electrical grids.

Table 1. Hourly power flow numerical results.

Method Avg. Time (ms) Total Iterations Energy Loss (kWh)

SA 0.7449 185 2186.2803
MHPF 0.2405 8 2186.2803

4. Test Systems, Generation and Demand Curves, and Additional Considerations

To evaluate the proposed master–slave optimization methodology for solving the
problem of optimal operation of PV distributed generators in grid-connected and stan-
dalone DC networks, we considered two test feeders that are located in two different
areas of operation, i.e., a grid-connected network and standalone grid, respectively. For
the grid-connected network, we implemented the 33 bus test feeder, which was used to
emulate the behavior of the solar resource and the power demand of the city of Medellín-
Antioquia, Colombia, corresponding to the urban area that is connected to the national
electrical network. In the same way, for the standalone network, we used a 27 bus test
feeder, which was adapted to emulate the behavior of the power generation and demand of
the municipality of Capurganá-Choco, Colombia, corresponding to the standalone network
that operates with diesel.

4.1. Grid-Connected Test Feeder

This test feeder is an adaptation of the 33 bus AC radial system, originally proposed
in [33], commonly used to evaluate new solution methodologies for the optimal power flow
problem. This system contains 33 nodes and 32 distribution lines, as shown in Figure 3.
To convert this system into a DC network only, it is necessary to eliminate the reactive
components of the branches and loads, respectively. Furthermore, we used as base values a
voltage of 12.66 kV and a power base of 100 kVA. Parametric information related to power
consumption at the nodes and distribution line parameters are listed in Table 2, presenting,
from left to right, the line number, send bus, receive bus, resistance of the branch that
connects the send bus with the receive bus, the power demand by the load connected to
the receive bus, and the maximum current allowed in each distribution line. The current
limit values were computed using a power flow solution under peak conditions without
PV distributed generation, by using, for the maximum currents, the Colombian Technical
Standard (NTC) 2050, assuming that the conductors that can be assigned to these lines will
operate under a nominal temperature of 60 ◦C.
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Figure 3. Electrical configuration of the grid-connected DC network.

Finally, to evaluate the effect of PV generation in the grid-connected system, three PV
sources with nominal rates of 2400 kW were added to nodes 12, 15 and 31, respectively.

Table 2. Parametric information of the grid-connected network.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 17114 200 85
8 8 9 10300 60 70
9 9 10 10400 60 55

10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 14.680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 12890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 15042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 10590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

4.2. Standalone test feeder

For the standalone DC test feeder, we used an adaptation of the 27-bus AC radial
system, originally proposed in [? ]. This system contains 27 nodes and 26 electrical lines
as shown in Figure 4. To obtain the DC version of this test system was used the same
methodology indicated for urban network, by considering the same base values. Parametric
information related to power consumption at the nodes, distribution line parameters and
its maximum thermal currents are listed in the Table 3. Note that, for these test system were

Figure 3. Electrical configuration of the grid-connected DC network.

Finally, to evaluate the effect of PV generation in the grid-connected system, three PV
sources with nominal rates of 2400 kW were added to nodes 12, 15, and 31, respectively.

Table 2. Parametric information of the grid-connected network.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 17114 200 85
8 8 9 10300 60 70
9 9 10 10400 60 55
10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 14.680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 12890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 15042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 10590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

4.2. Standalone Test Feeder

For the standalone DC test feeder, we used an adaptation of the 27 bus AC radial
system, originally proposed in [34]. This system contains 27 nodes and 26 electrical lines,
as shown in Figure 4. To obtain the DC version of this test system, we used the same
methodology indicated for the urban network, by considering the same base values. Para-
metric information related to power consumption at the nodes, distribution line parameters,
and maximum thermal currents are listed in Table 3. Note that, for this test system, we
considered three PV sources with nominal rates of 2400 kW located at nodes 5, 9, and
19, respectively.
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Table 3. Parametric information of the standalone network.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0140 0 195
2 2 3 0.7463 0 145
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15 15 16 5.3434 255 20
16 3 17 1.2942 255 55
17 17 18 0.7027 127.5 40
18 18 19 3.3234 297.5 40
19 19 20 1.5172 340 20
20 20 21 0.7127 85 20
21 4 22 8.2528 106.25 20
22 5 23 9.1961 55.25 20
23 6 24 0.7463 69.7 20
24 8 25 2.0112 255 20
25 8 26 3.3234 63.75 20
26 26 27 0.5261 170 20

4.3. Test feeders generation curves

The power generation based on solar resources is directly dependent on environmental
conditions such as solar radiation and ambient temperature, in this sense, the output power
of PV distributed generation systems can be expressed as shown in the Equation (20) [? ].
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i is the solar radiation of the PV
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Table 3. Parametric information of the standalone network.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0140 0 195
2 2 3 0.7463 0 145
3 3 4 0.4052 297.5 85
4 4 5 1.1524 0 70
5 5 6 0.5261 255 70
6 6 7 0.7127 0 55
7 7 8 1.6628 212.5 55
8 8 9 5.3434 0 20
9 9 10 2.1522 266.05 20
10 2 11 0.4052 85 70
11 11 12 1.1524 340 55
12 12 13 0.5261 297.5 40
13 13 14 1.2358 191.25 25
14 14 15 2.8835 106.25 20
15 15 16 5.3434 255 20
16 3 17 1.2942 255 55
17 17 18 0.7027 127.5 40
18 18 19 3.3234 297.5 40
19 19 20 1.5172 340 20
20 20 21 0.7127 85 20
21 4 22 8.2528 106.25 20
22 5 23 9.1961 55.25 20
23 6 24 0.7463 69.7 20
24 8 25 2.0112 255 20
25 8 26 3.3234 63.75 20
26 26 27 0.5261 170 20

4.3. Test Feeders Generation Curves

The power generation based on solar resources is directly dependent on environmental
conditions such as solar radiation and ambient temperature; in this sense, the output power
of PV distributed generation systems can be expressed as shown in Equation (20) [35].

ppv
i,h = Ppv

i fpv

(
GT

h

GT,STC
i

)[
1 + αp

(
Tc

i,h − Tc,STC
i

)]
, (20)

where fpv is a PV power reduction factor that considers external conditions that may affect
the power production of a panel; GT

h is the incident solar radiation on the PV distributed
generator in a period of time h; GT,STC

i is the solar radiation of the PV distributed generator
located at node i under standard test conditions; αp is the power temperature coefficient;
Tc

i,h is the surface temperature of the PV distributed generator located at a bus i during

a period of time h; and Tc,STC
i is the surface temperature of the PV distributed generator

located at a node i under standard testing conditions.
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On the other hand, the surface temperature of a PV distributed generator can be
calculated as shown in (21).

Tc
i,h = Ta

h + GT
h

(
Tc,NOCT

i − Ta,NOCT
i

GT,NOCT
i

)(
1− ηc

i
α

)
(21)

where Ta
h is the ambient temperature to which the PV distributed generator is exposed in a

period of time h; Tc,NOCT
i is the nominal operating cell temperature of the PV distributed

generator located at node i when exposed to radiation GT,NOCT
i at an ambient temperature

of Ta,NOCT
i ; ηc

i is the electrical efficiency of the PV distributed generator located at a node i;
τ is the solar transmittance of the PV distributed generator; and α is the solar absorption of
the PV distributed generator.

To determine the expected behavior of solar generation for an average day in the
grid-connected and standalone networks under analysis, we considered the parametric
information presented in Table 4. This information was adapted from [35,36], assuming
that the PV generators were constructed with silicon polycrystalline technology.

Table 4. Parametric information related to PV distributed generators.

Parameter Value Unit Parameter Value Unit

Ppv
i 100 W fpv 0.95 -

GT,STC
i 1000 W/m2 αp −0.0045 1/◦C

Tc,STC
i 25 ◦ C Tc,NOCT

i 46 ◦C
GT,NOCT

i 800 W/m2 Ta,NOCT
i 20 ◦ C

ηc
i 0.141 - τα 0.9 -

Setting the nominal power of the PV distributed generators at 100 W, a generation
curve varying between 0 and 100 W was obtained, which can be considered as a percentage
generation curve that denotes the behavior of the solar resource in the area under study
(i.e., Cpv

h ). Furthermore, to characterize the power generation based on the solar resource
of the city of Medellín and the municipality of Capurganá, we used the solar radiation
and the environmental temperature data provided by the National Aeronautics and Space
Administration (NASA) database for each area [37]. These data were taken for the year
2019, from 1 January to 31 December, with an hourly sampling, in order to eliminate the
pandemic situation related to COVID-19. The hourly average information for both areas
is presented in Table 5. In addition, applying Equations (20) and (21), considering the
information reported in Table 4, the average power generation for Medellín and Capurganá
was obtained and is presented in Table 5 and Figure 5.
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h ). Furthermore, to characterize the power generation based on the solar resource
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information reported in Table 4, the average power generation for Medellín and Capurganá
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Table 5. Solar radiation data (W/m2), ambient temperature (◦C), and behavior (p.u.) for an average
day in the areas under study.

Area Medellín (Grid-Connected) Capurganá (Standalone)

Hour GT Ta Cpv GT Ta Cpv

1 0 16.14132 0 0 24.44252 0
2 0 15.90636 0 0 24.32474 0
3 0 15.68132 0 0 24.22545 0
4 0 15.46022 0 0 24.14674 0
5 0 15.27545 0 0 24.08422 0
6 0 15.10329 0 0 24.03482 0
7 46.02425 15.15718 0.04541 29.14570 24.10367 0.02770
8 190.83559 16.15636 0.18424 142.11066 24.78126 0.13277
9 362.83753 17.43868 0.34100 291.61926 25.68211 0.26622

10 526.64647 18.87312 0.48161 431.95384 26.63671 0.38547
11 640.99058 20.27438 0.57375 540.61581 27.47515 0.47362
12 709.05312 21.36342 0.62572 605.16362 28.10252 0.52397
13 701.86370 21.98721 0.61809 606.93027 28.46775 0.52442
14 626.82690 22.12107 0.55716 583.07479 28.56923 0.50519
15 499.86074 21.83071 0.45236 490.55904 28.42334 0.43065
16 346.26581 21.20351 0.32052 359.22033 28.03460 0.32148
17 186.66671 20.38668 0.17693 204.48775 27.44945 0.18722
18 52.33403 19.35951 0.05066 64.51775 26.69008 0.06034
19 0.50986 18.32258 0.00050 3.17460 25.89016 0.00300
20 0 17.72414 0 0 25.39227 0
21 0 17.29586 0 0 25.09285 0
22 0 16.96148 0 0 24.87663 0
23 0 16.67395 0 0 24.70841 0
24 0 16.40545 0 0 24.56926 0

4.4. Test Feeders Demand Curves

The expected average power consumption in the city of Medellín and the municipality
of Capurganá was determined based on historical consumption data provided by the
distribution companies operating in each area: (i) in Medellín, historical reports are made
by the network operator Empresas Públicas de Medellín (EPM) [38]; (ii) in Capurganá,
power consumption data were taken from IPSE reports, which is a company responsible for
monitoring and supervising the noninterconnected electrical areas of Colombia in order to
promote, develop, and implement energy-related solutions in these areas [39]. In both cases,
the power consumption data were taken for the year 2019, from 1 January to 31 December,
with an hourly sampling. In the same way as for the generation curves, in Table 6 we list
the hourly average information for both areas. With the data presented in this table, the
average behavior of the power demand for a typical day in Medellín and Capurganá is
obtained, as shown in Figure 6.
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power consumption data were taken from IPSE reports, which is company responsible of
monitoring and supervising the non-interconnected electrical areas of Colombia in order to
promote, develop, and implement energy-related solutions in these areas [? ]. In both cases
the power consumption data was taken for 2019 year, from January 1st to December 31st,
with an hourly sampling. In the same way as for the generation curves, in the Table 6 are
listed the hourly average information for both areas. With the data presented in this table,
the average behavior of the power demand for a typical day in Medellín and Capurganá is
obtained, as shown in Figure 6.
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For calculating the value of the economical, technical and environmental conditions
defined in Equations (1), (3) and (4), the parametric data displayed in Table 7 were used.
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Table 6. Power consumption data (kW) and behavior (p.u.) for an average day in the areas un-
der study.

Area Medellín (Grid-Connected) Capurganá (Standalone)

Hour Pd Pd,pu Pd Pd,pu

1 1,012,876.20 0.65509 428.04117 0.84573
2 974,315.40 0.63015 409.76717 0.80962
3 951,768.01 0.61557 317.81654 0.62795
4 952,169.92 0.61583 256.70648 0.50720
5 996,601.97 0.64457 51.70864 0.10217
6 1,080,667.80 0.69894 11.05835 0.02185
7 1,135,234.91 0.73423 32.49553 0.06421
8 1,226,850.93 0.79348 62.77491 0.12403
9 1,303,895.33 0.84331 119.17381 0.23547
10 1,354,781.01 0.87622 281.26057 0.55572
11 1,417,860.03 0.91702 333.09429 0.65813
12 1,462,589.11 0.94595 358.36076 0.70805
13 1,459,381.62 0.94388 368.01140 0.72712
14 1,439,889.28 0.93127 369.70917 0.73048
15 1,430,823.70 0.92541 379.97901 0.75077
16 1,426,481.64 0.92260 388.65478 0.76791
17 1,404,019.24 0.90807 386.78365 0.76421
18 1,373,896.43 0.88859 395.19266 0.78083
19 1,463,002.74 0.94622 430.88177 0.85134
20 1,478,398.44 0.95618 464.61670 0.91800
21 1,415,579.31 0.91555 476.40313 0.94128
22 1,310,824.08 0.84779 473.67462 0.93589
23 1,187,930.28 0.76831 467.29281 0.92328
24 1,086,900.38 0.70297 452.18590 0.89344

4.5. Parametric Information for the Objective Functions Calculation

To calculate the values of the economical, technical, and environmental conditions de-
fined in Equations (1), (3), and (4), the parametric data displayed in Table 7 were used. This
table shows the purchasing energy cost by conventional generators in grid-connected and
standalone grids, the costs associated with the maintenance of PV distributed generators,
and the emissions factors associated with power generation in urban and rural networks.

Table 7. Parameters used to calculate the economical, technical, and environmental indexes.

Parameter Value Unit Parameter Value Unit

Cgrid−connected
kWh

0.1302 USD/kWh CEgrid−connected
s 0.1644 kg/kWh

Cstandalone
kWh 0.2913 USD/kWh CEstandalone

s 0.2671 kg/kWh
Cpv

O&M 0.0019 USD/kWh ∆V ±10 %

It is worth highlighting that (i) energy generation costs for the study areas were taken
from reports made by networks operators to the Sistema Unico de Información (SUI) in
2019 [40,41]; (ii) the operation and maintenance costs of the PV distributed generators
were taken from [42]; (iii) the emissions factor for the grid-connected network is the factor
established by XM for the interconnected electrical system, to which EPM [43] belongs.
Additionally, the emissions factor for the standalone grid is associated with diesel fuel
consumption and was taken from the database of the Emission Factors of Colombian Fuels
(FECOC) [44]; and (iv) the voltage regulation limits are set as ±10% of the nominal voltage
of the system, as specified in the NTC 1340.

Finally, with the aim of evaluating the effectiveness and robustness of the proposed
methodology, we used a total of four comparison methods reported in the literature for
solving the optimal power flow problem in DC grids, by adapting these for solving the
mathematical formulation described in Section 2. The first comparison method corresponds
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to the crow search algorithm (CSA); this optimization method is based on hunting nature
of the crows [45]. The second comparison method is the multiverse optimization algorithm
(MVO) [23]; this method takes advantage of the behavior of the universe for solving
problems with continuous variables. The third method corresponds to the particle swarm
optimization algorithm (PSO); this method is based on the hunting behavior of birds and
fish to solve continuous problems, as studied here [22]. Finally, we used the salp swarm
algorithm (SSA), which is a bioinspired algorithm that uses the behavior of salps, which
are fish that live in swarms and form chains as they move, which facilitates the way they
move through the deep ocean in search of food [46]. All the aforementioned solution
methodologies were selected as comparison methods due to the excellent results reported
by the authors, allowing, in this work, the tuning of all optimization parameters with
the aim of obtaining the best performance for each one. The tuning of all optimization
methodologies by including the proposed VSA was carried out using methodology based
on PSO reported in [31]. The optimization parameters found are reported in Table 8.

Table 8. Optimization parameters used for all solution methodologies.

Method Optimization Parameter Value

VSA

Number of particles 163
Maximum iterations 762
Nonimprovement iterations 762
x parameter 0.08

CSA

Number of particles 177
Maximum iterations 471
Nonimprovement iterations 295
Memory capacity (mc) 0.65
Flight length (fl) 3.25

MVO

Number of particles 41
Maximum iterations 1326
Nonimprovement iterations 188
Wep-min 0.68
Wep-max 0.51
P parameter 3

PSO

Number of particles 159
Maximum iterations 492
Nonimprovement iterations 229
Maximum inertia (Wmax) 0.99
Minimum inertia (Wmin) 0.32
Cognitive component (C1) 0.06
Social component (C2) 1.54

SSA
Number of particles 141
Maximum iterations 1577
Nonimprovement iterations 547

It is important to highlight that, in order to make a fair comparison between the
continuous optimizations methods previously described, all solution methods using the
MHPF are proposed here.

5. Simulation Results and Discussion

This section shows, analyzes, and discuses all results obtained by the optimization
algorithms to solve the problem of optimal operation of PV distributed generators in DC
networks. To accomplish this task, we employed a grid-connected and a standalone grid
from Medellín and Capurganá in Colombia, respectively. To realize all the simulations,
we used the numerical computing system Matlab 2022a version, by using a Dell Preci-
sion 3450 workstation with an Intel(R) Core(TM) i9-11900 CPU@2.50 GHz and 64.0 GB
RAM running Windows 10 Pro 64-bit. Finally, each algorithm was executed 100 times
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for each objective function, with the intention of evaluating the average solution for each
index used, the standard deviation, and the average processing times required by the
optimization methodologies.

The simulation section is divided into two, focusing on each test system used.
Section 5.1 presents the results obtained for the standalone system, while Section 5.2
presents the grid-connected system. Each analysis evaluates the average results obtained
by the algorithms, the standard deviation, and the average processing time to reach the
solution for the problem studied, for the three objective functions selected in this document.

5.1. Capurganá’s Network: Standalone System

Table 9 presents all simulation results obtained for the different optimization methods
for each objective function used. This table is arranged from left to right as follows: the
first column corresponds to the optimization algorithm employed. In the second, third,
and fourth columns, we present the results related to the objective functions that we are
seeking to minimize in this document (Eloss, Ecost, and ECO2), where Eloss is the energy
losses in the grid associated with the energy transport in kW, Ecost is the energy purchasing
cost of the conventional generators located in the DC grid in USD, and ECO2 is the CO2
emission related to the energy production in the DC grid by the conventional generators in
kgCO2. In the first row of this table, we present the values associated with the electrical
network without PV distributed generation (base case) for each objective function. The rest
of the table continues with the analysis of the average solution obtained by each solution
methodology, the percentage of reduction with respect to the base case, the standard
deviation obtained by each method, and the average processing time that it took each
algorithm to reach the presented solution.

By analyzing the results obtained in the last table, it is possible to obtain Figure 7. This
figure shows the percentage of average reduction by each method (a) with respect to base
case, the percentage of standard deviation reached by each algorithm (b), and the average
processing time that each algorithm needs to obtain the solution for the problem addressed,
in seconds (c). In Figure 7a, we analyze the percentage of average reduction obtained
by the optimization algorithms for each objective function. For the Eloss case, the VSA
algorithm obtains an Eloss of 359.8317, achieving a reduction of 26.4605, outperforming SSA
by 0.0045%, MVO by 0.0403%, PSO by 0.4533%, and CSA by 1.9135%. For the Ecost case, the
proposed algorithm obtains a percentage reduction of 34.7833%, reaching an Ecost value of
12,055.3410, outperforming the other methodologies by an average percentage of 2.8246%.
In the ECO2 case, the VSA once again obtains the best solution, reaching an ECO2 value of
11, 016.6177 kgCO2, and reaching an emissions average percentage reduction of 35.0102%
in relation to the base case, outperforming SSA, MVO, PSO, and CSA by 0.1354%, 0.6781%,
1.4805%, and 8.9539%, respectively. The discussion presented shows that the VSA obtains
the best average solutions for the three objective functions addressed in this document.

Figure 7b compares the solutions obtained by each optimization algorithm in terms
of standard deviation in the Eloss, Ecost, and ECO2 objective functions. In the first one, the
VSA algorithm obtains a percentage of standard deviation of 0.0212%, beating SSA by
0.0018%, MVO by 0.2144%, PSO by 0.3883%, and CSA by 1.7335%. In the second case,
related to the Ecost, the VSA occupies the first position, with a minor standard deviation
percentage (0.3042%), outperforming SSA, PSO, CSA, and MVO by 0.1322%, 1.4669%,
2.0036%, and 2.1259%, respectively. In the third case, associated with reduction of ECO2 ,
the proposed algorithm reaches a standard deviation value of 0.2886%, outperforming the
other algorithms by an average percentage of 1.2641%. Thus, through the results obtained
from Figure 7b, it is possible to observe the excellent accuracy of the VSA in terms of
repeatability for standalone grids; it outperforms the other optimization algorithms in each
of the objective functions used in this document, and reaches excellent-quality solutions
every time the algorithm is executed.
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Table 9. Simulation results obtained by the optimization algorithms in standalone system.

CAPURGANÁ’S STANDALONE SYSTEM

Objective
function

Eloss(kWh) Ecost(USD) ECO2

(kgCO2)
Base case 489.3042 18,485.0507 16,951.2974

Average solution

Algorithm Eloss Ecost ECO2

VSA 359.8317 12,055.3410 11,016.6177
CSA 369.1944 13,663.8328 12,534.4183
MVO 360.0291 12,231.1691 11,131.5617
PSO 362.0496 12,340.2908 11,267.5734
SSA 359.8537 12,074.5543 11,039.5781

Percentage of average reduction (%)

Algorithm Eloss Ecost ECO2

VSA 26.4605 34.7833 35.0102
CSA 24.5471 26.0817 26.0563
MVO 26.4202 33.8321 34.3321
PSO 26.0073 33.2418 33.5297
SSA 26.4560 34.6794 34.8747

STD (%)

Algorithm Eloss Ecost ECO2

VSA 0.0212 0.3042 0.2886
CSA 1.7548 2.3077 2.1093
MVO 0.2356 2.4301 2.0192
PSO 0.4095 1.7711 1.6491
SSA 0.0230 0.4363 0.4329

Time (s)

Algorithm Eloss Ecost ECO2

VSA 7.69 7.84 7.78
CSA 6.54 6.76 6.74
MVO 2.02 1.80 1.90
PSO 4.21 4.43 4.44
SSA 12.59 12.90 13.12

Figure 7c compares the average time employed by each method to obtain the solution
for each objective function used. In the Eloss case, the VSA algorithm obtains an average
processing time of 7.69 s, being surpassed by the MVO, PSO, and CSA algorithms, which
obtain 2.02 s, 4.21 s, and 6.54 s, respectively, with the proposed methodology being faster
than the SSA algorithm, which requires an average time of 12.59 s. In the Ecost case, the
proposed algorithm reaches an average processing time of 7.84 s, requiring more time than
the MVO, PSO, and CSA algorithms, which obtain 1.8 s, 4.43 s, and 6.76 s, but surprisingly
less time than the SSA algorithm, which reaches a 12.9 s average time value. In the ECO2

case, the VSA algorithm obtains an average processing time of 7.78 s, beating the MVO,
PSO, and CSA algorithms by 6.05 s, 3.41 s, and 1.08 s; reducing the processing time required
by the SSA algorithm by 5.06 s. Although the VSA algorithm does not have the shortest
processing time, it is important to note that the proposed algorithm takes only 7.77 seconds
on average to reach the best average solution to solve the problem addressed in the Eloss,
Ecost, and ECO2 objective functions for a whole operation day, which is a reduced time in
terms of grid operation. However, to demonstrate that the VSA algorithm is the method
with the best trade-off between solution quality and processing time for solving the problem
of optimal operation of PV distributed generators in standalone DC networks, Table 10
is presented.
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Figure 7. Average reductions, standard deviation, and average processing time obtained by optimiza-
tion methods in economical, technical, and environmental conditions used in standalone network.

The previous table is arranged from left to right as follows: the optimization algorithm
and the objective function results, ordering the results with the aim to present the average
solution obtained and processing time; presenting, at the end, the distance with respect to
the origin ((0, 0) point) which graphically represents the best solution to the problem in
Figure 8. It represents 0 Eloss (Figure 8a), 0 Ecost (Figure 8b), and 0 ECO2 (Figure 8c) with a
0 s processing time requirement, with respect to all scenarios generated by the different
objective functions used. In Figure 8, we fix the x-axis to the objective function analyzed,
and on the y-axis is the average processing time required by each solution methodology. It
is important to mention that to calculate the distance from the origin to the optimization
algorithms, the Pythagorean theorem was used, by considering the objective function and
the average processing time data.

Table 10 and Figure 8 demonstrate that the VSA optimization algorithm is the tech-
nique that obtains the best trade-off between average solution and processing time for the
different objective functions used. In all scenarios, the VSA achieved the minor distance
with respect to the origin, which means that the VSA obtained the minor objective function
value and processing time. This shows that the proposed methodology has an excellent
impact on the solution quality for the problem of optimal operation of PV distributed
generators in standalone DC networks in each of the objective functions, by presenting
reduced processing time. Therefore, the VSA algorithm is the technique that allows to
obtain the best results when technical, economical, and environmental indexes are analyzed
and the processing time required is considered for an isolated network.
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Table 10. Average objective function solution vs. average processing time in standalone system.

Energy Losses (Figure 8a)

Method Eloss (kWh) Time (s) Distance to
the origin

VSA 359.8317 7.69 359.9139
CSA 369.1944 6.54 369.2522
MVO 360.0291 2.02 360.0348
PSO 362.0496 4.21 362.0741
SSA 359.8537 12.59 360.0739

Costs (Figure 8b)

Method Ecost (USD) Time (s) Distance to
the origin

VSA 12,055.3410 7.84 12,055.3436
CSA 13,663.8328 6.76 13,663.8345
MVO 12,231.1691 1.80 12,231.1693
PSO 12,340.2908 4.43 12,340.2916
SSA 12,074.5543 12.90 12,074.5612

Emissions (Figure 8c)

Method ECO2 (kgCO2) Time (s) Distance to
the origin

VSA 11,016.6177 7.78 11,016.6205
CSA 12,534.4183 6.74 12,534.4201
MVO 11,131.5617 1.90 11,131.5619
PSO 11,267.5734 4.44 11,267.5743
SSA 11,039.5781 13.12 11,039.5858

Figure 8. Trade-off provided by the optimization algorithms between objective function and required
processing time in the standalone system.
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5.2. Medellín’s Network: Grid-Connected System

In this subsection, we analyze the results obtained by all optimization algorithms
in the grid-connected system studied. To achieve this, Table 11 is arranged in the same
form as Table 9. In the first row of this table, we present values obtained in the test system
without considering the inject of PV power by the DGs in relation to the Eloss, Ecost, and
ECO2 , respectively. The analysis continues, showing the results obtained by each algorithm
in terms of average solution, percentage of average reduction obtained by each solution
methodology with respect to the base case, the standard deviation obtained by each method,
and, finally, analyzing the average processing time required by each optimization algorithm
after 1000 executions.

Table 11. Simulation results obtained by the optimization algorithms in grid-connected system.

MEDELLÍN’S GRID-CONNECTED SYSTEM

Objective
function

Eloss(kWh) Ecost(USD) ECO2

(kgCO2)
Base case 2186.2803 9776.3892 12,345.1497

Average solution

Algorithm Eloss Ecost ECO2

VSA 1225.2909 7249.3825 9108.9096
CSA 1270.1562 7407.9046 9328.7685
MVO 1231.2531 7298.7157 9187.9682
PSO 1268.5973 7392.0432 9282.4081
SSA 1225.3323 7297.9712 9166.6746

Percentage of average reduction (%)

Algorithm Eloss Ecost ECO2

VSA 43.9555 25.8481 26.2147
CSA 41.9033 24.2266 24.4337
MVO 43.6827 25.3434 25.5743
PSO 41.9746 24.3888 24.8093
SSA 43.9536 25.3511 25.7468

STD (%)

Algorithm Eloss Ecost ECO2

VSA 0.0108 0.5697 0.5676
CSA 1.3806 1.8500 1.6987
MVO 2.2694 1.2190 1.5868
PSO 2.4065 2.2579 2.0891
SSA 0.0131 0.7089 0.6306

Time (s)

Algorithm Eloss Ecost ECO2

VSA 9.93 10.37 10.45
CSA 36.37 36.45 36.87
MVO 2.45 2.47 2.48
PSO 5.96 6.47 6.60
SSA 20.85 21.47 21.29

By analyzing the results described in this table, it is possible to obtain Figure 9, where
the results achieved by each algorithm are shown. This figure illustrates the percentage
of reduction with respect to base case (Figure 9a), the percentage of standard deviation
obtained by each algorithm (Figure 9b), and the average processing time required to reach
the average solution (Figure 9c) in relation to the objective functions used.

In relation to the reductions obtained with respect to the base case, in the particular
case of energy losses, Figure 9a shows that the VSA algorithm reaches a reduction in
average Eloss of 43.9555%, outperforming the SSA by 0.0019%, MVO by 0.2727%, PSO by
1.9808%, and the CSA by 2.0521%. In the costs stage, the proposed algorithm obtains an
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Ecost value of 7249.3825, reducing 25.8481% with respect to base case, outperforming the
SSA, MVO, PSO, and CSA algorithms by 0.4970, 0.5046, 1.4592, and 1.6215, respectively. In
the case of emissions, the VSA method obtains an ECO2 value of 12,345.1497, ranking as the
algorithm that achieves the best reduction with a percentage of 26.2147%, outperforming
the other techniques by an average percentage of 1.0737%. The last discussion demonstrates
that the VSA algorithm allows obtaining the best average reduction for solving the optimal
operation problem of distributed photovoltaic generators in DC grids, allowing the grid
operator to perform the most optimal grid planning for a day of operation in technical,
economical, and environmental terms for grid-connected networks.

To evaluate the accuracy presented by each algorithm, Figure 9b is presented. This
figure compares the standard deviation obtained by each method to solve the problem of
optimal operation of PV distributed generators in grid-connected DC networks in the three
objective functions. In the energy losses case, the VSA algorithm obtains the best percentage
of standard deviation with a value of 0.0108%, outperforming the other algorithms by an
average percentage of 1.5067%. By analyzing the objective function related to the energy
costs, the VSA ranks first, with a standard deviation percentage of 0.5697%, beating SSA
by 0.1393%, MVO by 0.6493%, CSA by 1.2804%, and PSO by 1.6883%. In the emissions
case, once again, the VSA obtains the best percentage of standard deviation with a value of
0.5676%, ranking as the best solution methodology with an average reduction of 0.9337%.
These results show excellence in terms of solution quality and repeatability of the proposed
algorithm in grid-connected networks.

Finally, with the intention of analyzing the processing time required by the solutions,
Figure 9c is presented. This figure compares the average processing time required by each
optimization algorithm. In the Eloss terms, the VSA is positioned third, with an average
processing time of 9.93 s, behind the MVO and the PSO, which obtain times of 2.45 s and
5.96 s, respectively, and reducing the times reported by SSA and CSA, which are positioned
fourth and fifth, with average processing times of 20.85 s and 36.37 s. In the Ecost case, the
VSA algorithm is outperformed by MVO and PSO just by 7.9 s and 3.9 s, respectively, but
the VSA reduces the processing time reported by the SSA by 11.09 s and the CSA by 26.07 s.
In the analysis of ECO2 , the VSA ranked third behind the MVO and PSO just by 7.97 s and
3.85 s, but outperformed SSA and CSA by 10.85 s and 26.42 s. The average processing times
discussed above show that the fastest optimization algorithms are MVO and PSO; however,
these algorithms become stuck in local optima because not enough processing time is used
in the exploration phase. On the other hand, the VSA has more adequate exploration and
exploitation phases in comparison with the other optimization algorithms, allowing it to
escape from local optima and find solutions of high quality in lower processing times, for
each objective function employed.

Finally, for a standalone network, with the aim to identify the optimization algorithm
with the best trade-off between solution quality and processing time, Table 12 is presented.
This table is arranged in the same order as Table 10. Through this table, is possible to obtain
Figure 10, where the average solution of each objective function vs. average processing
time are plotted, by again considering the solution with the minor distance to the origin as
the best solution methodology.

The results plotted in Figure 10 demonstrate that the VSA had the capacity to solve the
problem of optimal operation of PV DGs in grid-connected in DC networks with the best
trade-off between technical, economical, and environmental stages, and processing times.
These results allow the network operator to perform operation of a grid-connected system
in shorter processing times, achieving large reductions in energy losses, operating costs,
and power purchases from the grid, and also greatly reducing greenhouse gas emissions to
the environment.
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Figure 9. Average reductions, standard deviation, and average processing time obtained by optimiza-
tion methods in economical, technical, and environmental conditions used in standalone network.

Table 12. Average objective function solution vs. average processing time in standalone system.

Energy Losses (Figure 10a)

Method Eloss(kWh) Time(s) Distance to
the origin

VSA 1225.2909 9.93 1225.3312
CSA 1270.1562 36.37 1270.6767
MVO 1231.2531 2.45 1231.2555
PSO 1268.5973 5.96 1268.6113
SSA 1225.3323 20.85 1225.5097

Costs (Figure 10b)

Method Ecost(USD) Time(s) Distance to
the origin

VSA 7249.3825 10.37 7249.3899
CSA 7407.9046 36.45 7407.9943
MVO 7298.7157 2.47 7298.7161
PSO 7392.0432 6.47 7392.0461
SSA 7297.9712 21.47 7298.0028

Emissions (Figure 10c)

Method ECO2 (kgCO2) Time(s) Distance to
the origin

VSA 9108.9096 10.45 9108.9155
CSA 9328.7685 36.87 9328.8414
MVO 9187.9682 2.48 9187.9685
PSO 9282.4081 6.60 9282.4104
SSA 9166.6746 21.29 9166.6993
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Figure 10. Trade-off provided by the optimization algorithms between objective function and required
processing time in the grid-connected system.

6. Conclusions and Future Work

This document proposes a master–slave methodology to solve the problem of optimal
operation of photovoltaic distributed generators in standalone and grid-connected systems
in DC networks. In the master stage we employed the Vortex Search algorithm, which was
used to find the power dispatch of the distributed generator located on the grid, while
the slave stage used a matrix hourly power flow for calculating the effect of the power
values provided by each solution generated by the master stage by considering technical,
economical, and environmental objective functions, evaluating all constraints that represent
the problem. Using a fitness function allowed the optimization algorithm to explore
nonfeasible regions by improving the exploration and reducing the processing times. To
evaluate the effectiveness of the solution methodology proposed, two test systems were
used: a standalone DC system that considered the solar irradiation and power demand of
Capurganá-Choco for one day of operation; and a grid-connected DC grid that used the
same data reported for Medellín-Antioquia. In both systems, we used the local data for
obtaining the energy losses, operational costs of the grid, and CO2 emissions generated
by the conventional generators. As comparison methods, we employed four optimization
methodologies: a particle swarm algorithm, the salps swarm algorithm, the multiverse
optimizer, and the crow swarm algorithm. All of them were tuned using the PSO algorithm,
with the aim of obtaining the best performance to solve the problem studied.

The results obtained in this document demonstrate that the proposed master–slave
methodology VSA/MHPF obtained the best solution with the minor standard deviation in
both test systems for all objective functions used. In numerical terms, the VSA algorithm
obtained an average reduction by considering all objective functions of 32.08% with respect
to base case in the standalone Capurganá’s system, and in the Medellín’s grid-connected
system, it achieved an average reduction of 32.01% with respect to base case in general terms,
too, by improving the results obtained for all comparison methods used. These results
demonstrate that the VSA algorithm has the capacity to obtain the best average solution
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in Eloss, Ecost, and ECO2 objective functions in relation to the other optimization methods
used. In relation to the standard deviation values, the VSA presented an average standard
deviation percentage of 0.2047% in the standalone system and 0.3827% in the grid-connected
network; these values were the lowest obtained in all analyses carried out. These standard
deviation percentages guarantee that every time the proposed methodology is executed,
the solution will be near to the best average solution reported. In terms of processing
time, the VSA required an average processing time of 7.77 seconds in the standalone
network, while for the grid-connected network, the VSA spent an average processing time
of 10.25 seconds; this is a shorter processing time when considering the planning of a whole
operation day. Finally, it is possible to appreciate that all solution methodologies obtained
reduced processing times, which is directly related to the implementation of the proposed
matrix hourly power flow which guarantees the convergence of the solutions in shorter
processing times.

The proposed methodology was not the faster method; however, the methods that
obtained the best results for processing times were trapped in local optima. For this reason,
in this paper it was necessary to demonstrate, in Section 5, through Figures 8 and 10, that
the VSA is the algorithm that presented the best trade-off between quality solution and
processing times in grid-connected and standalone DC networks.

For future work, the adaptation of the VSA as a multiobjective optimization algorithm
could be considered, by considering all objective functions and others, such as chargeability,
voltage stability, etc. Furthermore, the implementation of wind generators, batteries,
and energy storage elements could be considered, with the intention of enhancing the
economical resources of isolated and DC grid-connected grids.
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