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Abstract: This paper proposes a new solution methodology based on a mixed-integer conic formula-
tion to locate and size photovoltaic (PV) generation units in AC distribution networks with a radial
structure. The objective function comprises the annual expected energy costs of the conventional
substation in addition to the investment and operating costs of PV sources. The original optimization
model that represents this problem belongs to the family of mixed-integer nonlinear programming
(MINLP); however, the complexity of the power balance constraints make it difficult to find the global
optimum. In order to improve the quality of the optimization model, a mixed-integer conic (MIC)
formulation is proposed in this research in order to represent the studied problem. Numerical results
in two test feeders composed of 33 and 69 nodes demonstrate the effectiveness of the proposed MIC
model when compared to multiple metaheuristic optimizers such as the Chu and Beasley Genetic
Algorithm, the Newton Metaheuristic Algorithm, the Vortex Search Algorithm, the Gradient-Based
Metaheuristic Optimization Algorithm, and the Arithmetic Optimization Algorithm, among others.
The final results obtained with the MIC model show improvements greater than USD 100,000 per
year of operation. All simulations were run in the MATLAB programming environment, using its
own scripts for all the metaheuristic algorithms and the disciplined convex tool known as CVX with
the Gurobi solver in order to solve the proposed MIC model.

Keywords: photovoltaic system; investment and operating costs; mixed-integer conic optimization;
radial distribution networks

MSC: 90C26; 94C15; 90C27

1. Introduction
1.1. General Context

Electrical distribution networks have undergone significant transformations due to
the advancements made in power electronics, which allows for the optimal interface of
renewable energy resources, energy storage systems, and controllable loads [1,2]. With the
massive integration of these new actors into the electricity distribution sector, conventional
passive grids have been transformed into active networks with multiple new challenges [3],
such as minimizing the carbon footprint produced by the combustion of fossil fuels in
thermal plants [4], improving grid efficiency by minimizing energy losses and by improving
the voltage profiles [5], and reducing bad quality indicators regarding the reliability of
distribution systems [6], among others.
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One of the most important agents in the transformation of distribution networks
corresponds to the important developments in small-scale renewable energy technologies
that have changed the electricity consumption habits of millions of users in residential,
industrial, and commercial applications at medium- and low-voltage levels [7–9]. These
small generators can be massively integrated with distribution, and they can drastically
change the behavior of the electrical network in terms of voltage profiles, energy losses,
power flow directions, and the coordination of protective devices [10]. For this reason,
several countries around the world have regulated the integration of small-scale generators
in distribution networks to maintain economic and technical equilibrium in the distribution
sector [11,12]. On the other hand, distribution companies can also integrate medium-size
distributed energy resources in their distribution grids in order to minimize their carbon
footprint and increase their profit from the distribution and commercialization of energy as
a public service [13].

Regardless of the motivation for massively including renewable energy resources in
electrical distribution networks, it is a fact that conventional passive distribution systems
have stayed behind, and active networks require new research and developments in order
to optimize their technical, economic, digital, and environmental dimensions [14].

1.2. Motivation

This research is motivated by the new challenges posed by the Sustainable Devel-
opment Goals, one of them being the development of energy supply strategies for urban
or rural users with zero greenhouse gas emitters [15]. To reach this objective, electric
distribution companies, regulatory entities, and governments see renewable generation
as a great opportunity to replace conventional thermal generation plants with renewable
energy resources [16–18]. Solar photovoltaic (PV) and wind power systems are the most
established, reliable, and mature technologies that can help with the continuous reduction
in greenhouse gas emissions [19–21]; however, in countries located in the equatorial area
(between the Capricorn and Cancer tropics), PV generation is preferred over wind power
sources with regard to its integration into power systems at all voltage levels, given that
the expected variations in solar resources throughout the year are minimal [22,23].

1.3. Literature Review

The problem regarding the optimal siting and sizing of renewable generation sources
in electrical distribution networks has been largely explored through multiple optimization
methodologies in the current literature. Some of the most recent reports are presented below.

The authors of [24] presented the application of a constructive heuristic algorithm
based on the simulated annealing algorithm to locate wind power and solar PV sources
as well as batteries in electrical distribution networks. Once the location of these devices
was defined, a mixed-integer linear programming model was proposed to determine the
optimal sizes for the renewables and batteries. Numerical results in three test feeders with
11, 135, and 230 nodes confirmed the effectiveness of the MINLP model at defining the
size of the devices; however, the authors did not make any comparison with metaheuristic
optimizers in order to confirm the effectiveness of the siting stage. In [25], the authors
proposed a fuzzy-based methodology to determine the optimal regions for constructing
PV generation units in order to deal with greenhouse gas emissions while considering
uncertainties in the solar energetic resource. A validation of the proposed methodology in
southern Iran demonstrated the effectiveness of combining the fuzzy-based approach with
the analytical hierarchy process and Dempster–Shafer methods, in contrast with separately
implementing these methodologies. Ref. [26] presented the application of the classical Chu
and Beasley Genetic Algorithm (CBGA) with discrete-continuous codification in order to
determine the optimal sizes of the PV generation units in electrical distribution networks.
The objective of this research was to minimize the total annual grid operating costs while
considering the energy purchasing costs in terminals of the substation and the investment
and maintenance costs of the PV generation units installed. The solution of the exact
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MINLP model with the CBGA yielded better results for the IEEE 33- and IEEE 69-bus
networks when compared to the implementation of the MINLP model in the General
Algebraic Modeling System (GAMS) software and its BONMIN nonlinear solver. The
authors of [15] discussed the main aspects of the massive integration of renewable power
in power systems and their dependence on the simultaneous use of large-scale battery
energy storage systems to make the power system reliable. A complete qualitative analysis
regarding the intermittency of renewables and their percentage of penetration in the power
system was provided with the help of several real scenarios around the world.

The problem regarding the optimal siting and sizing of PV generation units in distri-
bution networks has been explored by [27]. The authors proposed the application of the
Newton-Metaheuristic Algorithm (NMA) with a discrete-continuous codification. Numer-
ical results in the IEEE 34- and IEEE 85-bus networks demonstrated the effectiveness of
the NMA when compared to the CBGA and the BONMIN solver. A complete literature
review regarding the optimal design of solar PV applications for rural electrification was
presented by [28]. The authors of this research discussed the advantages of using small-
scale solar systems to provide self-generation with the help of batteries as an alternative
for improving the quality of life in regions without access to conventional power systems.
Ref. [29] proposed a new combinatorial optimization method based on the modification of
the gradient-based metaheuristic optimizer to locate and size PV sources in distribution
networks. Its objective function is the minimization of the annual energy purchasing costs
in terminals of the substation, as well as the installation and maintenance costs of the PV
sources. The authors of [30] presented the comparison between photovoltaic and wind
power systems in sub-transmission and distribution networks. Computational validations
using a genetic algorithm in two test feeders composed of 9 and 33 buses show that both
generation technologies efficiently improve the grid quality by means of their active and
reactive power injection capabilities. Ref. [31] recently presented the application of the
discrete-continuous vortex search algorithm (DCVSA) to locate and size PV sources in
distribution networks with AC and DC topologies. The objective function under consid-
eration involved the energy, investment, and installation costs of the PV generation units.
Numerical results in the IEEE 33- and IEEE 69-bus networks demonstrated the superior
performance of the DCVSA when compared to the BONMIN and the CBGA. Additional
works that have addressed the problem regarding the optimal siting and sizing of PV
sources in distribution networks include the Modified Arithmetic Optimization Algorithm
(MAOA) [32], the Generalized Normal Distribution Optimization (GNDO) Algorithm [33],
and the Tabu Search Algorithm [34], among others.

The main characteristic of the aforementioned optimization algorithms is that most of
them belong to the family of combinatorial optimizers, which work with a master–slave
(leader–follower) optimization design, where the master stage defines the optimal location
and sizes of the PV sources and the slave stage is entrusted with the technical evaluation of
this solution, i.e., the solution of the power flow problem.

It is worth mentioning that one of our proposal’s distinct features is its solution
approach, as this research focuses on the mathematical structure of the exact MINLP model
that represents the studied problem, as well as the possibility of transforming it into a
mixed-integer convex model [35,36].

1.4. Contribution And Scope

Considering the state-of-the-art presented above, this research makes the following
contributions to the scientific literature:

i. The reformulation of the exact MINLP model to represent the problem regarding the
optimal siting and sizing of PV sources in radial AC distribution networks through a
Mixed-Integer Conic (MIC) model. The main advantage of the proposed MIC model is
its solvability, which can ensure that the global optimum is reached via a combination
of the Branch and Cut method with the interior point approach.
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ii. Improved results in the IEEE 33- and IEEE 69-bus grids: about USD 100, 000/year per
test feeder with respect to the best solution reported in the current literature with the
GNDO algorithm [33].

It is important to mention that the results obtained in this research confirm that using
maximum power point tracking for optimal dispatch is not the best option for operating
PV generation units in electrical networks. With maximum power tracking, PV systems
are forced to provide all their power to the grid at each period of time, whereas, with the
possibility of optimal dispatch at each period of time, the distribution system can reach a
better operational point. These observations are confirmed in the results section.

Note that the studied problem belongs to the family of distribution planning problems.
In this study, we consider a planning period of 20 years for the evaluation of the NPV (net
present value); however, the optimization model is solved for a typical daily operation
scenario in the metropolitan area of Medellín, Colombia. In addition, it is important to
mention that, once the PV generators are optimally located and sized with the proposed
MIC model, it can be used as a conic dispatch model to determine changes in power con-
sumption and renewable generation availability regarding the optimal daily operation of
distributed energy resources in distribution networks by ensuring that the global optimum
is reached [37,38].

1.5. Document Structure

The remainder of this research article is organized as follows: Section 2 describes the
exact mathematical formulation that represents the problem regarding the optimal siting
and sizing of PV generation units in radial AC distribution networks; Section 3 presents
the mixed-integer conic reformulation based on the branch convex power flow formulation
presented in [37]; Section 4 describes the main features of the IEEE 33- and IEEE 69-bus
networks employed in the numerical validations, analysis, and discussions provided in
Section 5; conclusions and proposals for future work are presented in Section 6.

2. Exact MINLP Model

The siting and sizing of PV generation units in electrical distribution networks with a
radial structure implies a complex MINLP model given the combination of discrete and
continuous variables [39], where

i. The integer and/or binary variables represent the nodes where the PV generation
units will be placed;

ii. The continuous variables are associated with the electrical variables such as the voltage
and current magnitudes, the active and reactive power flows, and the active power
generation in PV sources for each period of time, among others.

In addition, the nonlinear programming structure of the model is due to the nonlinear
relation between voltages, currents, and powers in the active and reactive power balance
constraints per node [37].

For the sake of simplicity, in the mathematical formulations presented below, low-
ercase letters correspond to variables, and uppercase letters represent constant values
and parameters. In addition, it is worth mentioning that, in the proposed mathematical
formulations, it is considered that the distribution networks have a strictly radial structure,
and these are represented through a single-phase equivalent.

2.1. Objective Function Structure

To locate and size PV generators in radial AC distribution networks, an economical
objective function is used as an objective function indicator, which has three main com-
ponents: (i) the annual expected energy purchasing costs in terminals of the electrical
substation, (ii) the investment costs regarding the installation of the PV generators, and (iii)
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the operating costs of the PV sources during the planning period. The formulation of this
objective function and its components is presented below.

zcost = za + zb + zc, (1)

za = CkWhT
(

Ra

1− (1 + Ra)−Y

)(
∑

h∈H
∑

i∈N
psub

si,h∆h

)(
∑
t∈T

(
1 + Re

1 + Ra

)t
)

, (2)

zb = Cpv

(
Ra

1− (1 + Ra)−Y

)(
∑

i∈N
ppv

i

)
, (3)

zc = CO&MT

(
∑

h∈H
∑

i∈N
ppv

i,h∆h

)
(4)

where zcost is the objective function value (net present value) of the annual energy pur-
chasing cost in the substation (za), added to the investment costs in PV sources (zb) and
the operating and maintenance costs of the PV sources (zc). CkWh is the expected average
energy costs per year, T is the number of days in a year, Ra is the expected return rate of the
investments made by the distribution company, Y is the number of years of the planning
period, Re is the expected rate of increment for the energy costs, and psub

si,h is the total power
generation at the substation bus for each period of time h (power sent from node s to node
i), where ∆h is defined as one hour (1 h). Cpv is the cost of acquisition of a kW of PV power,
ppv

i is the nominal size of a PV generator connected at node i, CO&M is the maintenance and
operation costs per kWh of energy generation in the PV sources, and ppv

i,h is active power
generation in the PV source connected at node i for the period of time h. The sets that
contain all the nodes, the periods of time for daily operation, and the periods of time of the
planning stage are denoted as N ,H, and T , respectively.

Remark 1. The main advantage of the objective function presented in Equation (1), with its
components defined from (2) to (4), is that it is a convex objective function when the power
generation at the substation bus (psub

si,h) and the nominal sizes of the PV generation units are
considered as variables, i.e., ppv

i , taking into account that the remaining components are defined as
constant parameters. Note that this objective function can be used with the same structure in the
mixed-integer conic model presented in Section 3 due to its intrinsically convex structure.

2.2. Constraints

To locate and size PV generators in radial AC distribution networks, it is necessary to
consider multiple linear and nonlinear constraints associated with the technical operation
of the distribution network. These constraints include active and reactive power balance,
voltage drops in lines, power transference per line, and son on. The complete list of
constraints is presented below.



Mathematics 2022, 10, 2626 6 of 17

pij,h − Riji2ij,h − ∑
k:(jk)∈L

pjk,h = Pd
j,h − ppv

j,h, {∀j ∈ N , j 6= slack, ∀h ∈ H}, (5)

qij,h − Xiji2ij,h − ∑
k:(jk)∈L

qjk,h = Qd
j,h, {∀j ∈ N , j 6= slack, ∀h ∈ H}, (6)

v2
j,h = v2

i,h − 2
(

Rij pij,h + Xijqij,h

)
+
(

R2
ij + X2

ij

)
i2ij,h {∀ij ∈ L, ∀h ∈ H}, (7)

p2
ij,h + q2

ij,h = v2
i,hi2ij,h, {∀ij ∈ L, ∀h ∈ H} (8)

xjPmin
pv Gpv

h ≤ ppv
j,h ≤ xjPmax

pv Gpv
h {∀j ∈ N}, (9)

vmin
j ≤ vj,h ≤ vmax

j {∀j ∈ N , ∀h ∈ H}, (10)

−imax
ij ≤ iij,h ≤ imax

ij {∀ij ∈ L, ∀h ∈ H}, (11)

∑
i∈N

xj ≤ Nmax
pv , (12)

xj ∈ {0, 1}, {∀i ∈ N}, (13)

where pij,h and qij,h are the active and reactive power flow leaving node i towards destina-
tion j at time h; pjk,h and qjk,h are the active and reactive power sent from node j to any node
k different from node i for each period of time; Pd

j,h and Qd
j,h correspond to the total constant

power consumption at node j for the period of time h; ppv
j,h is the total power injected by the

PV source connected at node j for each period of time; Rij and Xij represent the resistance
and inductance effects in the distribution line in route ij; iij,h is the variable associated with
the current flow through the line that connects nodes i and j at each period of time; vi,h
and vj,h correspond to the voltage magnitudes at nodes i and j for each period of time h,
respectively; xj is a binary variable associated with the possibility of assigning a PV source
at node j (xj = 1) or not (xj = 0); Nmax

pv is a constant parameter related to the number of
PV sources available for inclusion in the distribution network. The set that contains all the
branches of the network is L.

Note that the set of constraints (5)–(13) can be understood as follows: Equations (5)
and (6) correspond to the power balance equilibrium evaluated at each node per period of
time; Equation (7) represents the voltage drop at each line, which is a function of the active
and reactive power flows, as well as the branch parameters (i.e., resistance and inductance)
and the current flow though the line that connects nodes i and j; Equation (8) corresponds
to the application of Tellegen’s second theorem to each sending node i in order to define the
apparent power flow leaving it [40]; box-type constraint (9) defines the upper and lower
active power generation bounds assigned for a PV source connected at node j for each
period of time in the case that the binary variable xj is activated; box-type constraints (10)
and (11) define the voltage regulation bounds applicable to all nodes and periods of time,
as well as the thermal bounds regarding the distribution lines’ current transport capacity;
inequality constraint (12) defines the maximum number of renewable sources based on PV
technology that can be included into the distribution network under study; Equation (13)
describes the binary nature of the decision variable xj.

2.3. Model Characterization

Figure 1 summarizes the main characteristics of the optimization model (1)–(13). Note
that the studied optimization model is only nonlinear and non-convex in its continuous
part, which is associated with the active and reactive power balance constraints, voltage
drops per line, and the calculation of the apparent power [13].
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Convex equations
(1)–(4) and (9)–(12)

xj ∈ {0, 1}
Binary

Non-convex
(5)–(8)

MINLP

Figure 1. Characterization of the optimization model to locate and size PV sources in radial AC
distribution networks.

Remark 2. As demonstrated in [37], it is possible to transform the set of nonlinear constraints
(5)–(8) into a conic set of constraints, which allows transforming the exact MINLP model (1)–(13)
into a mixed-integer conic (MIC) model, as presented in the next section.

3. Mic Reformulation

The main contribution of this research is the reformulation of the exact MINLP
model (1)–(13), especially the subset of constraints (5)–(8) as a set of conic constraints
based on the branch flow theory for distribution networks presented in [37]. To this effect,
the following set of auxiliary variables is used: lij,h = i2ij,h, wi,h = v2

i,h, and wj,h = v2
j,h [41].

Note that, with the aforementioned definition of the auxiliary variables, the set of con-
straints (5)–(7) can be directly transformed into a set of linear affine (i.e., convex) constraints.
These equations take the following form:

pij,h − Rijlij,h − ∑
k:(jk)∈L

pjk,h = Pd
j,h − ppv

j,h, {∀j ∈ N , j 6= slack, ∀h ∈ H}, (14)

qij,h − Xijlij,h − ∑
k:(jk)∈L

qjk,h = Qd
j,h, {∀j ∈ N , j 6= slack, ∀h ∈ H}, (15)

wj,h = wi,h − 2
(

Rij pij,h + Xijqij,h

)
+
(

R2
ij + X2

ij

)
lij,h {∀ij ∈ L, ∀h ∈ H}. (16)

To become a conic constraint, Equation (8) uses the concept of hyperbolic equivalence
between the product of two variables [37].

p2
ij,h + q2

ij,h = v2
i,hi2ij,h, {∀ij ∈ L, ∀h ∈ H}

p2
ij,h + q2

ij,h = wi,hlij,h, {∀ij ∈ L, ∀h ∈ H}

p2
ij,h + q2

ij,h =
1
4

(
wi,h + lij,h

)2
− 1

4

(
wi,h − lij,h

)2
, {∀ij ∈ L, ∀h ∈ H}(

2pij,h

)2
+
(

2qij,h

)2
=
(

wi,h + lij,h
)2
−
(

wi,h − lij,h
)2

, {∀ij ∈ L, ∀h ∈ H}(
2pij,h

)2
+
(

2qij,h

)2
+
(

wi,h − lij,h
)2

=
(

wi,h + lij,h
)2

, {∀ij ∈ L, ∀h ∈ H}∥∥∥∥∥∥∥∥∥

(
2pij,h

)(
2qij,h

)(
wi,h − lij,h

)
∥∥∥∥∥∥∥∥∥ = wi,h + lij,h, {∀ij ∈ L. ∀h ∈ H}() (17)

Equation system (17) is still non-linear and non-convex due to the use of the equality
symbol since it corresponds to the surface of a hypersphere, which requires additional
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relaxation to become a conic convex constraint [37]. To achieve this, the equality symbol is
replaced with a lower-equal symbol, as defined in Inequality (18).∥∥∥∥∥∥∥∥∥

(
2pij,h

)(
2qij,h

)(
wi,h − lij,h

)
∥∥∥∥∥∥∥∥∥ ≤ wi,h + lij,h, {∀ij ∈ L. ∀h ∈ H}() (18)

A modification of the objective function (1) is made in order to consider the effect of
the annual costs of the energy losses while deciding the optimal siting and sizing of the PV
sources. This effect is only included in the conic model to improve its solution properties,
since power losses can be represented as quadratic (as a function of the variable iij,h) or as
linear (as a function of the auxiliary variable lij,h) function:

zd = βCkWhT

(
∑

h∈H
∑

ij∈NL
Rijlij,h∆h

)
. (19)

Note that β is the factor assigned to the calculation of the energy losses. In order to
control its effect on the objective function value, this factor takes three possible values: 0,
1/2, and 1. The location and size of the PV source with each factor is illustrated in the
results section.

Figure 2 illustrates the transformation of the MINLP model presented in Figure 1,
where there are only linear affine equations and binary constraints.

Convex equations
(1)–(4), (9)–(12),

(14)–(16), and (18)–(19)

xj ∈ {0, 1}

MIC

Figure 2. Equivalent MIC model to locate and size PV sources in radial AC distribution networks.

Remark 3. To ensure that the global optimum is found via the proposed MIC model, it is possible to
implement the Branch and Cut method in conjunction with the interior point approach, as presented
in [42], to deal with mixed-integer conic models.

In order to guarantee that the solution is reached by the MIC model, it is evaluated in
the exact MINLP model by fixing all the binary variables on it, which reduces it to a daily
optimal power flow model, thus ensuring that the exact behavior of the objective function
is known, as well as the PV generation outputs, as recommended in [13].
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4. Test Feeders and Model Parameters

This section presents the main characteristics of the test feeders employed for all the
numerical validations, as well as a model characterization to calculate the objective function
and the behavior of the demand and solar generation curves.

4.1. IEEE 33-Bus Network

This network is a radial electrical distribution system composed of 33 nodes and
32 lines, which is operated with a line-to-ground voltage magnitude of 12.66 kV in terminals
of the substation connected at bus 1. The electrical configuration of this test feeder is
depicted in Figure 3a, and its electrical data are reported in Table 1.

∼
slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23

24
25

19
20
21
22

26 27 28 29 30 31 32 33

(a)

∼ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

51
52

66
67

68
69

28 29 30 31 32 33 34 35

(b)
Figure 3. Grid configuration of the test feeders: (a) IEEE 33- and (b) IEEE 69-node system.

Table 1. Data for the IEEE 33-bus network.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2860 1.7210 60 20 32 33 0.3410 0.5302 60 40

4.2. IEEE 69-Bus Network

This system is also a radial distribution network with 69 nodes and 68 lines operated
with a line-to-ground voltage of 12.66 kV in terminals of the substation connected at node
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1. The electrical configuration of this test feeder is depicted in Figure 3b, and its electrical
parameters are presented in Table 2.

Table 2. Data for the IEEE 69-bus network.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0
4 5 0.0251 0.0294 0 0 38 39 0.0304 0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17
6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 1.2 1
7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0
8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0475 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0
10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0
13 14 1.0440 0.3450 8 5.5 47 48 0.0851 0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5
15 16 0.1966 0.0650 45.5 30 49 50 0.0822 0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1114 3.6 2.7
18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5
19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0
23 24 0.3460 0.1145 28 20 57 58 0.7837 0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888
3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23
28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162
30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42
31 32 0.3510 0.1160 0 0 11 66 0.2012 0.0611 18 13
32 33 0.8390 0.2816 14 10 66 67 0.0047 0.0014 18 13
33 34 1.7080 0.5646 19.5 14 12 68 0.7394 0.2444 28 20
34 35 1.4740 0.4873 6 4 68 69 0.0047 0.0016 28 20

4.3. Parameters for the Economic Assessment

To evaluate the objective function and its components, i.e., Equations (1)–(4), all the
parameters listed in Table 3 are considered.

Table 3. Data for evaluating the objective function.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
Ra 10 % Re 2 %
y 20 years ∆h 1 h

CPV 1036.49 USD/kWp CO&M 0.0019 USD/kWh
ppv,max

i 2400 kW ppv,min
i

0 kW
Nava

pv 3 – ∆V ±10 %

The mean average generation and demand curves for the metropolitan area of Medel-
lín, Colombia, were used to model the daily behavior of the demand and generators in two
test feeders. These curves are plotted in Figure 4.
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Figure 4. Average demand and generation curves in Medellín, Colombia.

5. Computational Validations

The proposed MIC model for siting and size PV generation units in AC distribution
networks with a radial structure was implemented in the MATLAB software version 2021b
from MathWorks (Natick, MA, USA). To solve the MIC model, the convex disciplined tool
known as CVX was used with the Gurobi solver. All the implementations were conducted
on a desktop computer with an Intel(R) Core(TM) i7-7700 2.8-GHz processor and 16.0 GB
of RAM running a 64-bit version of Microsoft Windows 10 Home.

To compare the effectiveness and robustness of the proposed MIC model in determining
the optimal PV sizes and locations, as well as their daily dispatch, multiple metaheuristic
algorithms available in the current literature were used, namely (i) the Chu and Beasley Ge-
netic Algorithm [26], (ii) the Newton Metaheuristic Algorithm (NMA) [27], (iii) the Modified
Gradient-Based Metaheuristic Optimizer (MGbMO) [29], (iv) Generalized Normal Distribution
Optimization (GNDO) [33], (v) the Modified Arithmetic Optimization Algorithm (MAOA) [32],
and (vi) the Discrete-Continuous Vortex Search Algorithm (DCVSA) [31].

Remark 4. The solutions reached with each metaheuristic optimization algorithm assumed that the
PV generation units were operated using the maximum power point tracking algorithm, i.e., the
PV curve in Figure 4 was perfectly followed; however, in the case of the proposed MIC model,
the PV generation units were freely operated, i.e., they did not necessarily reach the maximum power
depicted in the PV curve of Figure 4.

In order to implement all the comparative metaheuristic optimizers, a discrete-continuous
codification based on the proposal presented in [26] is employed. This codification takes
the structure defined in (20).

Xsol =
[
8, k, 20, | 0.9856, ppv

k , 1.5885
]
, (20)

where Xsol represents a possible solution individual in which the first Nmax
pv components

are related to discrete variables that define the potential nodes where the PV sources will
be assigned, and the positions Nmax

pv + 1 to 2Nmax
pv determine the potential sizes assigned to

these PV sources.
Due to the fact that metaheuristic optimizers such as the gradient-based or the Newton-

based approaches are defined in the continuous domain, in order to apply their evolution
rules, the integer nature of the decision variables is relaxed; however, once the new individ-
ual is found, it is rounded in its first Nmax

pv to maintain the feasibility of the solution space
during the exploration and exploitation searching processes.

5.1. IEEE 33-Bus Network

Table 4 presents the numerical performance of all the metaheuristic optimizers and
the proposed MIC model for the IEEE 33-bus network.
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Table 4. Numerical performance of the metaheuristic optimizers and the proposed MIC model in the
IEEE 33-bus network.

Method Location (node) Size (MW) Acost (US$/year)

Benchmark case — — 3,700,455.38

CBGA
[
11, 15, 30

] [
0.7605, 0.9690, 1.9060

]
2,699,932.28

NMA
[
8, 16, 30

] [
2.0961, 1.2688, 0.2770

]
2,700,227.33

MGbMO
[
9, 16, 31

] [
0.5802, 1.3167, 1.7571

]
2,699,841.36

GNDO
[
10, 16, 31

] [
1.0083, 0.9137, 1.7257

]
2,699,671.75

MAOA
[
12, 17, 32

] [
1.0117, 0.7432, 1.9022

]
2,699,902.05

DCVSA
[
11, 14, 31

] [
0.7606, 1.0852, 1.8030

]
2,699,761.71

MIC0
[
11, 16, 32

] [
1.8400, 0.6799, 2.3083

]
2,603,465.00

MIC1/2
[
13, 24, 29

] [
1.4116, 1.7145, 1.9471

]
2,597,283.00

MIC1
[
13, 24, 30

] [
1.4392, 1.7745, 1.8596

]
2,597,139.00

The numerical results in Table 4 show that:

i. The best metaheuristic approach for the IEEE 33-bus grid was the GNDO method,
with an objective function of USD/year 2, 699, 671.75; and the worst metaheuristic
optimizer was the NMA, with an objective function value of USD/year 2, 700, 227.33;
however, both solutions only differed by about USD/year 555.58. These values imply
that all solution methodologies based on the application of metaheuristic methods
reported in Table 4 are contained between both bounds.

ii. The proposed MIC model with different β-values found objective function values
between USD/year 2, 603, 465.00 and USD/year 2, 597, 139.00, i.e., there is a difference
of about USD/year 6326 when β = 0 and β = 1.

iii. By comparing the GNDO solution (the best solution among the metaheuristic approaches)
and the MIC solution with β = 1, the difference was about USD/year 102, 532.75. This
confirms that the operation of the PV generators without maximum power point tracking
is considerably better than the approaches where the PV sources are forced to follow the
maximum power point (see metaheuristic results).

iv. As for the places and sizes of the PV generators, it was observed that, in the case of
the MIC model, the β−parameter (i.e., the effect of the power losses) has a significant
impact on the final nodal location of the PV generation sources, and well as on their
sizes; however, in the objective function, this effect is minimized due to the multi-
modal behavior of the solution space in the exact MINLP formulation. This behavior
of the studied problem also explains the multiplicity in the set of solutions reported
by all the metaheuristic optimizers.

It is worth mentioning that, regarding processing times, the proposed MIC models
for the IEEE 33-bus grids take about 45 s to solve the conic model, which is an adequate
processing time considering the dimension of the solution space, as there are about 4960 op-
tions for discrete variables, with the main advantage that the final solution reached is
indeed the global optimal one.

Regarding the annual expected improvements in the objective function, Figure 5
presents the percentage of reductions reached by each optimization method with respect to
the benchmark case.

The behavior of the expected annual reductions implies the following: (i) all meta-
heuristic optimizers that operated using the concept of maximum power point tracking
found solutions with reductions between 27.03% and 27.04%, i.e., a difference lower than
0.01%, which allows concluding that, in the IEEE 33-bus network, all the metaheuristic
methods have a very good performance (however, these are indeed local optimal solutions,
since it is not possible to prove that these algorithms reach the global optimal solution due
to their random-based nature); (ii) the MIC model reached reductions between 29.64% and
29.82%, where the difference is associated with the inclusion of the β−coefficient in the
objective function. Nevertheless, all of the MIC solutions improved the objective function
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values by more than USD 100, 000 with respect to the metaheuristic approaches. As men-
tioned above, this improvement is due to the fact that the MIC model allows operating the
PV sources not necessarily with maximum power point tracking. Note that each one of the
MIC models provides an optimal solution, but they differ from each other because each
one depends on the value assigned to the β parameter, which implies that each objective
function is different.

CBGA NMA MGbMO GNDO MAOA DCVSA MIC0 MIC1/2 MIC1

26

28

30

32

27.04 27.03 27.04 27.04 27.04 27.04

29.64 29.81 29.82

R
ed

uc
ti

on
(%

)

Figure 5. Reduction percentage for each solution methodology with respect to the benchmark case in
the IEEE 33-bus network.

5.2. IEEE 69-Bus Network

Table 5 presents the comparative analysis between the performance of the metaheuris-
tic optimizers reported in the specialized literature and that of the proposed MIC model
with different β−coefficients.

Table 5. Numerical performance of the metaheuristic optimizers and the proposed MIC model in the
IEEE 69-bus network.

Method Location (ode) Size (MW) Acost (US$/year)

Benchmark case — — 3,878,199.93

CBGA
[
24, 61, 64

] [
0.5326, 1.8954, 1.3772

]
2,825,783.33

NMA
[
12, 60, 61

] [
0.0794, 1.3805, 2.3776

]
2,826,368.60

MGbMO
[
17, 61, 62

] [
0.4858, 1.8893, 1.4299

]
2,825,106.78

GNDO
[
22, 61, 64

] [
0.4812, 2.4000, 0.9259

]
2,824,923.38

MAOA
[
18, 61, 62

] [
0.5215, 2.0576, 1.2225

]
2,825,109.60

DCVSA
[
16, 61, 63

] [
0.2632, 2.2719, 2.2934

]
2,825,264.56

MIC0
[
23, 27, 46

] [
2.3578, 0.0585, 2.4000

]
2,752,021.00

MIC1/2,1
[
17, 49, 61

] [
1.0977, 1.7981, 2.4000

]
2,721,282.00

The numerical results in Table 5 show that:

i. The best metaheuristic optimization algorithm was the GNDO approach, with a
final objective function of USD/year 2, 824, 923.38; while the worst metaheuristic
approach was the NMA, with an objective function value of USD/year 2, 826, 368.60.
The difference between both solutions was about USD/year 1445.22. Note that all the
remainder metaheuristic methods are between the solutions reported by the GNDO
and the NMA.

ii. The MIC models with β = 1/2 and β = 1 reached the same objective function value,
i.e., USD/year 2, 721, 282.00, which corresponds to the best objective function value
presented in this research for the IEEE 69-bus network. By comparing the best MIC
solution with the GNDO approach, an improvement of USD/year 103, 641.38 in favor
of the proposed conic model was found.

iii. The results obtained with the MIC model confirmed that, in the IEEE 69-bus system,
the use of PV generators without maximum power point tracking allows for better
results than the operation following this point, as evidenced by the metaheuristic
methods.
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As for processing times, in the IEEE 69-bus grid, the proposed MIC models take
about 438 s to solve the conic model, which is an adequate processing time considering
the dimension of the solution space, as there are about 50116 options regarding discrete
variables. Note that, even though this processing time is high when compared to meta-
heuristic approaches, it has the advantage that the global optimal solution is reached
with 100% of certainty, which is not possible with any metaheuristic model due to their
random-based nature.

On the other hand, Figure 6 depicts the expected reductions of the metaheuristic and
the MIC models in the IEEE 69-bus network when compared to the benchmark case.

CBGA NMA MGbMO GNDO MAOA DCVSA MIC0 MIC1/2 MIC1
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Figure 6. Reduction percentage for each solution methodology with respect to the benchmark case in
the IEEE 69-bus network.

In the case of the IEEE 69-bus network, all the analyzed metaheuristic methods reached
improvements between 27.12% and 27.16% regarding the objective function, i.e., there were
differences lower than 0.04%. This small difference confirmed that all the metaheuristic
optimizers are adequate to solve the problem concerning the optimal placement and sizing
of PV generation units; however, these solutions remain classified as sub-optimal due to
the impossibility of theoretically ensuring their global nature. The MIC models showed
additional improvements of about 1.88% and 2.67% in the objective function value when
compared to the GNDO approach (the best metaheuristic method). These improvements
confirmed that, when the maximum power point is not tracked, it is possible to reach
better results regarding the final objective function value when studying the problem of the
optimal placement and sizing of PV generators in distribution networks, with the main
advantage that the solutions provided by the models are the global optimum for each
assigned value in the β parameter.

6. Conclusions

The problem regarding the optimal siting and sizing of PV generation units in radial
AC distribution networks was addressed in this research by transforming the exact MINLP
model into a MIC one. Numerical results in the IEEE 33- and IEEE 69-bus networks showed
that: (i) in both test feeders, the best metaheuristic optimization method was the GNDO
method, with improvements in the final objective function value of about 27.04% and
27.16%, respectively; (ii) all the metaheuristic optimization methods showed improvements
higher than 27.03% in the IEEE 33-bus network and 27.12% in the IEEE 69-bus network,
which confirmed that all the studied combinatorial optimization approaches are suitable
for solving the problem under study with excellent numerical results; (iii) operating the
PV generators while applying maximum power point tracking showed solutions higher
than USD/year 2, 699, 600.00 for the IEEE 33-bus system, while the IEEE 69-bus network
showed solutions higher than USD/year 2, 824, 900.00; however, when the grids are freely
operated during the day, these values can reduced by about USD/year 100, 000 per test
feeder, as was demonstrated with the MIC model for different β−coefficients.

The main advantage of the proposed MIC model is that it is possible to ensure that
the global optimum is found via the interior point method combined with the Branch and
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Cut optimization approach, which implies that the solution for each β−coefficient will be
the same in each run; however, when metaheuristic optimization methods are applied to
solve MINLP models, statistical tests are required in order to guarantee their adequate
performance. Nevertheless, global optimum finding properties can not be attributed to
these methodologies.

As future work, it will be possible to conduct the following studies: (i) combining
PV generation units with reactive power compensators for annual cost reductions in
distribution networks and (ii) extending the proposed MIC model to direct current networks
with monopolar and bipolar configurations.
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Nomenclature
The following abbreviations are used in this manuscript:

zcost Annual expecting operative costs of the distribution network (USD/year).
za Expected annual energy costs in terminals of the substation bus (USD/year).
zb Annualized investment costs in PV generation units (USD/year).

zc
Expected annual operation and maintenance costs of the PV sources installed in the
distribution network (USD/year).

CkWh Expected energy purchasing costs in terminals of the substation (USD/kWh-year).
T Total number of days in an ordinary year (days).
Ra Expected return rate of the investments made by the distribution company (%).
Y Total number of years of the planning period (years).
Re Expected rate of increment for the energy costs during the planning period (%).

psub
si,h

Power generation in the substation bus for each period of time h (power sent from node s
to node i) (W).

∆h Length of the period of time in which the variables take fixed values (h).
Cpv Cost of acquisition of a PV source per unit of generation (USD/Wp).
ppv

i Nominal size of a PV generator connected at node i (Wp).
CO&M Maintenance and operation costs per unit of energy generation in the PV sources (USD/Wh).
ppv

i,h Active power generation in the PV source connected at node i for period of time h (W).
N Set that contains all the nodes of the network.
H Set that contains all the periods in a daily operation scenario.
T Set that contains all the years of the planning period.
pij,h Active power flow leaving node i towards destination j at time h (W).
qij,h Reactive power flow leaving node i towards destination j at time h (var).
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pjk,h Active power flow leaving node j towards destination k at time h (W).
qjk,h Reactive power flow leaving node j towards destination k at time h (var).
Pd

j,h Total active power consumption at node j for period of time h (W).
Qd

j,h Total reactive power consumption at node j for period of time h (var).
ppv

j,h Total power injected by the PV source connected at node j for each period of time h (W).
Rij Resistance effect in the distribution line in route ij (Ω).
Xij Reactance effect in the distribution line in route ij (Ω).
iij,h Current flow through the line that connects nodes i and j in each period of time h (A).
vi,h Voltage magnitude at node i for each period of time h (V).
vj,h Voltage magnitude at node j for each period of time h (V).

xj
Binary variable associated with the possibility of assigning a PV source at node j (xj = 1) or
not (xj = 0).

Nmax
pv Number of PV sources available for inclusion in the distribution network.
L Set that contains all the distribution lines.
lij,h Square current flow through the line that connects nodes i and j in each period of time h (A2).
wi,h Square voltage magnitude at node i for each period of time h (V2).
wj,h Square voltage magnitude at node j for each period of time h (V2).
zd Expected annual energy loss costs in all the branches of the network (USD/year).
β Factor that allows including or not the expected annual costs of the energy loss.
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