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A B S T R A C T

This paper deals with the power flow problem in bipolar direct current distribution networks with unbalanced
constant power loads. The effect of the neutral wire is considered in two prominent cases: (i) when the system
is solidly grounded at each load point and (ii) when the neutral terminal is only grounded at the substation
bus. The problem is solved using the successive approximation power flow method. Numerical results in two
test feeders composed of 4 and 25 nodes demonstrate that the successive approximation power flow approach
is adequate to solve the problem. It is also demonstrated that it is equivalent to the backward/forward power
flow in matrix form. The main advantage of both power flow approaches is that they can work with radial and
meshed distribution networks. Additionally, they do not require inverting matrices at each iteration, making
them efficient in terms of computational processing times requirements. All the simulations are carried out in
the MATLAB programming environment.
1. Introduction

In recent years, the study of direct current (DC) distribution net-
works has gained relevance in electrical power systems involving
medium to low-voltage levels. These networks have advantages over
alternating current (AC) distribution networks, such as a higher power
transfer capability, no need for synchronizing generators, and a better
voltage profile [1–3]. Most of the control and stability requirements in
AC distribution networks come from the frequency and reactive power,
which are nonexistent in DC networks. Additionally, the advances in
power electronics technology have allowed for increased integration
of DC distributed energy resources (DERs) in electrical networks, such
as battery energy storage devices, solar photovoltaic systems, and fuel
cells [4]. These resources are inherently DC and can be effortlessly
integrated into DC networks [5,6].

Two types of DC networks can be designed: monopolar and bipo-
lar [3,7]. Monopolar networks are only constructed with one voltage
level and two wires (positive and neutral). In contrast, bipolar net-
works have two-level voltage with three wires (positive, negative, and
neutral), as shown in Fig. 1 [8]. A bipolar network allows transferring
twice as much power as a monopolar network at the expense of one

∗ Corresponding author at: Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas,
Bogotá 110231, Colombia.

E-mail addresses: odmontoyag@udistrital.edu.co (O.D. Montoya), wjgil@utp.edu.co, walter.gil@pascualbravo.edu.co (W. Gil-González),
alejandro.garces@utp.edu.co (A. Garcés).

additional neutral cable. Under balanced conditions, e.g., when the load
in the positive pole is equal to the load in the negative pole, it is
possible to eliminate the neutral cable while saving an additional 33%
of conductive material and reducing power losses [9,10].

As in all electrical analyses, it is essential to know the operating
state of the bipolar DC network in order to make decisions adequately.
For this reason, a power flow analysis is required, which calculates
the voltage and power flow in current conditions. This is not an easy
task since bipolar DC networks have a complex nonlinear system of
algebraic equations [11]. Furthermore, a bipolar DC network may have
asymmetric power flows due to unbalanced transmission/distribution
lines and loads connected between a pole, and the neutral cable [12,
13].

In general, the specialized literature on bipolar DC networks has
studied the problem of optimal power flow (OPF) in high-voltage DC
(HVDC) networks using a hybrid approach between AC and DC net-
works [14–16]. However, these studies have considered bipolar HVDC
transmission to be symmetrically operated. Hence, they oversimplify
the problem, and single-line approximations for OPF can be employed.
These approaches cannot be applied in bipolar DC networks due to the
unbalanced power flows that can occur in them.
378-7796/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
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Nomenclature

 Set that contains all the demand nodes.
A𝑑,𝑝𝑜𝑛 Component of the branch-to-node inci-

dence matrix that relates all the branches
to the demand nodes.

A𝑝𝑜𝑛 Branch-to-node incidence matrix.
A𝑠,𝑝𝑜𝑛 Component of the branch-to-node inci-

dence matrix that relates all the branches
to the slack node.

E𝑝𝑜𝑛 Voltage drops in the branches ordered by
pole (V).

G𝑑𝑑,𝑝𝑛 Component of the conductance matrix that
relates the positive and negative poles of
the demand nodes (S).

G𝑑𝑑,𝑝𝑜𝑛 Component of the conductance matrix that
relates the positive, neutral, and negative
poles of the demand nodes (S).

G𝑑𝑠,𝑝𝑛 Component of the conductance matrix that
relates the positive and negative poles of
the demand and voltage-controlled nodes
(S).

G𝑑𝑠,𝑝𝑜𝑛 Component of the conductance matrix that
relates the positive, neutral, and negative
poles of the demand and voltage-controlled
nodes (S).

Gprim
𝑝𝑜𝑛 Primitive conductance matrix that relates

all the nodes for positive, neutral, and
negative poles (S).

G𝑠𝑑,𝑝𝑛 Component of the conductance matrix that
relates the positive and negative poles of
the voltage-controlled and demand nodes
(S).

G𝑠𝑠,𝑝𝑛 Component of the conductance matrix that
relates the positive and negative poles of
the voltage-controlled nodes (S).

I𝑑,𝑝𝑛 Vector with the net current consumption
in the positive and negative poles of the
constant power loads (A).

I𝑑,𝑝𝑜𝑛 Vector with the net current consumption in
the positive, neutral, and negative poles of
the constant power loads (A).

I𝑡𝑑𝑘,𝑝𝑛 Vector with the currents demanded in the
positive and negative poles at node 𝑘 in
iteration 𝑡 (A).

I𝑠,𝑝𝑛 Vector with the net current injection in
the positive and negative poles of the
voltage-controlled nodes (A).

I𝑠,𝑝𝑜𝑛 Vector that contains all the injected cur-
rents in the slack source (A).

J𝑝𝑜𝑛 Vector that contains all the branch currents
ordered by pole (A).

P𝑑,𝑝𝑛 Vector that contains the whole constant
power consumption between the poles and
the ground in all the demand nodes (W).

Regarding bipolar DC networks, most recent analyzes have been
onducted to solve the OPF problem. [13] proposed an OPF methodol-
gy to analyze bipolar DC networks with high imbalances in monopolar
oads that produce congestion in the transmission/distribution lines.
he authors presented a linearization of the power flow equations to
btain a linear optimization model. This model made it possible to
2

R𝑑𝑑,𝑝𝑜𝑛 Resistive matrix that relates the demand
nodes with each other for the positive,
negative, and neutral poles (Ω)

V𝑑,𝑝𝑛 Vector with the voltage variables in the de-
mand nodes for the positive and negative
poles (V).

V𝑑,𝑝𝑜𝑛 Vector with the voltage variables in the de-
mand nodes for the positive, neutral, and
negative poles (V).

V𝑡
𝑑𝑘,𝑝𝑛 Vector with the voltage values in the pos-

itive and negative poles at node 𝑘 in
iteration 𝑡 (V).

V𝑠,𝑝𝑛 Vector with the voltage outputs in the gen-
eration nodes for the positive and negative
poles (V).

V𝑠,𝑝𝑜𝑛 Vector with the voltage outputs in the gen-
eration nodes for the positive, neutral, and
negative poles (V).

W𝑑,𝑝𝑜𝑛 Vector that contains the power flow solu-
tion for all the demanded nodal voltages in
the positive, neutral, and negative poles (V)

𝜀 Maximum convergence error to finish the
iteration procedure.

𝜁 Constant parameter associated with the
convergence analysis in the Banach fixed-
point theorem.

𝑃𝑑𝑘,𝑝𝑛 Vector with the constant power demanded
at node 𝑘 in the iteration 𝑡 between both
poles (W).

𝑡 Iterative counter.
𝑣min Minimum voltage regulation bound for the

positive and negative poles (V).
𝐼 𝑡𝑑𝑘,𝑛 Demanded current at node 𝑘 in iteration 𝑡

at the negative pole (A).
𝐼 𝑡𝑑𝑘,𝑝 Demanded current at node 𝑘 in iteration 𝑡

at the positive pole (A).
𝑃 𝑡
𝑑𝑘,𝑛 Constant power demanded at node 𝑘 in the

iteration 𝑡 at the negative pole (W).
𝑃 𝑡
𝑑𝑘,𝑝 Constant power demanded at node 𝑘 in the

iteration 𝑡 at the positive pole (W).
𝑉 𝑡
𝑑𝑘,𝑛 Voltage value at node 𝑘 in iteration 𝑡 at the

negative pole (V).
𝑉 𝑡
𝑑𝑘,𝑝 Voltage value at node 𝑘 in iteration 𝑡 at the

positive pole (V).

find the local marginal prices per node due to the voltage imbalance
levels. The numerical results in two small systems validate the proposed
method. However, a comparative analysis with other optimization
methods was performed to verify the effectiveness and robustness of
the proposed methodology. [12] addressed the problem of the optimal
phase-swapping in bipolar DC grids by proposing a multi-objective
binary optimization method. However, the constant power terminals
were avoided by generating a linear equivalent. This model is over-
simplified because the most complicating constraint is the hyperbolic
relation between voltages and power in the demand nodes. Ref. [17]
presented the application of the classical nodal voltage method to solve
the power flow problem in bipolar DC networks considering multiple
constant power terminals and grounded and non-grounded neutral wire
scenarios. A small test feeder with three nodes was used to analyze
the power flow problem. However, the authors only compared their
approach with the solution of circuit equations on the PSCAD/EMTDC
software. The authors of [18] presented the application of the current
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Fig. 1. Simplified diagram of a bipolar DC grid.
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njection method to solve the optimal power flow problem in bipolar
C networks. The authors proposed the development of a sensitive

ndex based on the Jacobian matrix in order to reduce the voltage
mbalances in the network due to the presence of multiple monopolar
ower consumptions. A recursive quadratic programming model was
mplemented to find the solution to the OPF problem considering the
enetration of distributed energy resources. Numerical validations in
wo test feeders composed of 6 and 33 nodes confirmed the efficiency of
he proposed OPF method when compared with the solution provided
y the PSCAD/EMTDC software.

Bipolar DC networks have mainly been analyzed for OPF studies
ith simplifications in the power flow constraints. Developing efficient
ower flow methods for these grids is necessary, considering the high
oad unbalances and different operational practices concerning the
eutral wire. In addition, the developed power flow methods must
uarantee convergence for all the possible operative conditions.

This paper proposes a power flow method for unbalanced bipo-
ar DC grids with constant power loads. This method is based on
uccessive approximations reported in [19] for single-phase AC distri-
ution networks. Its main advantage is that it works with radial and
eshed distribution configurations while considering solidly grounded

nd floating neutrals. In addition, the convergence of the proposed
ethod and uniqueness of the solution is demonstrated by using the
anach fixed-point theorem. This theorem ensures that the proposed
ethod guarantees the convergence of the numerical solution of the
ower flow problem under well-defined load operating conditions.
urthermore, based on the proof presented in [20], we show that the
uccessive approximation method and the classical forward/backward
pproach are equivalent for DC bipolar networks, i.e., their recursive
ormulas for solving the power flow problem are completely equivalent.

Note that the main advantages of using the successive approxima-
ion method or the matricial backward/forward power flow problem
n unbalanced bipolar DC networks are that: (i) they can deal with
he operation of the DC network considering the neutral wire solidly
rounded or floating without any change in its mathematical formu-
ation; (ii) both methods solve the bipolar power flow problem for
adial or meshed distribution networks, which is not possible with the
lassical backward/forward method [21]; (iii) their implementations
o not require inverting matrices at each iteration in contrast with the
ewton-based approaches [22], which make their required processing

imes faster when compared with derivative-based methods.
The remainder of this paper is organized as follows: Section 2

resents the general power flow formulation for bipolar DC grids
onsidering that the neutral is solidly grounded; Section 3 presents
he extension of the successive approximation power flow method
o bipolar DC grids with non-grounded neutrals; Section 4 presents
he convergence analysis of the proposed successive approximation
ethod considering loads connected to the neutral cable by applying
3

he Banach fixed-point theorem; Section 5 presents the equivalence t
between the backward/forward power flow method and the successive
approximation approach, which confirms that both methods have the
same recursive power flow formula; Section 6 presents a numerical
example of the implementation of the proposed bipolar DC power flow
method in a small DC grid composed of 4 nodes; Section 7 describes the
numerical implementation of the proposed approach in a DC bipolar
network composed of 21 nodes with radial and meshed configurations,
considering both possible scenarios in the neutral cable; and finally,
Section 8 presents the main concluding remarks derived from this work,
as well as some possible future research.

2. Formulation of the power flow problem

Throughout this section, matrices are represented by uppercase bold
letters; subscripts represent nodes and superscripts iterations. Variables
are defined by the nomenclature presented above.

The power flow problem in bipolar DC networks is developed
through the branch-to-line admittance representation of the network
[23]. Let us consider the relationship between voltages and currents
using the nodal admittance matrix as expressed by Eq. (1).
[

𝐈𝑠,𝑝𝑛
−𝐈𝑑,𝑝𝑛

]

=
[

𝐆𝑠𝑠,𝑝𝑛 𝐆𝑠𝑑,𝑝𝑛
𝐆𝑑𝑠,𝑝𝑛 𝐆𝑑𝑑,𝑝𝑛

] [

𝐕𝑠,𝑝𝑛
𝐕𝑑,𝑝𝑛

]

, (1)

where 𝐈𝑠,𝑝𝑛 is a vector that contains the injected currents in the positive
and negative poles of the voltage-controlled nodes; 𝐈𝑑,𝑝𝑛 contains the
demanded currents in both poles of the DC network; 𝐆𝑠𝑠,𝑝𝑛, 𝐆𝑠𝑑,𝑝𝑛,

𝑑𝑠,𝑝𝑛, and 𝐆𝑑𝑑,𝑝𝑛 are the components of the general admittance nodal
atrix 𝐆𝑝𝑛 that relates voltage-controlled and demand nodes; 𝐕𝑠,𝑝𝑛 is a

ector that includes the output voltages in voltage-controlled sources;
nd 𝐕𝑑,𝑝𝑛 contains the variables associated with the voltage in the
emand nodes. Note that the sign in the second row associated with
he demand current corresponds to the direction of the current flow,
ince the net current injection in electrical networks is positive if the
low arrives at the nodes and it leaves them in the case of the demands.

Notice that the second row in Eq. (1) includes the relation between
he demanded currents and the voltage variables. This equation is
onlinear, and its solution requires an iterative methodology.

.1. Recursive power flow formula

The successive approximation power flow method rearranges the
econd row of Eq. (1), thus obtaining 𝐕𝑑,𝑝𝑛. Then, it computes all the
oltages in the demand nodes, as demonstrated in [20]:

𝑑,𝑝𝑛 = −𝐆−1
𝑑𝑑,𝑝𝑛

[

𝐆𝑑𝑠,𝑝𝑛𝐕𝑠,𝑝𝑛 + 𝐈𝑑,𝑝𝑛
]

, (2)

The general formulation for power flow analysis in bipolar DC grids
ith neutral solidly grounded and unbalanced loads can be made by
dding an iterative counter to the voltage based on the second Tellegen

heorem. The demanded current is a function of the voltage in the
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𝐼

demand nodes, i.e., 𝐈𝑑,𝑝𝑛 = 𝑓
(

𝐕𝑑,𝑝𝑛
)

. Then, the iterative formula to
solve the power flow problem takes the following form:

𝐕𝑡+1
𝑑,𝑝𝑛 = −𝐆−1

𝑑𝑑,𝑝𝑛

[

𝐆𝑑𝑠,𝑝𝑛𝐕𝑠,𝑝𝑛 + 𝐈𝑡𝑑,𝑝𝑛
]

. (3)

The stopping criteria for the iterative formula in Eq. (3) is based
on the variation of the voltage magnitude between two consecutive
iterations, i.e.:

max
{

|

|

|

𝐕𝑡+1
𝑑,𝑝𝑛 |−|𝐕

𝑡
𝑑,𝑝𝑛

|

|

|

}

≤ 𝜀, (4)

where 𝜀 is the tolerance.
The main advantage of the recursive formula (3) is that the inverse

of the conductance matrix that relates the demand nodes is calculated
once and stored. This procedure helps to reduce the processing times
required to solve the power flow problem in large-scale bipolar DC
grids.

2.2. Calculation of the demanded current

The main difficulty of the power flow problem corresponds to the
hyperbolic relation between voltages and constant power loads [19].
Here, we present the current calculation for constant power loads
connected between the positive or negative pole and the ground and
for when the load is connected between both poles.

In the case of an arbitrary node, 𝑘 has loads connected between the
poles and the ground. The current can be calculated as follows:

𝐼 𝑡𝑑𝑘,𝑝 =
𝑃𝑑𝑘,𝑝

𝑉 𝑡
𝑑𝑘,𝑝

, (5)

𝑡
𝑑𝑘,𝑛 =

𝑃𝑑𝑘,𝑛

𝑉 𝑡
𝑑𝑘,𝑛

, (6)

here 𝐼 𝑡𝑑𝑘,𝑝 and 𝐼 𝑡𝑑𝑘,𝑛 correspond to the current demand in the positive
and negative poles; 𝑃𝑑𝑘,𝑝 and 𝑃𝑑𝑘,𝑛 represent the values of the power
constant power consumption in the positive and negative poles; and
𝑉 𝑡
𝑑𝑘,𝑝 and 𝑉 𝑡

𝑑𝑘,𝑛 are the voltage values in both poles, respectively.
Note that, if all nodes only have loads connected between the poles

and the neutral point, then Eqs. (3) and (5) can be generalized as
follows:

𝐈𝑡𝑑𝑘,𝑝𝑛 = diag−1
(

𝐕𝑡
𝑑𝑘,𝑝𝑛

)

𝐏𝑑𝑘,𝑝𝑛, (7)

where 𝐏𝑑𝑘,𝑝𝑛 is the vector that contains the constant power demands
ordered by a pole at each node; 𝐈𝑡𝑑𝑘,𝑝𝑛 is the demanded current in the
line-to-neutral (line-to-line) load connected at node 𝑘 for the positive
and negative poles; and 𝐕𝑑𝑘,𝑝𝑛 is the vector that contains the positive
and negative voltages at node 𝑘 in iteration 𝑡, respectively.

On the other hand, if there is a load connected between both poles at
an arbitrary node 𝑘, then the demanded current is calculated as follows:

𝐼 𝑡𝑑𝑘,𝑝 =
𝑃𝑑𝑘,𝑝𝑛

𝑉 𝑡
𝑑𝑘,𝑝 − 𝑉 𝑡

𝑑𝑘,𝑛
, (8)

𝐼 𝑡𝑑𝑘,𝑛 =
𝑃𝑑𝑘,𝑝𝑛

𝑉 𝑡
𝑑𝑘,𝑛 − 𝑉 𝑡

𝑑𝑘,𝑝
, (9)

where 𝑃𝑑𝑘,𝑝𝑛 is the constant power load connected between both poles.
Note that, if all the constant power consumptions are connected

between both poles, then Eqs. (8) and (9) can generalized as follows:

𝐈𝑡𝑑𝑘,𝑝𝑛 = diag−1
(

𝐇𝐕𝑡
𝑑𝑘,𝑝𝑛

)

𝑃𝑑,𝑝𝑛, (10)

being 𝐇 defined as:

𝐇 =
[

1 −1
−1 1

]

.

If an arbitrary node has loads connected between the pole and the
ground, as well as a load connected between both poles, then the total
current demand in this node is the algebraic sum of the currents defined
in Eqs. (6) and (7) with the currents in Eqs. (8) and (9), respectively.
4

2.3. Generalized iterative process

The general implementation of the successive approximation power
flow method in bipolar DC networks with asymmetric loads and solidly
grounded neutrals is presented in Algorithm 1.

Data: Define the bipolar DC grid under study.
Obtain the per-unit equivalent of the network;
Calculate the nodal conductance nodal matrix G𝑝𝑛 and split its
components G𝑑𝑑,𝑝𝑛 and G𝑑𝑠,𝑝𝑛;

Calculate and store the inverse of G𝑑𝑑,𝑝𝑛 ans Z𝑑𝑑,𝑝𝑛 = G−1
𝑑𝑑,𝑝𝑛;

Select the maximum number of iterations 𝑡max;
Chose the convergence error 𝜖;
Define the substation voltages: V𝑠,𝑝𝑛 = [1,−1]⊤;
Make 𝑡 = 0;
Define the initial voltage as V𝑡

𝑑,𝑝𝑛 = 1𝑑,𝑝𝑛V𝑠,𝑝𝑛;
for 𝑡 ≤ 𝑡max do

for 𝑘 = 2 ∶ 𝑛 do
if Load in node 𝑘 is phase-to-ground then

Calculate the demanded current I𝑡,𝑌𝑑𝑘,𝑝𝑛 using Eq. (7) ;
else

Calculate the demanded current I𝑡,𝐷𝑑𝑘,𝑝𝑛 using Eq. (10) ;
end
Sum both currents I𝑡,𝑌𝑑𝑘,𝑝𝑛 and I𝑡,𝐷𝑑𝑘,𝑝𝑛 to obtain I𝑡𝑑𝑘,𝑝𝑛;

end
Calculate the new demanded V𝑡+1

𝑑,𝑝𝑛 using Eq. (3);

if max
{

|

|

|

|

|

|

V𝑡+1
𝑑,𝑝𝑛

|

|

|

− |

|

|

V𝑡
𝑑,𝑝𝑛

|

|

|

|

|

|

}

< 𝜖 then

Report the nodal voltages as V𝑝𝑛 =
[

V𝑠,𝑝𝑛;V𝑡+1
𝑑,𝑝𝑛

]

;
break;

else
Make V𝑡

𝑑,𝑝𝑛 = V
𝑡+1
𝑑,𝑝𝑛;

end
end
Algorithm 1: Pseudo-code for the solution of the power flow
problem in bipolar DC networks with asymmetric loads

In Algorithm 1 the 𝐈𝑡,𝑌𝑑𝑘,𝑝𝑛 and 𝐈𝑡,𝐷𝑑𝑘,𝑝𝑛 are the demanded currents for
constant power loads connected phase-to-ground and phase-to-phase,
respectively at node 𝑘.

3. Extension to non-grounded neutral

In the design of bipolar DC networks, especially in low-voltage
grids, there is the possibility that the neutral has no grounded connec-
tion at each node except to the power converter terminal. This situation
implies that the previously presented formulation must explicitly in-
clude the neutral effect. A subindex is included to explicitly represent
the neutral cable and extend the recursive power flow formula to
non-solidly grounded neutrals, as expressed by Eq. (3):

𝐕𝑡+1
𝑑,𝑝𝑜𝑛 = −𝐆−1

𝑑𝑑,𝑝𝑜𝑛

[

𝐆𝑑𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛 + 𝐈𝑡𝑑,𝑝𝑜𝑛
]

, (11)

where 𝐕𝑑,𝑝𝑜𝑛 contains nodal voltages of the demand; 𝐈𝑑,𝑝𝑜𝑛 is a vector
that contains all the demanded currents in the constant power loads;
𝐕𝑠,𝑝𝑜𝑛 contains the voltage outputs at the voltage–voltage controlled
sources; and all vectors are ordered from positive, neutral, and negative
terminals, respectively. The components 𝐆𝑑𝑑,𝑝𝑜𝑛 and 𝐆𝑑𝑠,𝑝𝑜𝑛 are the
components of the conductance matrix that include the conductance
of the neutral conductor.

The main effect of including the neutral in the bipolar power flow
formulation corresponds to the calculation of the demanded currents.
Thus, in any arbitrary node 𝑘, a load is connected from the positive
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and negative poles to the neutral cable; the demanded currents are
calculated as follows:

𝐼 𝑡𝑑𝑘,𝑝 =
𝑃𝑑𝑘,𝑝𝑜

𝑉 𝑡
𝑑𝑘,𝑝 − 𝑉 𝑡

𝑑𝑘,𝑜
, (12)

𝐼 𝑡𝑑𝑘,𝑜 =
𝑃𝑑𝑘,𝑝𝑜

𝑉 𝑡
𝑑𝑘,𝑜 − 𝑉 𝑡

𝑑𝑘,𝑝
+

𝑃𝑑𝑘,𝑛𝑜

𝑉 𝑡
𝑑𝑘,𝑜 − 𝑉 𝑡

𝑑𝑘,𝑛
, (13)

𝐼 𝑡𝑑𝑘,𝑛 =
𝑃𝑑𝑘,𝑛𝑜

𝑉 𝑡
𝑑𝑘,𝑛 − 𝑉 𝑡

𝑑𝑘,𝑜
, (14)

where 𝑃𝑑𝑘,𝑝𝑜 and 𝑃𝑑𝑘,𝑛𝑜 are the constant power loads connected between
the positive and negative poles with respect of the neutral cable, and
𝑉𝑑𝑘,𝑜 corresponds to the voltage of the neutral point at node 𝑘.

If node 𝑘 has a load connected between the positive and negative
poles (phase-to-phase load), the positive and negative currents are
determined with Eqs. (8) and (9), while the current from the neutral
cable is assigned as zero in this node, if and only if there are no
phase-to-neutral loads on it.

4. Convergence analysis

The main advantage of the proposed successive approximation
method for power flow analysis is that it is possible to demonstrate
its convergence through the Banach fixed-point theorem when all
the loads are connected phase-to-ground [24]. To demonstrate the
convergence of the successive approximation approach for bipolar DC
grids, let us consider the following assumptions [23]:

Assumption 1. The graph that represents the network is connected.

Assumption 2. The system operates in normal operation in the fol-
lowing region:

 =
{

𝑣 ∈ R𝑛, 𝑣 ≥ 𝑣min > 0
}

. (15)

ssumption 3. There is a real 𝜁 such that

=
‖

‖

‖

𝐆−1
𝑑𝑑,𝑝𝑜𝑛𝐏𝑑,𝑝𝑜𝑛

‖

‖

‖

(

𝑣min
)2

< 1. (16)

To demonstrate the algorithm’s convergence, we consider a weaker
ersion of the Banach fixed-point theorem in the real domain. Some
efinitions are presented here for the sake of completeness:

efinition 1. Let 𝑓 be a map of R𝑛 into R𝑛. A point 𝑣 is called a fixed
point for 𝑓 if 𝑣 = 𝑓 (𝑣).

In simple terms, a fixed-point is a point that does not change under
he application of the map 𝑓 . Therefore, it is a solution of the set of
lgebraic equations 𝑣 − 𝑓 (𝑣) = 0 hence its value as a tool to solve and

analyze this type of system.1

Definition 2. Let  =
{

𝑣 ∶ ‖

‖

𝑣 − 𝑣0‖‖ ≤ 𝛿
}

be a closed ball of R𝑛, and
let 𝑓 ∶  → R𝑛. Then 𝑓 is said to be a contraction mapping if there is
a 𝛽 such that ‖𝑓 (𝑣) − 𝑓 (𝑢)‖ ≤ 𝛽 ‖𝑣 − 𝑢‖, with 0 ≤ 𝛽 < 1, ∀ 𝑣, 𝑢 ∈ .

A contraction mapping has a clear relation with fixed-point theory,
which is given by the following theorem:

Theorem 1 (Fixed-point Theorem [25]). If 𝑓 is a contraction mapping,
then there is a unique 𝑣 ∈  satisfying 𝑣 = 𝑓 (𝑣), which can be obtained by
applying the iteration 𝑣 ← 𝑓 (𝑣) starting from an initial point in .

This theorem allows a simple convergence proof for the case of the
power flow problem, as demonstrated in [23]. Let us start by defining
some basic properties of the power flow equations:

1 Unless otherwise indicated, ⋅ is the conventional 2-norm.
5

‖ ‖
Definition 3. Let 𝑁 = {1, 2,… 𝑛}, and 𝐴 an 𝑛 × 𝑛 matrix. We can say
that 𝐴 is weakly chained diagonally dominant if the following three
conditions are met:

1. |𝑎𝑘𝑘| ≥
∑

𝑘≠𝑚 |𝑎𝑘𝑚|,∀𝑘 ∈ 𝑁
2. The set  (𝐴) =

{

𝑘 ∈ 𝑁 ∶ |𝑎𝑘𝑘| >
∑

𝑘≠𝑚 |𝑎𝑘𝑚|
}

≠ ∅
3. For each 𝑚 ∈ 𝑁 with 𝑚 ∉  (𝐴), there is a walk in the directed

graph of 𝐴 starting in 𝑚 which ends in a 𝑘 ∈  (𝐴).

emma 1 (See [26]). We denote that 𝐴𝑛−1 is a principal submatrix of 𝐴
ormed from all rows and columns with indices from 2 to 𝑛. This matrix is
𝑛 − 1) × (𝑛 − 1) and weakly chained diagonally dominant.

emma 2 (See [26]). A weakly chained diagonally dominant matrix is
on-singular. In addition, its inverse is bounded as follows:

𝐴−1‖
‖

‖∞
≤ 1

𝑎11(1 − 𝜌1)
+

‖

‖

𝐴𝑛−1
‖

‖∞
1 − 𝜌1

, (17)

where

𝜌1 =
1

|𝑎11|
∑

𝑚>1
|𝑎𝑘𝑚|. (18)

emma 3. The reduced nodal-admittance matrix 𝐆𝑑𝑑,𝑝𝑜𝑛, is weakly
hained diagonally dominant.

roof. The first condition for a matrix to be weakly diagonally dom-
nant is trivially satisfied considering the construction of the nodal
dmittance matrix, namely:

𝑘𝑚 =
{

𝑔𝑘 +
∑

𝑘∈𝑙 𝑔𝑙 𝑘 = 𝑚
−𝑔𝑙 𝑘 ≠ 𝑚

}

, (19)

here 𝑔𝑙 indicates the line admittance, and 𝑔𝑘 ≥ 0 is a constant admit-
ance load (it exists). The second condition is guaranteed provided that
he graph is connected (Assumption 1); hence, there is at least one 𝑔𝑙
hat connects a node m with node 1. Obviously, 𝑚 ∈  (𝐺) ≠ ∅. Finally,
he third condition is clearly satisfied due to Assumption 1. □

heorem 2. Under Assumptions 1 to 3, the map (11) for ground-connected
oads is well defined and Lipschitz-continuous in the set  given by (15). It
orresponds to a contraction mapping. Therefore, Algorithm 1 converges to
fixed point. This point is the solution of the power flow equation and is
nique in .

roof. Lemma 3 guarantees that 𝐆𝑑𝑑,𝑝𝑜𝑛 is weakly chained diagonally
ominant. Moreover, 𝐈𝑑,𝑝𝑜𝑛 is continuous in Eq. (15) due to Assump-
ion 2. Then, (11) is well defined and continuous in . Moreover,
emma 2 allows defining an upper bound for 𝐆−1

𝑑𝑑,𝑝𝑜𝑛.
On the other hand, the recursive power flow formula in Eq. (11),

onsidering that all the loads are connected to the ground, can be
ewritten as follows:

𝑡+1
𝑑,𝑝𝑜𝑛 = 𝑓

(

𝐕𝑡
𝑑,𝑝𝑜𝑛

)

(20)

= −𝐆−1
𝑑𝑑,𝑝𝑜𝑛

(

𝐆𝑑𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛 + 𝐈𝑡𝑑,𝑝𝑜𝑛
)

,

= −𝐆−1
𝑑𝑑,𝑝𝑜𝑛

(

𝐆𝑑𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛 + diag−1
(

𝐕𝑡
𝑑,𝑝𝑜𝑛

)

𝐏𝑑,𝑝𝑜𝑛

)

. (21)

With a slight abuse of notation, the following iteration is obtained:

𝑡+1
𝑑,𝑝𝑜𝑛 = −𝐆−1

𝑑𝑑,𝑝𝑜𝑛

⎛

⎜

⎜

⎝

𝐆𝑑𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛 +

(

𝐏𝑑𝑘,𝑝𝑜𝑛

𝐕𝑡
𝑑𝑘,𝑝𝑜𝑛

)⊤

𝑘∈

⎞

⎟

⎟

⎠

, (22)

with  being the set that contains all the demand nodes ordered per
bus and phase, respectively.
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Now, consider the right hand side of (22) and two vector of voltages
𝐕𝑑𝑘,𝑝𝑜𝑛,𝐔𝑑𝑘,𝑝𝑜𝑛 ∈ . Then, we have the following:

‖

‖

‖

𝑓 (𝐕𝑑𝑘,𝑝𝑜𝑛) − 𝑓 (𝐔𝑑𝑘,𝑝𝑜𝑛)
‖

‖

‖

=
‖

‖

‖

‖

‖

‖

−𝐆−1
𝑑𝑑,𝑝𝑜𝑛

(

( 𝐏𝑑𝑘,𝑝𝑜𝑛

𝐕𝑑𝑘,𝑝𝑜𝑛

)⊤

𝑘∈
−
( 𝐏𝑑𝑘,𝑝𝑜𝑛

𝐔𝑑𝑘,𝑝𝑜𝑛

)⊤

𝑘∈

)

‖

‖

‖

‖

‖

‖

≤
‖

‖

‖

𝐆−1
𝑑𝑑,𝑝𝑜𝑛𝐏𝑑,𝑝𝑜𝑛

‖

‖

‖

(

𝑣min
)2

.

(23)

he last part of (23) is equal to 𝜁 in Eq. (15) and constitutes a Lipschitz
onstant of 𝑓 . Moreover, due to Assumption 3, 𝜁 < 1 –and hence 𝑓– is a
ontraction mapping. Using Theorem 1, it is concluded that the solution
f the power flow equation is unique and can be obtained by Algorithm
. □

If we contemplate Consideration 3, which is associated with the
ature of the resistance-like matrix, the condition in Eq. (16) can be
ewritten as follows:

= max
𝑘∈

⎧

⎪

⎨

⎪

⎩

|

|

|

𝐆𝑑𝑑,𝑝𝑜𝑛𝑘𝑘
|

|

|

|

|

|

𝐏𝑑𝑘,𝑝𝑜𝑛
|

|

|

(

𝑉min
)2

⎫

⎪

⎬

⎪

⎭

. (24)

Note that, in (24), if we consider that the resistance-like parameter
𝐆𝑑𝑑,𝑝𝑜𝑛𝑘𝑘 is the Thëvenin equivalent resistance at node 𝑘, then Eq. (24)
can be rewritten as follows:

𝜁 = max
𝑘∈

{

𝐏𝑑𝑘,𝑝𝑜𝑛∕𝑉min
|

|

𝑉min
|

|

∕𝐆𝑑𝑑,𝑝𝑜𝑛𝑘𝑘

}

. (25)

Remark 1. From Eq. (25), we can observe that the condition 0 < 𝜁 < 1
is ensured since the denominator of Eq. (25) can be understood as the
lowest short-circuit current of the system. At the same time, its numer-
ator defines the highest load current. This is important because, for any
operating load condition covered by Consideration 2, the short-circuit
current is always higher than the load current.

Remark 2. Note that with the confirmation of the parameter 𝜁 in its
bounds, as required by the Banach fixed-point theorem, we can ensure
that the recursive power flow formula in Eq. (11), which is obtained
based on applying the successive approximation power flow method, is
stable, and converges to the solution.

5. Equivalence backward/forward power flow formulation

The main characteristic of the successive approximation studied
in Sections 2 and 3 is that its formulation is entirely equivalent to
the backward/forward power flow method in its matrix form [20].
Furthermore, both formulations can work with radial and meshed
bipolar DC networks without modifying their power flow formulations.
Here, we explore the equivalence between both formulations, which
are new for solving the power flow problem in bipolar DC grids with
grounded and non-grounded neutral conductors.

To obtain the recursive formula as expressed by Eq. (11) using the
backward/forward power flow formulation, let us use the branch-to-
node incidence matrix 𝐀𝑝𝑜𝑛 to relate branch voltage and currents with
nodal voltages and currents [27,28].

The branch-to-node incidence matrix can split into two submatrices
as follows:

𝐀𝑝𝑜𝑛 =
[

𝐀𝑠,𝑝𝑜𝑛 𝐀𝑑,𝑝𝑜𝑛
]

, (26)

where 𝐀𝑠,𝑝𝑜𝑛 and 𝐀𝑑,𝑝𝑜𝑛 represent the components of the branch-to-node
incidence matrix that relates the branches to the slack and demand
nodes, respectively.

Now, with the submatrices 𝐀𝑠,𝑝𝑜𝑛 and 𝐀𝑑,𝑝𝑜𝑛, it is possible to obtain
a general formula for the branch voltages as follows:
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𝐄𝑝𝑜𝑛 = 𝐀𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛 + 𝐀𝑑,𝑝𝑜𝑛𝐕𝑑,𝑝𝑜𝑛, (27) a
Table 1
Branch and load information for the 4-bus example.

Node Node 𝑅𝑗𝑘 𝑃𝑑𝑘,𝑝𝑜 𝑃𝑑𝑘,𝑛𝑜 𝑃𝑑𝑘,𝑝𝑛
𝑗 𝑘 (Ω) (W) (W) (W)

1 2 0.25 500 700 950
2 3 0.50 750 350 0
3 4 0.45 250 600 700

where 𝐄𝑝𝑜𝑛 is the voltage drop in all the lines.
On the other hand, the net injected currents can be related to the

branch currents as follows [20]:
[

𝐈𝑠,𝑝𝑜𝑛
𝐈𝑑,𝑝𝑜𝑛

]

=

[

𝐀⊤
𝑠,𝑝𝑜𝑛

−𝐀⊤
𝑑,𝑝𝑜𝑛

]

𝐉𝑝𝑜𝑛, (28)

where 𝐈𝑠,𝑝𝑜𝑛 is the net injected current in the slack source, and 𝐉𝑝𝑜𝑛 is the
vector that contains all the currents in the branches ordered by pole.

Now, by using Ohm’s law, it is possible to relate the branch currents
to their voltage drops as follows:

𝐉𝑝𝑜𝑛 = 𝐆prim
𝑝𝑜𝑛 𝐄𝑝𝑜𝑛, (29)

here 𝐆prim
𝑝𝑜𝑛 is the primitive conductance matrix that contains all the

nverses of the resistive parameter of each branch per pole (note that
his is a purely diagonal matrix).

Note that, if Eq. (27) and the second row of Eq. (28) are combined
ith Eq. (29), the following result is obtained:

𝑑,𝑝𝑜𝑛 = −𝐀⊤
𝑑,𝑝𝑜𝑛𝐆

prim
𝑝𝑜𝑛

[

𝐀𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛 + 𝐀𝑑,𝑝𝑜𝑛𝐕𝑑,𝑝𝑜𝑛
]

, (30)

hich can be easily rewritten as follows:

𝑑,𝑝𝑜𝑛 = −
[

𝐀⊤
𝑑,𝑝𝑜𝑛𝐆

prim
𝑝𝑜𝑛 𝐀𝑑,𝑝𝑜𝑛

]−1
[

𝐀⊤
𝑑,𝑝𝑜𝑛𝐆

prim
𝑝𝑜𝑛 𝐀𝑠,𝑝𝑜𝑛𝐕𝑠,𝑝𝑜𝑛
+𝐈𝑑,𝑝𝑜𝑛

]

. (31)

emark 3. Note that, if the iterative counter 𝑡 is used to recursively
olve (31) and the following definitions are made, namely

𝑑𝑑,𝑝𝑜𝑛 = 𝐀⊤
𝑑,𝑝𝑜𝑛𝐆

prim
𝑝𝑜𝑛 𝐀𝑑,𝑝𝑜𝑛,

𝑑𝑠,𝑝𝑜𝑛 = 𝐀⊤
𝑑,𝑝𝑜𝑛𝐆

prim
𝑝𝑜𝑛 𝐀𝑠,𝑝𝑜𝑛,

hen the matricial backward/forward and the successive approximation
ethods are completely equivalent for solving the power flow problem

n bipolar DC grids [20].

. Numerical example

To illustrate the main characteristics of the bipolar DC power flow
roblem, in this section, we present a numerical example composed of
nodes. The information of the lines and the constant power loads are

eported in Table 1.
For this test system, we consider that all the positive, negative,

nd neutral terminals are assigned to the same conductor size [12].
n addition, the voltage in the voltage-controlled node, i.e., node 1, is
ssigned as ±220 V, with 0 V in the neutral point.

For this system, the first case considers that the neutral point is
olidly grounded in each load connection, and the second case assumes
hat the neutral is only grounded at the substation point.

Table 2 presents the voltage in the positive, neutral, and negative
oles when both cases are simulated.

The results in Table 2 show that (i) the positive and negative poles
n both simulation cases exhibit different voltage magnitudes, which
re independent from the type of connection of the neutral terminal,
situation caused by the asymmetric nature of the loads, since the

ositive pole has a total demand (line-to-neutral) of 1500 , while the
egative pole accumulates a total demand of 1650 W; (ii) the main
ffect of the non-grounding of the neutral point is the voltages that

ppear at each node (however, for this example, these values not exceed
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Table 2
Voltage for both simulation cases.

Node + pole (V) 0 pole (V) − pole (V)

Grounded neutral

1 220 0 −220
2 217.2970 0 −217.1193
3 214.1348 0 −214.0633
4 212.8650 0 −212.0487

Non-grounded neutral

1 220 0 −220
2 217.2990 −0.1834 −217.1155
3 214.1399 −0.0864 −214.0535
4 212.8721 −0.8384 −212.0337

Table 3
Branch and load information for the 21-bus system.

Node Node 𝑅𝑗𝑘 𝑃𝑑𝑘,𝑝𝑜 𝑃𝑑𝑘,𝑛𝑜 𝑃𝑑𝑘,𝑝𝑛
𝑗 𝑘 (Ω) (kW) (kW) (kW)

1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

1 V, which is due to the small power consumption in this low-voltage
bipolar DC grid); and (iii) when power losses are calculated in for both
simulation cases, case 1 presents a total power loss of 113.6987 W, while
the second simulation case has a total power losses of 115.2223 W,
which implies that the presence of a non-solidly grounded neutral
increases the power losses due to the currents that flow through the
conductor.

7. Numerical experiments

The computational validation of the proposed power flow approach
for asymmetric bipolar DC networks considers a medium voltage dis-
tribution network, which is illustrated in Fig. 2. The test system is
composed of 21 nodes and 21 constant power loads originally used for
balanced DC power flow studies [29]. This is adapted in this research to
include unbalanced phase-to-ground loads. The electrical configuration
of this test feeder is presented below (see Fig. 2).

In the 21-bus system, the slack bus is operated in both poles with
±1 kV. The electrical parameters for this test feeder are reported in
Table 3.

For this test feeder, we consider having all the nodes concerning the
solidly grounded neutral point in simulation scenario 1. The effect of
the non-grounded neutral is studied in simulation scenario 2.

Table 4 presents the voltage in the positive and negative poles when
both cases are simulated.

Numerical results in Table 4 allow noting that, in simulation case 1
(i.e., solidly grounded neutral), the positive pole has some nodes with
voltage regulations higher than 10%, with the minimum voltage at
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node 17 having a magnitude of 890.1027 V, i.e., a regulation of 10.99%.
Fig. 2. Electrical connections between nodes in the 21-bus system.

In contrast, the worst voltage regulation for the negative pole occurs
at node 18, with a value of 9.14%. This happens because the total
demand between the positive pole and the neutral conductor is 554 kW.
In contrast, the negative pole has a total phase-to-ground demand of
445 kW, which implies that the positive pole has more than 100 kW
of demand compared to the negative pole. This difference translates
into a drastic effect on the voltage along the grid. Furthermore, the
neutral pole in nodes 16 and 17 has voltages higher than 20 V, with
magnitudes of 20.6576 and 24.3408, respectively. These increments
in the neutral voltage can affect some sensitivity devices connected
between the positive or negative poles to the neutral since the reference
value is far from zero. The effective voltage between both terminals can
be significantly reduced (notice that node 17 is between the positive
and the neutral poles).

To demonstrate the proposed successive approximation power flow
method’s effectiveness at solving power flow in bipolar DC grids, we
include a simulation scenario where two meshes are added to the 21-
bus system. The added lines are in corridors 7–19 and 11–16 with
resistances of 0.082 Ω and 0.037 Ω, respectively.

Numerical results for the meshed grid allow observing that (i) the
power loss in the case of the solidly grounded neutral is 75.1832 kW,
which increases to 78.7372 kW for the non-grounded neutral, a differ-
ence of about 3.5540 kW. This is associated with the currents that flow
through the neutral cable product of the load unbalances between the
positive and negative poles; and (ii) the behavior of the voltage profiles
in Fig. 3 for the meshed network in the grounded and non-grounded
cases follow pretty similar profiles. However, the main difference is
observed while comparing the positive and negative poles; in the first
case, the voltages at some nodes fall to 0.9252 pu (node 17), while

the negative pole has a minimum value of 0.9392 pu (node 18). The
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Table 4
Voltage for both simulation cases in the 21-bus system.

Node + pole (V) 0 pole (V) − pole (V)

Grounded neutral

1 1000 0 −1000
2 996.2761 0 −994.6716
3 960.0683 0 −968.4100
4 952.3714 0 −962.7830
5 952.1067 0 −962.7830
6 950.4396 0 −962.7830
7 953.7448 0 −964.5412
8 951.0867 0 −960.4284
9 943.8619 0 −960.7609
10 937.4888 0 −948.4698
11 930.9220 0 −942.8952
12 925.1152 0 −936.9933
13 926.9467 0 −939.7613
14 916.4715 0 −930.2940
15 905.4444 0 −921.0085
16 896.1420 0 −913.9505
17 890.1027 0 −911.4861
18 893.0582 0 −908.6017
19 909.9528 0 −924.3558
20 905.7061 0 −921.1448
21 908.0565 0 −922.5781

Node + pole (V) 0 pole (V) − pole (V)

Non-grounded neutral

1 1000 0 −1000
2 996.2821 −1.6193 −994.6628
3 959.5205 9.2157 −968.7363
4 951.7636 11.3722 −963.1358
5 951.4955 11.6403 −963.1358
6 949.8030 13.3327 −963.1358
7 953.1183 11.7700 −964.8884
8 950.4291 10.3922 −960.8213
9 943.1110 17.9963 −961.1073
10 936.5746 12.4855 −949.0602
11 929.9259 13.6204 −943.5464
12 924.0247 13.7095 −937.7342
13 925.9357 14.4762 −940.4119
14 915.1628 15.9904 −931.1532
15 903.9040 18.1140 −922.0181
16 894.4081 20.6576 −915.0657
17 888.2594 24.3408 −912.6002
18 891.2522 18.5786 −909.8309
19 908.5513 16.7359 −925.2872
20 904.2616 17.8323 −922.0939
21 906.6158 16.9276 −923.5434

difference between both poles can be attributed to the presence of
unbalanced phase-to-ground loads that cause the positive pole to have
a higher voltage drop when compared with the negative pole.

Finally, in the case of the radial configuration, the proposed bipolar
power flow method takes about 10 iterations (0.4911 ms) for the
grounded simulation case and 13 iterations (0.5275 ms) for the non-
grounded scenario. In the case of the meshed network, the grounded
simulation takes 10 iterations (0.4780 ms), and the non-grounded
scenario takes about 11 iterations (0.5262 ms). These values confirm
that the meshed case requires fewer iterations to stabilize the power
flow solution, which is expected due to the better distribution of the
voltage profiles along the grid. In addition, the average processing time
shows a linear tendency regarding the number of iterations and the
required processing times. However, for all the simulation cases, the
total processing time was about half a millisecond, which is an adequate
processing time for any real-time operation in steady-state conditions.

8. Conclusions

This paper addressed the problem of the power flow analysis in
bipolar DC networks considering the possibility of grounding or not
8

Fig. 3. Voltage profiles in the meshed network with and without grounded-neutral.

grounding the neutral. It was demonstrated that the classical back-
ward/forward and the successive approximation power flow methods
have the same recursive iterative formula, i.e., these methods are
entirely equivalent and apply to radial and meshed DC distribution
grids. The Banach fixed-point theorem demonstrated that the proposed
successive approximation method converges to the power flow solution
since its recursive formula is indeed a contraction map.

Future works will cover the following topics: (i) using the proposed
successive approximations embedded in a master–slave optimization
methodology to address the problem of phase-balancing in bipolar DC
grids; and (ii) formulating the optimal power flow problem in bipolar
DC grids using a convex quadratic approximation that guarantees that
a global optimum is found via interior point methods.
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