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A B S T R A C T   

The problem of the optimal placement and sizing of dynamic reactive power compensators in AC distribution 
networks is addressed in this paper from convex optimization. The exact mixed-integer nonlinear programming 
(MINLP) model is transformed into a mixed-integer second-order cone programming (MISOCP) model. The main 
advantage of the MISOCP formulation is the possibility of finding a global optimum with branch & cut combined 
with interior-point method due to the convex structure of the continuous part of the problem, i.e., the multi- 
period branch optimal power flow. The dynamic reactive power compensators are sized and dimensioned 
considering daily load curves and variable reactive power injections. Numerical validations are tested in the 33- 
and 69-bus test feeders using the CVX tool available for MATLAB with the MOSEK solver. These simulations 
demonstrate the effectiveness and robustness of the MISOCP approach when compared with the solution of the 
exact MINLP obtained in the GAMS software.   

1. Introduction 

The constant growth of demands on distribution systems leads them 
to implement new devices and strategies to operate appropriately, 
satisfying all system requirements [1,2]. This growth in demand has 
been greater in industrial loads in recent years than residential loads [3]. 
In addition, network operators have challenges in their demands, e.g., 
their industrial loads, which are constantly growing and mainly equip
ped with many rotating machines, which consume a large amount of 
reactive power. Generally degrading the factor distribution systems 
power and transmission lines congestion reduces the power transfer 
capacity causing low voltage problems [4–6]. 

Typically, the installation of the capacitor banks on the distribution 
network has been used to improve the power factor and its conse
quences. However, this is not an optimal solution since both the demand 
and the reactive power consumption are not constant or discrete during 
a typical day of operation [7]. Although capacitor banks improve the 
power factors of the distribution system, they are not currently the most 

suitable solution since many power electronics devices are available, 
such as (i) flexible AC transmission systems (FACTS), (ii) static distri
bution compensators (STATCOM), (iii) dynamic voltage restorers 
(DVR), and (iv) unified power quality conditioner (UPQC), among 
others [8]. These devices have appeared as a solution to this problem 
due to the growth of power electronics, creating opportunities to 
implement and achieve good equipment performance. Such power 
electronics devices can function as dynamic reactive power compensa
tors to improve distribution system performance in many ways. 
Improving load power factor and voltage profiles, increasing power 
transfer capacity, controlling power oscillations, and improving system 
stability [9,10]. 

Siting and sizing of the dynamic reactive power compensators must 
be performed appropriately; if this is not the case, they can negatively 
affect the electrical distribution networks. Effects as lack of protection 
schemes coordination, increase in the level of current faults, trans
mission line overload, and deterioration of the voltage profile [11,12]. 
Therefore, an optimization model for optimal compensators siting and 
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sizing is necessary to avoid these potential problems. 
In the specialized literature, the siting and dimensioning of dynamic 

reactive power compensators have been approached with different for
mulations and mathematical methodologies. However, this problem is 
difficult to solve since its formulation combines discrete and continuous 
variables with nonlinear and non-convex constraints [13]. Hence, the 
global optimum cannot be guaranteed. This problem has typically been 
solved using a master-slave methodology. The master stage chooses the 
siting and sizing of the dynamic compensators when the slave stage 
solves an optimal power flow problem. 

For the master stage, metaheuristic optimization techniques have 
been commonly implemented, such as the Chu-Beasley genetic algo
rithms [14,15], algorithms based on differential evolution [16,17], 
particle swarm optimization [11], gray wolf optimization algorithm 
[18], among others. Although these optimization techniques can find 
great solutions, none of them can guarantee the optimal solution, and 
some are not mathematically well-justified [19]. Furthermore, these 
techniques include a certain degree of randomness, which lead to 
slightly different solutions from one run to another. Additionally, these 
techniques also contain many tuning parameters that make them highly 
dependent on the programmer, adding to the fact that a statistical 
analysis to determine its reproducible capabilities [20]. Unlike the 
metaheuristic techniques typically used, this article proposes an exact 
formulation based on convex optimization where the location problem 
and optimal sizing of dynamic reactive power compensators are trans
formed into a second-order mixed-integer conic programming problem 
(MISOCP) [13]. The problem is solved by a modified version of the 
Branch & Cut (B&C) method, which guarantees an optimal global 
optimization if each optimization sub-problem is convex [21]. For this 
purpose, the optimal power flow becomes a convex problem through a 
second-order conic relationship [22]. 

This paper is organized as follows: Section 2 shows the formulation 
of the location problem and optimal sizing of dynamic reactive power 
compensators in distribution systems. Section 3 describes the proposed 
convex reformulation transforming the original nonlinear model into a 
second-order conic equivalent. Section 4 represents the methodology for 
solving the location problem and optimal sizing of dynamic reactive 
power compensators in distribution systems. Section 5 displays the main 
characteristics of the test systems. Section 6 presents the computational 
validation for the different proposed scenarios. Furthermore finally, 
section 7 portrays the main conclusions derived from this study, as well 
as some possible future research. 

2. Exact formulation 

Siting and sizing optimal of dynamic reactive power compensators 
are formulated through a mixed-integer nonlinear programming model 
[23]. The integer part, i.e., binary, is associated with selecting the nodes 
where the compensators will be located. In contrast, the continuous 
section is associated with the solution of the resulting multi-period 
optimal power flow. The objective function is the reduction of daily 
energy losses in the distribution network associated with the dissipation 
of electrical energy into heat due to the resistance of the conductors. The 
objective function takes the following form: 

min Closses = Cenergy
mean

∑

t∈𝒯

∑

ij∈ℒ

RijI2
ij,tΔt, (1)  

where Closses corresponds to the value of the objective function associ
ated with the average daily cost of energy losses. Cenergy

mean represents the 
average cost of energy in kilowatt-hours, Rij corresponds to the resis
tance of the network section connecting nodes i and j, where Iij,t is the 
magnitude of the current electricity that flows through it in each time t. 
Note that ΔT is the length of the period under analysis (this is typically 
associated with ranges of 15 min, 30 min, or 60 min); moreover, 𝒯 is the 
set that contains all the periods, and ℒ is the set that incorporates all the 

network segments. 
The constraints of the optimal reactive power compensation problem 

correspond to the apparent power balance equations, the capacity limits 
of the devices, and the voltage regulation, among others. The set of 
constraints of the problem under study is presented below. 

pij,t − RijI2
ij,t −

∑

k:(j,k)∈ℒ

pjk,t = Pj,t; {j ∈ 𝒩 , t ∈ 𝒯 }, (2)  

qij − XijI2
ij,t −

∑

k:(j,k)∈ℒ

qjk,t = Qj,t − qcr
j,t {j ∈ 𝒩 , t ∈ 𝒯 }, (3)  

V2
j,t = V2

i,t − 2
(
Rijpij,t + Xijqij,t

)
+
(

R2
ij + X2

ij

)
I2

ij,t

{(i, j) ∈ ℒ, t ∈ 𝒯 },
(4)  

I2
ij,t =

p2
ij,t + q2

ij,t

V2
i,t

, {(i, j) ∈ ℒ, t ∈ 𝒯 }, (5)  

− xjqcr,max ≤ qcr
j,t ≤ xjqcr,max , {t ∈ 𝒯 , j ∈ 𝒩}, (6)  

∑

j∈𝒩

xj ≤ Ncr
max (7)  

Vmin ≤ Vj,t ≤ Vmax, {t ∈ 𝒯 , j ∈ 𝒩}, (8)  

xj ∈ {0, 1}, j ∈ 𝒩 , (9)  

where pij,t and qij,t represent the flows of the active and reactive power 
from node i to node j at time t, Pj,t and Qj,t correspond to the active and 
reactive power consumption at node j, at time t. Note that these loads 
have been modeled as constant power loads. qcr

j,t corresponds to the in
jection of reactive power by the dynamic compensator connected at 
node j, at time t. Vi,t and Vj,t correspond to the magnitudes of the voltages 
at nodes i and j, at time t, respectively. qcr,max

j represents the maximum 
reactive power injection limit associated with the dynamic compensator 
connected at node j; and Vmin and Vmax correspond to the minimum and 
maximum limits associated with voltage regulation in all nodes of the 
distribution network. The variable xj determines the installation (xj = 1) 
or not (xj = 0) of a dynamic reactive power compensator at node j. In 
addition, Ncr

max corresponds to the maximum number of reactive com
pensators available for installation in the distribution system. Notice 
that 𝒩 represents the set that contains all nodes in the system. 

The mathematical model interpretation for the location and optimal 
sizing of dynamic reactive power compensators in power distribution 
systems is defined from (1) to (9) as follows: Eq. (1) represents the 
objective function of the problem, which corresponds to the daily 
minimization of beneficial energy losses due to the dissipation of elec
trical energy in heat in all conductors of the network. Eqs. (2) and (3) 
represent the active and reactive power balance at system nodes for each 
period under study. Eq. (4) presents the voltage drop in each one of the 
branches as a function of their power flow, the current flowing through 
them, and their impedance parameters. Eq. (5) represent the definition 
of average apparent power calculated at the distribution line dispatch. 
The box constraint defined by (6) determines the possibility of injecting/ 
absorbing reactive power by the dynamic compensator if the binary 
variable associated with its location is activated. 

Likewise, the inequality defined by (7) determines the maximum 
number of reactive compensators that can be installed in the electrical 
network, which is a limit typically defined by the network operator. The 
box constraint described in (8) defines the maximum and minimum 
allowed voltage limits for the distribution network, which are typically 
assigned between 5% and 10% for the case of Colombia. Finally, Eq. (9) 
defines the binary nature of the decision variable associated with the 
installation and sizing of reactive compensators. 

Fig. 1 represents the characterization of the mathematical model (1)– 

W. Gil-González et al.                                                                                                                                                                                                                         



Results in Engineering 15 (2022) 100475

3

(9) that defines the optimal location and size of dynamic reactive power 
compensators in distribution systems. 

According to the characterization presented in Fig. 1, the main 
challenge to obtain a convex formulation with binary variables corre
sponds to the subset of Eqs. (2)–(5), which is mainly associated with the 
power balance equations and voltage drops in the electrical network. 
Therefore, the following section proposes a reformulation of the MINLP 
model through second-order conic programming (SOCP), which results 
in a MISOCP model, which guarantees the optimal global solution of the 
problem. 

3. Convex reformulation 

In order to solve the optimal placement and sizing of dynamic 
reactive compensators problem in radial distribution systems, this sec
tion presents a second-order conic reformulation that allows trans
forming the exact MINLP model into a convex model of the MISOCP 
type. To perform this transformation, consider the definition of the 
following auxiliary variables: lij,t = Iij,t, and zi,t = Vj,t, whereby smoothly 
the objective function (1) and the constraints (2) a (4) become linear 
expressions, and therefore convex, as will be shown below. However, 
constraint (5) is the most complicated since it represents the product 
between voltage and current, which is approximated by a second-order 
cone. To obtain this approximation, Eq. (5) using the auxiliary variables 
takes the following form (the set notation is omitted for clarity 
purposes). 

p2
ij,t + q2

ij,t = lij,tzi,t. (10) 

Now, to approximate the right-hand side of Eq. (10), we employ its 
hyperbolic equivalent [22], thereby arriving at: 

p2
ij,t + q2

ij,t =
1
4
(
lij,t + zi,t

)2
−

1
4
(
lij,t − zi,t

)2
,

(
2pij,t

)2
+
(
2qij,t

)2
=

(
lij,t + zi,t

)2
−
(
lij,t − zi,t

)2
,

(
2pij,t

)2
+
(
2qij,t

)2
+
(
lij,t − zi,t

)2
=

(
lij,t + zi,t

)2
,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
2pij,t

)2
+
(
2qij,t

)2
+
(
lij,t − zi,t

)2
√

= lij,t + zi,t.

(11) 

Note that Eq. (11) can now be written using rule 2 as follows: 
⃦
⃦
⃦
⃦
⃦
⃦

2pij,t
2qij,t

lij,t − zi,t

⃦
⃦
⃦
⃦
⃦
⃦
= lij,t + zi,t. (12) 

The conic constraint defined in (12) remains nonconvex due to the 
equality imposition; however, as demonstrated in Ref. [22], this can be 
relaxed by a least-equal symbol, which immediately makes this a convex 
approximation, as follows: 
⃦
⃦
⃦
⃦
⃦
⃦

2pij,t
2qij,t

lij,t − zi,t

⃦
⃦
⃦
⃦
⃦
⃦
≤ lij,t + zi,t. (13) 

It is relevant to highlight that second-order conic programming, i.e., 
SOCP, corresponds to a subarea of mathematical optimization that 
works with affine linear constraints and conic expressions [21]. In the 
specialized literature, there are multiple reports related to trouble
shooting comics that take milliseconds to achieve, independent of the 
number of variables involved in these problems [24]. As mentioned 
above, a conic constraint is a convex expression that, in general, takes 
the following form: 

‖y‖ ≤ w. (14) 

The vector y is defined in an n − dimensional space, i.e., y ∈ Rn and w 
in a scalar, i.e., w ∈ R. Moreover, ‖y‖ is known as the 2 − norm of the 
vector y. Fig. 2 represents a second-order cone defined on a three- 
dimensional space R3, which is a convex set. For more details about 
convex optimization theory, review reference [25]. 

Given the convex structure of the conic representation for the 
apparent power equation sent from node i to node j, obtained in (13), the 
mathematical model (1)–(9) is transformed from an MINLP model to a 
MISOCP model, as shown below:Objective function: 

min Closses = Cenergy
mean

∑

t∈𝒯

∑

ij∈ℒ

Rijlij,tΔt.

Subject to: 

pij,t − Rijlij,t −
∑

k:(j,k)∈ℒ

pjk,t = Pj,t; {j ∈ 𝒩 , t ∈ 𝒯 },

qij − Xijlij,t −
∑

k:(j,k)∈ℒ

qjk,t = Qj,t − qcr
j,t {j ∈ 𝒩 , t ∈ 𝒯 },

Fig. 1. Characterization of the MINLP model for the location and sizing of 
dynamic reactive power compensators. 

Fig. 2. Graphical representation of a second-order cone, where Ω =

{‖y‖ ≤ w }, y ∈ R2 and w ∈ R. 
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zj,t = zi,t − 2
(
Rijpij,t + Xijqij,t

)
+
(

R2
ij + X2

ij

)
lij,t

{(i, j) ∈ ℒ, t ∈ 𝒯 },
(15)  

⃦
⃦
⃦
⃦
⃦
⃦

2pij,t
2qij,t

lij,t − zi,t

⃦
⃦
⃦
⃦
⃦
⃦
≤ lij,t + zi,t, {(i, j) ∈ ℒ, t ∈ 𝒯 },

− xjqcr,max ≤ qcr
j,t ≤ xjqcr,max , {t ∈ 𝒯 , j ∈ 𝒩},

∑

j∈𝒩

xj ≤ Ncr
max ,

Vmin ≤ Vj,t ≤ Vmax, {t ∈ 𝒯 , j ∈ 𝒩},

xj ∈ {0, 1}, j ∈ 𝒩 .

The main advantage of the MISOCP model defined in (15) is that it is 
possible to guarantee the finding of the global optimum of the problem 
by applying the B&C method combined with the interior-point method. 
In the following section, (15) represents a brief explanation of the so
lution methodology for the MISOCP model proposed. 

4. Solution methodology 

Second-order conic programming problems involving mixed in
tegers, i.e., MISOCP-type models, have within their constraints mathe
matical structures of the following form: 

‖Akx + bk‖ ≤ α⊤
k x + β⊤

k zk + γk. (16) 

The decision variables include continuous x and binary z variables. 
Ak being real domain matrices, bk, αk, βk actual domain vectors, and γk 
original constants for the k − -th constraint. 

Like most programming problems involving integer variables, the 
MISOCP model can be solved using a modified version of the B&C, as 
illustrated in Fig. 3. In each one of the iterations, the B&C method solves 
a SOCP model by employing an interior-point method specially designed 
for conic problems. This solution methodology benefits from the prop
erties of SOCP problems related to their convexity and fast convergence 
of interior-point method [21]. 

It is relevant to highlight that the main advantage of a MISOCP 
model is that it can be solved by combining the B&C method and the 
interior-point method. In each possible combination of binary variables, 
a second-order conic model is obtained that has a unique solution, and it 
is the global optimum for each binary input [21]. So, it guarantees that 
this methodology can assure the finding of the global optimum of the 
problem, which is not possible in mathematical models of the MINLP 
type [27], being this the main contribution of this research. 

In this work, the MATLAB optimization tool known as CVX and the 
solvers MOSEK and GUROBI, which combine the B&C and interior-point 
method [28] are used to solve the MISOCP model proposed in (15). 

5. Test systems 

To validate the methodology of location and optimal sizing of dy
namic reactive power compensators, two classical distribution systems 
of radial configuration operated at the substation node with a voltage 
equivalent to 12.66 kV are considered from the specialized literature. 
The first test system contains 33 nodes, and the second test system of 69 
nodes. Fig. 4 represents the configurations of these test systems. 

Peak consumption and line impedance data for these test systems can 
be found in Ref. [29]. In addition, for the operation during a typical day, 
it is considered the demand curve presented in Fig. 5. The data for this 
curve can be consulted in Ref. [30]. 

For the test systems under study, the maximum size of each of the 
dynamic reactive power compensators is 2000 kVAr, and three can be 
installed in each distribution network. 

6. Computational validation 

The implementation of the proposed MISOCP model is performed on 
a desktop computer with an Intel(R) Core(TM) i5 − 3550 3.5-GHz, 8 GB 
RAM in a 64-bit version under Microsoft Windows 7 Professional envi
ronment, using MATLAB 2020b software with the convex optimization 
tool CVX and the solvers MOSEK and GUROBI. Furthermore, to 
demonstrate that the MISOCP model guarantees the finding of the global 
optimum, the exact MINLP model is implemented in the GAMS software 
with the solvers BONMIN, COUENNE, and DICOPT, respectively. 

6.1. Results of the 33-node test system 

Table 1 shows the results obtained with the different solvers for 
MINLP type problems in GAMS and the results obtained with the pro
posed MISOCP model. 

The results presented in Table 1 show that: 

✓ The MISOCP model allows finding the best solution to the problem 
by assigning dynamic reactive power compensators to nodes 13, 24, 
and 30 with an injection level equivalent to 1.6773 MVAr, thus 
achieving a reduction in the daily cost of losses of US$/day 80.7784, 
i.e., a 26.15% reduction concerning the base case. 
✓ The closest solution to the global optimum found by the MISOCP 
model is obtained with the BONMIM solver, which identifies two of 
the three nodes of the optimum solution, i.e., nodes 24 and 30. This 
solution achieves a 25.54% reduction with a nominal reactive power 
injection equivalent to 1.6375 MVAr. However, like the COUENNE 
and DICOPT solvers, this solution co++rresponds to an optimal local 
solution, which demonstrates the complexity of the exact MINLP 
model. 

On the other hand, Fig. 6 shows the dynamic behavior in reactive 
power injection by the compensators installed at nodes 13, 24, and 30, 
which correspond to the optimal global solution found by solving the 
proposed MISOCP model. 

From this performance, it is relevant to highlight that the dynamic 
generation of reactive power in the compensators follows the general 
performance of reactive power presented in Fig. 5. This performance is 
because the active power losses are partly related to the reactive current 
flow in the distribution lines; this implies that as these change 
throughout the day, they must be compensated. Hence, as the dynamic 
reactive power compensator varies hourly, its reactive power generation 
reduces these losses to a minimum. 

Fig. 3. Exploration of the solution space with the B&C method to solve a 
MISOCP-type model with two binary variables [26]. 
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6.2. Results of the 69-node test system 

Table 2 presents the results obtained with the different solvers for 
MINLP type problems in GAMS and the results obtained with the pro
posed MISOCP model. 

From the results reported in Table 2, it is possible to notice that: 

✓ All GAMS solvers are trapped in optimal local solutions due to the 
complexity of the MINLP model, in which the 69-node system has 
50,116 possible installation options for dynamic reactive power 
compensators. As in the 33-node test system, the BONMIN solver is 
the best performer with a solution that differs from the optimal 
global solution achieved by the MISOCP model by 1.8722 per day. 
✓ The overall optimal result achieved by the MISOCP model shows 
that the best nodes to locate dynamic reactive power compensators 
correspond to nodes 11, 21, and 61, with a reactive power injection 
equivalent to 1.5973 MVAr, which allows a reduction in the cost of 
energy losses equals 27.10% during each day of operation. 

On the other hand, Fig. 7 shows the daily dynamic performance of 
the reactive power compensators obtained in the MISOCP model solu
tion. It is important to note that, as in the 33-node system, the perfor
mance of the compensators follows the reactive power demand curve 
presented in Fig. 5. This performance is explained by the fact that active 
power losses are partly associated with reactive power demand. This 

Fig. 4. The electrical connection of the test systems: (a) 33-node test system, (b) 69-node test system.  

Fig. 5. Typical demand behavior for a day of operation in Colombia (taken from Ref. [30]).  

Table 1 
Location and size of reactive compensators in the 33-node system.  

Method Localization 
(node) 

Size (MVAr) Price (US $/day) 

Base case – – 308.8791 
COUENNE {5, 6, 11} {0.2887, 1.0346, 0.3166} 249.0945 
DICOPT {8, 18, 33} {0.4858, 0.1487, 0.6409} 237.3643 
BONMIN {18, 24, 30} {0.2352, 0.4805, 0.9218} 229.9880 

MISOCP {13, 24, 30} {0.3304, 0.4630, 0.8839} 228.1007  
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performance involves that for each demand hour, there is an optimal 
reactive injection that minimizes power losses. So that, for each point of 
the reactive power curve presented in Fig. 7 for each of the compensa
tors, these points correspond to the optimal global solution for the 
optimal reactive power flow in each period t. 

6.3. Supplementary analysis 

In order to verify that installing dynamic reactive power compen
sators is a more efficient strategy for reducing the daily cost of losses in 
distribution systems, the MISOCP model defined in (15) considers the 
possibility of installing capacitive step banks in identical locations of the 
compensators reported in Tables 1 and 2 for 33 and 69-node systems, 
respectively. This analysis scenario yields the following results. 

✓ In the 33-node test system, fixed-pitch capacitors with sizes of 
0.2120 MVAr, 0.2872 MVAr, and 0.5653 MVAr are selected at nodes 
13, 24, and 30, respectively, thus achieving an equivalent reduction 
of 21.72% concerning the base case. This result implies that the 

solution with dynamic reactive power compensators achieves an 
additional improvement of 4.43% during each day of operation. 
✓ In the 69-node test system, fixed-pitch capacitors with sizes of 
0.2137 MVAr, 0.1249 MVAr, and 0.6729 MVAr are selected at nodes 
11, 21, and 61, respectively, thus achieving an equivalent reduction 
of 17.76% concerning the base case. This result implies that the so
lution with dynamic reactive power compensators achieves an 
additional improvement of 4.83% during each day of operation. . 

The results of additional improvement achieved with dynamic 
compensators compared to fixed pitch capacitors imply during a 
continuous year of operation a saving of US$ 4994.9155 and US$ 
5511.2810 for the 33 and 69 node test systems, respectively. It is rele
vant to highlight that this saving, associated with reactive compensator 
use, justifies the initial investment that these may require, contrary to 
the fixed pitch capacitor banks, which undoubtedly can be cheaper in 
the market. 

Finally, concerning the computational times, it is relevant to mention 
that the MISOCP model solved with the GUROBI solver in the MATLAB 
CVX tool takes on average 190 s s to find the optimal solution in the 33- 
node system and about 2200 s for the 69-node system. These times are 
efficient since installing a dynamic compensator problem in a distribu
tion network can take several days or even weeks; thus, understanding 
its optimal global solution in less than 1 h demonstrates the efficiency 
and quality of the proposed optimization methodology. 

7. Conclusions and future work 

This study proposes a convex optimization methodology for the 
location and optimal sizing of reactive compensators in distribution 
systems reconfiguring the MINLP model into a MISOCP-type conic 

Fig. 6. Performance of dynamic reactive power compensators during the performing day in the 33-node test system.  

Table 2 
Location and size of reactive compensators in the 69-node system.  

Method Localization 
(node) 

Size (MVAr) Price (US $/day) 

Caso base – – 327.9880 
COUENNE {5, 6, 11} {0.2268, 0.8822, 0.8805} 302.8234 
DICOPT {27, 47, 64} {0.2439, 0.8974, 0.9486} 249.9691 
BONMIN {27, 49, 61} {0.2291, 0.4882, 1.0987} 240.9820 

MISOCP {11, 21, 61} {0.3502, 0.1968, 1.0503} 239.1098  

Fig. 7. Performance of dynamic reactive power compensators during the performing day in the 69-node test system.  
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model. The main advantage of the proposed model is that the finding of 
the optimal global solution is assured due to the convex structure of the 
objective function and the solution space of the problem. The objective 
function was obtained by relaxing the hyperbolic relationship between 
voltage, current, and power through a convex cone of second order. In 
order to solve the mathematical design, a B&C method with the interior- 
point method was used available for the GUROBI solver in the MATLAB 
CVX tool. We could verify that the MISOCP model finds the best possible 
solution for the 33- and 69-node test systems, even improving the results 
found by the GAMS software and the BONMIN, COUENNE, and DICOPT 
solvers trapped in optimal premises. 

Considering the variable characteristic of the active and reactive 
demanded power for the studied system test, it was possible to verify 
that the dynamic reactive power compensators perform as variable pitch 
capacitive banks. These compensators vary the reactive power injection 
in the system throughout the day. This variation is achieved by con
trolling the converter that integrates them into the network reducing 
losses by an additional 4.43% for the 33-node system and 4.83% for the 
69-node system compared to the fixed reactive power injection scenario. 
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[30] O.D. Montoya, W. Gil-González, Dynamic active and reactive power compensation 
in distribution networks with batteries: a day-ahead economic dispatch approach, 
Comput. Electr. Eng. 85 (2020), 106710, https://doi.org/10.1016/j. 
compeleceng.2020.106710. 
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