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Abstract: The problem of the optimal placement and sizing of renewable generation sources based
on photovoltaic (PV) technology in electrical distribution grids operated in medium-voltage levels
was studied in this research. This optimization problem is from the mixed-integer nonlinear pro-
gramming (MINLP) model family. Solving this model was achieved by implementing a master–slave
optimization approach, where the master–slave corresponded to the application of the modified
gradient-based metaheuristic optimizer (MGbMO) and the slave stage corresponded to the applica-
tion of the successive approximation power flow method. In the master stage, the problem of the
optimal placement and sizing of the PV sources was solved using a discrete–continuous codification,
while the slave stage was used to calculate the objective function value regarding the energy purchas-
ing costs in terminals of the substation, as well as to verify that the voltage profiles and the power
generations were within their allowed bounds. The numerical results of the proposed MGbMO in
the IEEE 34-bus system demonstrated its efficiency when compared with different metaheuristic
optimizers such as the Chu and Beasley genetic algorithm, the Newton metaheuristic algorithm, the
original gradient-based metaheuristic optimizer, and the exact solution of the MINLP model using
the general algebraic modeling system. In addition, the possibility of including meshed distribution
topologies was tested with excellent numerical results.

Keywords: photovoltaic generation; gradient-based metaheuristic optimizer; radial distribution
networks; combinatorial optimization

1. Introduction

Electric distribution networks are entrusted with providing electrical energy to all end
users at the medium- and low-voltage levels by interfacing large-scale transmission/sub-
transmission networks in substations with end users in urban and rural areas [1–3]. These
electrical networks are typically constructed with a radial structure to minimize investment
costs in conductors and protection schemes [4,5]. The radial configuration of these networks
gives rise to large energy losses values, which are 3–9-times the percentage of the energy
losses present in large-scale transmission networks [6]. These losses are mostly transferred
to the end user via an electricity fee [7]; however, most electricity service companies are
currently interested in buying green energy on the spot market to help with global warming
objectives and make their grids more efficient and sustainable [8].

Renewable generation technologies are the most promising strategy for making con-
ventional distribution grids more sustainable, since the costs of installation, production,
and maintenance have been competitive with diesel-based generators in recent years [9].
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The selection of the renewable generation technology depends on the renewable energy
availability and the distribution grid’s area of influence; as this study was in the Colom-
bian context, photovoltaic (PV) generation is the most feasible generation technology to
implement [10]. The main challenge of introducing multiple PV generators in distribution
networks is associated with its economical and technical feasibility, the former being related
to the investment returns during the project planning and the latter with the adequate
performance of the electrical variables, i.e., voltage magnitudes and devices’ capacities,
among others [11].

Deciding on the location and sizes of the PV generation units in distribution networks
is a difficult task, since this problem corresponds to an MINLP model when the grid
model is included in the formulation [12,13]. In the current literature, the problem of the
optimal placement and sizing of PV generation units is addressed from two points of
view: considering either an economic objective function or a technical one [14,15]. The
former focuses on the investment and operating costs of the PV sources in addition to the
grid energy purchasing costs in the substation bus [16], while the latter focuses on the
minimization of the grid energy losses or the greenhouse gas emissions during a period of
analysis [6].

Some of the recently developed literature reports regarding the optimal placement
and sizing of PV generation units in distribution networks that consider technical and
economical objective functions are described below.

The authors of [6] proposed the application of the discrete–continuous version of the
vortex search algorithm (VSA) to locate PV generation units in distribution grids consider-
ing daily demand curves to minimize the total grid energy losses on a typical operational
day. Results were validated in the IEEE 33- and IEEE 69-bus systems, showing that the
proposed algorithm achieved better numerical results than the classical particle swarm
optimization, genetic algorithms, and sine–cosine algorithms, to name a few. In Ref. [16],
Valencia et al. proposed the application of a two-stage optimization methodology to locate
and size renewable generators based on PV and wind technologies in radial distribution
grids including battery energy storage systems. The objective of the optimization model
was to minimize the annual grid operating costs. A simulated annealing algorithm was
used to determine the location of the energy storage devices and generation units, while
their optimal operation was implemented with a linear equivalent model of the distribution
grid. Numerical results in test feeders composed of 11, 135, and 230 nodes confirmed
the effectiveness of the optimization method. However, no comparisons among the meta-
heuristics in the location stage were provided by the authors, which makes it difficult to
determine the real efficiency of the simulated annealing method used in the optimization
stage. In Ref. [11], Montoya et al., proposed the application of the classical Chu and Beasley
genetic algorithm (CBGA) to place and size PV generation units in distribution networks
using a discrete–continuous codification. Numerical results in the IEEE 33- and IEEE
69-bus systems demonstrated that the CBGA produced better objective function values for
these systems when compared with the MINLP implementation of the general algebraic
modeling system (GAMS) software [17]. An improvement in the results provided by the
CBGA was presented by the authors of [18], where the recently developed Newton meta-
heuristic algorithm (NMA) was proposed to determine the optimal location and size of PV
generation units in distribution grids. Numerical results in the IEEE 34- and IEEE 85-bus
systems demonstrated its effectiveness when compared with the CBGA and the GAMS
software, respectively. In Ref. [19], Wang et al., proposed the application of the particle
swarm optimization method to analyze battery energy storage systems and renewable
energy resources simultaneously. The main contribution of this research was the economic
analysis, which considered the installation, operation, and maintenance costs of the devices.
Nonetheless, the authors oversimplified the electrical grid configuration by changing the
original MINLP model into an MINLP model considering a unique nodal representation
of the grid. Even though the MILNP model ensured a global optimal solution, this only
worked for the optimal operation of the batteries and the renewable sources; it is not
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applicable to the problem of the location of the devices, which implies that this component
of the MINLP model remains unsolved.

Unlike the previous works, this research proposes the application of a recently devel-
oped metaheuristic optimization algorithm, known as the gradient-based metaheuristic
optimizer (GbMO), to solve the problem of the optimal placement and sizing of PV genera-
tion units in medium-voltage distribution networks. The derivation of the evolved formula
for the GbMO is explained in detail in this article. In addition, a new improvement on the
exploration and exploitation characteristics of the GbMO is presented through the usage
of hyper-ellipses with a variable radius around the best current solution reached at itera-
tion t, i.e., Zt

best. This improvement was based on the vortex search algorithm’s ability to
solve complex optimization models. The modified gradient-based metaheuristic optimizer
(MGbMO) proposed in this research found the best current solution reported for the IEEE
34-bus system when compared with the CBGA, the GAMS, and the NMA, respectively.
In addition, the improved algorithm presented the most stable behavior when compared
with the CBGA and NMA, since all the solutions after 100 consecutive evaluations were
contained in a small ball with a diameter of less than USD 2446.17, while the CBGA and
the NMA presented diameters of about USD 6629.29 and USD 10,045.50, respectively.

It is worth emphasizing that the proposed MGbMO is different from the CBGA algo-
rithm reported in [11] as our proposed algorithm is a mathematically inspired metaheuristic
optimizer based on the gradient method to maximize/minimize unconstrained optimiza-
tion problems, and it was improved with the exploration and exploitation stages of the
vortex search algorithm (i.e., a physically inspired optimization algorithm), while the
CBGA is an optimization approach from the bio-inspired methods family. These character-
istics make both algorithms totally different regarding the evolution rules for exploring
and exploiting the solution space. This implies that the MGbMO presented in this study
contributes a new optimization methodology to the respective field in engineering.

It is important to mention that in the current literature, multiple metaheuristic opti-
mizers exist that can be applied to the studied problem and provide efficient numerical
results, as in the cases of the Harris hawks optimization presented in [3] and the water
cycle algorithm presented in [13]. Both methodologies showed efficiency and reliability
in solving distribution system planning problems regarding dispersed generation and
reconfiguration of primary feeders; however, this study opted for the MGbMO due to
its strong mathematical formulation. Its evolution formula has complete mathematical
support in the gradient optimization method for unconstrained problems, as well as it
has excellent numerical performance when combined with the vortex search algorithm
to improve the exploration and exploitation stages, which make the proposed MGbMO
an excellent optimization approach to solve the problem of the optimal placement and
sizing of PV generation units in radial distribution grids with good statistical properties
(high repeatability and low standard deviation). Nevertheless, the application of the Harris
hawks optimization and the water cycle algorithm in future studies is recommended, with
the possibility of integrating battery energy storage systems.

The remainder of this document is structured as follows: Section 2 presents the
complete MINLP model, representing the studied problem. Section 3 shows the main
characteristics of the proposed solution methodology based on the MGbMO and the suc-
cessive approximation power flow method connected through a master–slave optimization
strategy. Section 4 unveils the main characteristics of the IEEE 34-bus system and the
objective function parametrization. Section 5 describes the main numerical achievements
of our optimization proposal and its complete comparisons with the CBGA, GAMS, NMA,
and the original version of the GbMO, respectively. Finally, Section 6 presents the main
conclusions derived from this study and some possible future studies.
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2. Mathematical Formulation

An MINLP was used to represent the problem of the optimal placement and sizing
of PV generation sources in medium-voltage distribution networks. The integer part of
the optimization problem is associated with the problem of the optimal node selection
where the PV sources will be installed. The continuous part of the optimization problem is
associated with the optimal sizes of the PV sources, as well as the voltage magnitudes and
angles of all the buses and active and reactive power injections, among others. The whole
MINLP model for the studied problem is presented below.

2.1. Objective Function

The main goal behind the optimal integration of PV generation units in distribution
networks is to minimize the total energy purchasing costs in the equivalent substation
bus considering the investment and operating costs of the PV sources. The total annual
operative costs are defined as Acost, which is divided into two subcomponents, f1, the total
costs of the energy bought in the slack source, and f2, the total investment and operating
costs of the PV generation units, respectively. Equations (1)–(3) describe the objective
function formulation.

Acost = f1 + f2, (1)

f1 = CkWhT

(
ta

1− (1 + ta)
−Nt

)(
∑

h∈H
∑

i∈N
pcg

i,h∆h

)(
∑
t∈T

(
1 + te

1 + ta

)t
)

, (2)

f2 = CPV

(
ta

1− (1 + ta)
−Nt

)(
∑

i∈N
ppv

i

)
+ CO&MT ∑

i∈N
∑

h∈H
ppv

i Gpv
h ∆h, (3)

where CkWh represents the average energy purchasing costs in the equivalent substation
node; T is the number of days contained in an ordinary year (i.e., 365 d); ta represents the
internal return rate expected for investments made by the utility for the duration of the
project; Nt corresponds to the total number of periods in years for the project planning;
pcg

i,h represents the active power generation output in the conventional generation source
connected to i during the period of time h; ∆h represents the length of the time period where
the electrical variables are assumed as fixed values; te represents the expected average
percentage of the increment in energy purchasing costs during the planning period; CPV
is the average cost of installing a kW of PV power; ppv

i corresponds to the dimensioning
of a PV source connected at node i; CO&M is the maintenance and operating costs of a PV
source; Gpv

h is the expected PV generation curve in the the distribution network’s area of
influence. Note thatH, N , and T are the sets that contain all the periods of time in a daily
operation scenario, the nodes of the network, and the number of years of the planning
period, respectively.

2.2. Set of Constraints

The problem of the optimal placement and sizing of PV sources in electrical distribu-
tion networks has multiple linear and nonlinear constraints, including active and reactive
power equilibrium, limitations in the voltage magnitudes, the dispersed generators’ capa-
bilities, and the number of PV sources available for installation, among others. The whole
list of constraints for the studied problem is listed below.
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pcg
i,h + ppv

i Gpv
h − Pd

i,h = vi,h ∑
j∈N

Yijvj,h cos
(

θi,h − θj,h − ϕij

)
, {∀i ∈ N , ∀h ∈ H}, (4)

qcg
i,h −Qd

i,h = vi,h ∑
j∈N

Yijvj,h sin
(

θi,h − θj,h − ϕij

)
, {∀i ∈ N , ∀h ∈ H}, (5)

pcg,min
i ≤ pcg

i,h ≤ pcg,max
i , {∀i ∈ N , ∀h ∈ H} (6)

qcg,min
i ≤ qcg

i,h ≤ qcg,max
i , {∀i ∈ N , ∀h ∈ H} (7)

xi p
pv,min
i ≤ ppv

i ≤ xi p
pv,max
i , {∀i ∈ N}, (8)

vmin
i ≤ vi,h ≤ vmax

i , {∀i ∈ N , ∀h ∈ H} (9)

∑
i∈N

xi ≤ Nava
pv , (10)

xi ∈ {0, 1}, {∀i ∈ N}, (11)

where qcg
i,h represents the reactive power injection in the slack source connected at node i

during the period of time h; Pd
i,h and Qd

i,h correspond to the constant active and reactive
power demands connected at node i in the period of time h; vi,h (vj,h) is the voltage
magnitude at node i (j) during the period of time h; Yij is the component of the admittance
matrix (magnitude) that connects nodes i and j; ϕij is the component of the admittance
matrix (angle) that connects nodes i and j; θi,h (θj,h) is the voltage angle at node i (j) during
the period of time h; the minimum and maximum active power bounds for the conventional
generator connected at node i are defined by pcg,min

i and pcg,max
i , while its minimum and

maximum reactive power bounds are defined by qcg,min
i and qcg,max

i , respectively. The
binary variable, i.e., xi, defines the location (xi = 1) or not (xi = 0) of a PV generation unit
at node i, ppv,min

i and ppv,max
i being its minimum and maximum sizes allowed. vmin

i and
vmax

i are the lower and upper voltage regulation bounds permitted at node i. Finally, Nava
pv

is a constant number related to the maximum number of PV sources available for allocation
along with the medium-voltage feeder.

2.3. Model Interpretation

The MINLP formulation (1)–(11) is interpreted as follows: Equation (1) describes
the main goal of the studied optimization model, which is the summation of the energy
purchasing costs in the slack source defined by Equation (2). The investment and operat-
ing costs of the PV generation units are presented in Equation (3). Equation (4) defines
the active power equilibrium at each node of the network during each period of time.
Equation (5) describes the reactive power equilibrium for each node at each period of
time. The inequality constraints (6) and (7) define the active and reactive power generation
bounds in the conventional sources. The box-type constraint (8) defines the minimum
and maximum power generation bounds in the PV generation unit connected at node i
in the the case that its binary variable, i.e., xi, is activated. The inequality constraint (9)
defines the lower and upper voltage regulation bounds admissible during normal operative
conditions of the network. This constraint is typically defined by the regulatory policies
of the distribution company based on the government policies of the electric sector. The
inequality constraint (10) defines the maximum number of PV generation units that can be
installed along with the distribution feeder. Finally, the constraint (11) presents the binary
nature of the decision variables xi.

In order to characterize the optimization model defined from Equations (1)–(11),
the classification and type of variables are presented, including the number and type of
constraints in Table 1. It is important to mention that in this classification, n is the number
of nodes and p represents the periods of time.
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Table 1. Characterization of the optimization model (1)–(11).

Variables Type Number

PV locations Binary n
Active powers Real 2np
Reactive powers Real np
Voltage magnitudes Real np
Voltage angles Real np
Objective function Real 3

Total number of variables Real + binary (5p + 1)n + 3

Constraints Type Number

Active power balance Equality np
Reactive power balance Equality np
Conventional generation bounds Inequality (box-type constraint) 2np
PV sizes Inequality (box-type constraint) n
Voltage regulation Inequality (box-type constraint) np
Number of PV sources Inequality 1
Objective function Equality 3

Total number of constraints Equalities + inequalities (5p + 1)n + 4

It is worth emphasizing that the main complexity of the model (1)–(11) is its MINLP
structure, since it has nonlinear non-convex continuous equality constraints (see the power
balance equations) with binary variables. One of the most generalized optimization strate-
gies for solving this type of optimization problem corresponds to the master–slave opti-
mization via combinatorial optimization techniques [20]. To address the problem of the
optimal placement and sizing of PV sources in medium-voltage distribution networks, this
research proposes the application of a master–slave optimization approach based on the
modification of the gradient-based metaheuristic optimizer in the master stage [21] and a
classical successive approximation power flow in the slave stage [22]. In the next section,
all details of this master–slave optimization method will be described.

3. Master–Slave Optimization Proposal

To deal with the MINLP structure of the optimization model (1)–(11), Reference [23]
proposed the application of the gradient-based metaheuristic optimizer (GbMO) in a master–
slave approach combined with the classical successive approximation power flow method.
In Ref. [18], the master stage is entrusted with determining the optimal locations and sizes
of the PV generation units using a discrete–continuous codification. The codification that
represents the studied problem is presented in Equation (12).

Zt
i = [2, k, · · · , 10 | 0.2537, 0.7898, · · · , 1.1299], (12)

where Zt
i represents the solution of individual i at iteration t. Note that the first Nava

pv
position of the solution vector in (12) corresponds to the integer number regarding the
location of the PV generation units (note that k is an arbitrary node between two and n, n
being the size of the setN ), while from the position Nava

pv + 1 to 2Nava
pv , there are continuous

numbers regarding the optimal placement and sizing of the PV generators. The main
advantage of the codification in (12) is that the locations and the sizes of the PV generators
are solved using a unique codification [11], which implies that if the vector Zt

i is completely
feasible, then the MINLP model (1)–(11) is reduced to a simple nonlinear programming
model where the challenge is the power balance Equations (4) and (5), respectively. The
details of the master and slave stages are discussed below.
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To illustrate the general implementation of the proposed MGbMO with the inclusion
of the vortex search algorithm to improve the exploration and exploitation stages, the
general algorithmic structure is shown in Figure 1.

Individual Codification Fitness function

X1 [13 18 28 0.25 0.75 1.14] 1,355,010

X2 [33 14 18 0.55 0.52 1.25] 1,853,600

X3 [19 25 29 1.15 0.89 1.05] 1,723,400

X4 [13 28 30 0.65 1.55 1.96] 1,365,894

Evolution 

rules

Vortex search 

algorithm

Evaluation of the 

fitness function

Multiperiod power flow solution: fitness 

function calculation

Population 

updating

MODIFIED GRADIENT-BASED METAHEURISTIC 

OPTIMIZER

Gradient-based 

algorithm

Individual Codification

Z1 [13 10 14 050 0.80 1.10]

Z2 [30 24 28 0.60 1.50 1.50]

Z3 [29 15 19 1.10 0.98 1.01]

Z4 [13 27 30 0.65 1.50 1.96]

Figure 1. General algorithmic structure of the proposed MGbMO.

Note that the main characteristics of the proposed optimization methodology are:

X Random generation of the initial population at the beginning of the iteration process of
the algorithm, with feasibility maintained during all the exploration and exploitation
steps on the solution space during all the iterations;

X Association of the improvement of the exploration and exploitation stages with the
possibility of working with the gradient-based evolution rule or with the application
of the vortex search evolution strategy;

X Responsibility of the multiperiod power flow solution to calculate the fitness func-
tion value, which will guide the exploration and exploitation stages with the pro-
posed MGbMO.

3.1. Master Stage: Gradient-Based Metaheuristic Optimizer

The GbMO is an optimization technique that can deal with complex nonlinear non-
convex optimization problems in engineering, developed recently by Ahmadianfar [21].
This optimization method is based on the classical numerical method based on the gradient
descendant algorithm to solve unconstrained continuous optimization problems. Here, an
easy derivation of the GbMO is presented to solve combinatorial optimization problems.
In the case of minimizing an objective function, the gradient method defines the evolution
rule presented in Equation (13).

Zt+1
i = Zt

i − αt
i∇ f

(
Zt

j

)
, (13)
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where αt
i is the adaptive step of the gradient search algorithm for the ith in iteration t;

∇ f
(
Zt

i
)

represents the gradient of the function f evaluated in the current individual Zt
i .

To obtain the gradient of the objective function, the Taylor series expansion is applied
to this function [24], which produces the following relation:

f
(
Zt

i+1
)
− f

(
Zt

i
)
=
(
Zt

i+1 − Zt
i
)
∇ f
(
Zt

i
)
. (14)

Note that to evaluate Equation (14), it is necessary to know the value of the objective
function, i.e., f

(
Zt

i+1
)

and f
(
Zt

i
)
, which implies that at this point, the usage of the slave

stage is required, which will be described further ahead in this document.
On the other hand, the difference between the current solutions Zt

i and Zt
i−1 can be

defined as a parameter, βt
i , multiplied by the difference of the current solution and the next

step, Zt
i+1:

Zt
i − Zt

i−1 = βt
i
(
Zt

i+1 − Zt
i
)
. (15)

Now, if we combine Equations (13)–(15), the following evolution is obtained:

Zt+1
i = Zt

i − βt
i

αt
i∥∥∥Zt

i − Zt
i−1

∥∥∥
(

f
(
Zt

i+1
)
− f

(
Zt

j

))
, (16)

where ‖z‖ represents the l2-norm of the vector z.
Note that the exploration qualities of the evolution rule (16) are local since no informa-

tion regarding the best current solution (Zt
best) is contained in it; for this reason and based

on the recommendations in [25], we propose the following adaptive evolution rule:

Zt+1
i = Zt

i − βt
i

αt
i∥∥∥Zt

i − Zt
i−1

∥∥∥
(

f
(
Zt

i+1
)
− f

(
Zt

j

))
+ γt

i
(
Zt

best − Zt
i
)
, (17)

where:

X The βt
i-coefficient is selected as a binary vector filled with random zero and one values;

X The αt
i vector is selected as the solution individual Zt

i−1, which is located one position
before the current solution Zt

i ;
X The γt

i vector takes random values between zero and one that weight the effect of the
best current solution, i.e., Zt

best, in the movement of the current solution Zt
i .

An important reason to maintain feasibility in the solution space is that for each
individual Zt+1

i , it is mandatory to revise each component of it to ensure that it is between
its lower and upper bounds [26].

3.1.1. Exploration and Exploitation Improvement

To improve the exploration and exploitation characteristics of the general evolution
rule (17), this study proposes a modification of the GbMO using the evolution strategy
used by the vortex search algorithm (VSA) proposed in [27]. The VSA explores and exploits
the solution space through the usage of non-concentric hyper-ellipses generated with a
Gaussian distribution, which are generated around the center of the solution space at
the current iteration t. This center is named µt, and in the case of the modified GbMO
(MGbMO), the best current solution in the iteration t is selected as the center of the solution
space, i.e., µt = Zt

best. The generation of the best current solutions around µt is made with
the following Gaussian distribution:

Zt + 1 = p(z|µt, Σ) =

=
1√

(2π)2Nava
pv |Σ|)

exp
{
−1

2
(ζ − µt)

TΣ−1(z− µt)

}
, (18)
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where ζ corresponds to a vector with random variables between zero and one; Σ is the
co-variance matrix. It is important to highlight that in Σ, the diagonal elements are defined
with equal values and the non-diagonal elements with zero values. Then, the Gaussian
distribution will generate hyper-ellipses around the center of the solution space [28]. Con-
sidering the aforementioned characteristics of the co-variance matrix, this can be easily
defined as:

Σ = σ0I, (19)

where σ0 is defined as the standard deviation of the Gaussian distribution and I is defined
as an identity matrix with appropriate size. In the case of the initial exploration and
exploitation of the solution space, the initial standard deviation is calculated as defined in
Equation (20).

σ0 =
max{xmax} −min

{
xmin}

2
, (20)

where σ0 is also known as the maximum radius of the solution space at the beginning of
the iteration process (i.e., r0), which will decrease as the number of iterations increases [27].
Note that xmax and xmin are the vectors that contains all the upper and lower bounds
admissible for the decision variables in the vector Zt

i defined in (12). In this research, we
propose that the decreasing rate applied for the radius rt be a linear function of the number
of iterations, i.e.,

rt = 1− t
tmax

. (21)

As in the case of the GbMO, once all the individuals in the population Zt+1 have been
created, each one of them must be carefully revised to ensure that the decision variables
are contained within their lower and upper bounds. Additionally, the first Npv

ava positions
are rounded to the nearest integer to ensure the discrete nature of the codification vector
presented in (12), which is associated with the nodes where the PV generation units will
be installed.

3.1.2. Proposed MGbMO

Algorithm 1 is presented to illustrate the general implementation of the MGbMO
solution methodology to deal with the problem of optimal placement and sizing of PV
generation units in medium-voltage distribution grids.

3.2. Slave Stage: Successive Approximation Power Flow

The main complication in optimizations problems of distribution systems is when the
whole grid model is considered, i.e., the power balance constraints in the solution of these
equations, since these are highly nonlinear and non-convex, which implies that numerical
methods are required in their solution [23]. Even if the solution of the power flow problem
is fundamental for the implementation of metaheuristics, there now exist multitudes of
solution methods to deal with this problem, as is the case of the successive approximation
power flow method [23]. Nevertheless, the real advantage of using metaheuristics to
solve MINLP models corresponds to the possibility of decoupling the binary problem (the
location of PV generation units) from the continuous problem (power flow solution). In the
slave stage, it is assumed that the problem of the placement and sizing of the PV generation
units is solved with the codification in (12), which implies that to determine the objective
function value (1), it is necessary to know the power flow solution. Here, the recursive
power flow formula reported in [23] was adopted, which can work with radial and meshed
distribution grids.

Vm+1
d,h = Y−1

dd

[
diag−1

(
Vm

d,h

)(
S?pv,h − S?d,h

)
−YdsVs,h

]
, (22)
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where m is the iterative counter; Vd is the vector that contains all the voltage variables
in the complex domain for all the demand nodes at each period of time h; Spv,h is the
complex vector that contains all the power generations in the PV generation units at each
period of time h (note that this vector is provided by the master stage as an input for
the power flow problem); Sd,h is the complex demand vector with the active and reactive
power consumption in the demand nodes at each period of time; Vs,h is the complex
voltage output at the substation bus; Ydd is a complex square matrix that contains all the
admittances among demand nodes; Yds is a rectangular complex matrix that contains the
admittances between the demand and the substation buses. Note that diag(z) and z? are a
matrix with all the elements of z at its diagonal and the conjugate operator of the complex
vector z, respectively.

Algorithm 1 Proposed optimization methodology based on the modification of
the GbMO

Data: Define the distribution grid under study.
1 Define the maximum number of iterations, i.e., tmax;
2 Define the number of individuals in the population, i.e., ni;
3 Make t = 0, and generate the initial population Zt;
4 Define the center of the solution space µt; for t ≤ tmax do
5 Evaluate each individual Zt

i in the slave stage;
6 Find the best current solution Zt

best;
7 Generate a random number for δ between zero and one;
8 if δ < 1/2 then
9 for i = 1 : ni do

10 Generate βt
i and γt

i ;
11 Apply the evolution rule (17);
12 Revise the lower and upper bounds of Zt+1

i and correct if necessary;
13 Evaluate each individual Zt+1

i in the slave stage;

14 Update the best current Zt+1
best;

15 else
16 Calculate the current radius rt with Equation (21);
17 Generate the descending population Zt+1 using Equation (18);
18 Revise the lower and upper bounds of Zt+1 and correct if necessary;
19 for i = 1 : ni do
20 Evaluate each individual Zt+1

i in the slave stage;

21 Update the best current Zt+1
best;

22 Return the best solution Ztmax
best ;

The main advantage of using the recursive power flow Formula (22) is that its convergence
is ensured with the application of the Banach fixed-point theorem, as demonstrated in [22].
Here, to define that the power flow problem is solved with the help of (22), the difference of
the voltage magnitudes between two consecutive iterations was used as follows:

max
h

{
||Vm+1

d,h | − |V
m
d,h||

}
≤ ε, (23)

where ε is the tolerance value, which is assigned as 1× 10−10, as recommended in [23].
Once the power flow problem has been solved, the active power generation in the

slack bus is calculated with the following formula:

pcg
i,h = real

{
Ss,h
}
= real

{
diag(Vs.h)

(
Y?

ssV?
s,h +Y?

sdV
?
d,h

)}
, (24)
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Note that with the solution of pcg
i,h in (14), it is possible to determine the first component

of the objective function, i.e., f1, while the solution vector provided by the master stage is
where the sizes of the PV sources are assigned; then, the second component of the objective
function, i.e., f2, is calculated. However, as is well known in metaheuristic optimizers, the
exploration and exploitation of the solution space are performed through the application of
an adapted objective function named the fitness function (Ff ) [29]. The proposed fitness
function contains two penalty factors regarding the voltage regulation constraint and an
additional penalty factor regarding the positive definiteness of the active power generation
in the slack source; this is defined by Equation (25).

Ff = Acost +
[
θ1 maxh

{
|Vd,h| − vmax

d , 0
}
+ θ2 maxh

{
|vmin

d − |Vd,h|, 0
}
− θ3 minh

{
pcg

i,h, 0
}]

, (25)

where θ1, θ2, and θ3 are positive penalty factors that are activated in the case of the violation
of the voltage regulation and active power generation bounds in the substation bus (these
penalty factors were set as 100× 103).

4. Test Feeder Information

The assessment of the proposed MGbMO to place and size PV generation units in
medium-voltage distribution networks was conducted in the IEEE 34-bus system, depicted
in Figure 2. This is a medium-voltage network operated with 11 kV in the substation bus,
with a total of 4636.50 + j2873.50 kVA power consumption in the peak load condition and a
total of 221.75 + j65.12 kVA active and reactive power losses [30].

∼
slack

1 2 3 4 5
6

7 8 9 10 11 12

13
14
15
16

28
29
30

31
32
33
34

17 18 19 20 21 22 23 24 25 26 27

Figure 2. Electrical configuration of the IEEE 34-bus system.

The electrical information about demands in all the nodes and reactances and resis-
tances in branches is listed in Table 2 [30].

Table 2. Load and line parameters for the IEEE 34-bus system.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.1170 0.0480 230 142.5
2 3 0.1073 0.0440 0 0
3 4 0.1645 0.0457 230 142.5
4 5 0.1495 0.0415 230 142.5
5 6 0.1495 0.0415 0 0
6 7 0.3144 0.0540 0 0
7 8 0.2096 0.0360 230 142.5
8 9 0.3144 0.0540 230 142.5
9 10 0.2096 0.0360 0 0

10 11 0.1310 0.0225 230 142.5
11 12 0.1048 0.0180 137 84
3 13 0.1572 0.0270 72 45

13 14 0.2096 0.0360 72 45
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Table 2. Cont.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

14 15 0.1048 0.0180 72 45
15 16 0.0524 0.0090 13.5 7.5
6 17 0.1794 0.0498 230 142.5
17 18 0.1645 0.0457 230 142.5
18 19 0.2079 0.0473 230 142.5
19 20 0.1890 0.0430 230 142.5
20 21 0.1890 0.0430 230 142.5
21 22 0.2620 0.0450 230 142.5
22 23 0.2620 0.0450 230 142.5
23 24 0.3144 0.0540 230 142.5
24 25 0.2096 0.0360 230 142.5
25 26 0.1310 0.0225 230 142.5
26 27 0.1048 0.0180 137 85
7 28 0.1572 0.0270 75 48
28 29 0.1572 0.0270 75 48
29 30 0.1572 0.0270 75 48
10 31 0.1572 0.0270 57 34.5
31 32 0.2096 0.0360 57 34.5
32 33 0.1572 0.0270 57 34.5
33 34 0.1048 0.0180 57 34.5

To determine the value of the objective function regarding the energy purchasing costs
and the PV installation and maintenance costs, the information presented in Table 3 was
used [11].

Table 3. Parametrization of the fitness function evaluation.

Param. Value Unit Param. Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % te 2 %
Nt 20 years ∆h 1 h

CPV 1036.49 USD/kWp CO&M 0.0019 USD/kWh
ppv,max

i 2400 kW ppv,min
i 0 kW

Nava
pv 3 — ∆V ±10 %

α1 100× 103 USD/V α2 100× 103 USD/V
α3 100× 103 USD/W — — —

Finally, to emulate the expected daily generation behavior with PV sources and the
demand consumption, typical curves obtained in the metropolitan area of the Colombian
city of Medellín were employed. This information was provided by the authors of [31].

It is worth emphasizing that Colombia is a country located in the equatorial region;
the weather throughout the year varies somewhat, but not the seasons, which implies that
the demand and PV curves in Figure 3 can be considered as the average curves for all the
days in an ordinary year.



Sustainability 2022, 14, 3318 13 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.01

Time (h)

D
em

an
d/

So
la

r
cu

rv
es

(p
.u

) Load PV generation

Figure 3. Demand and generation curves typical for Medellín, Colombia.

5. Numerical Validation

To demonstrate the effectiveness of the proposed MGbMO to solve the studied prob-
lem, this proposal was compared with the current literature algorithms from the meta-
heuristic optimizers family. These algorithms are: the Chu and Beasley genetic algorithm
(CBGA) [11]; the Newton metaheuristic algorithm (NMA) [18]; the original GbMO [21]; the
BONMIN solver in the general algebraic modeling system (GAMS) software [17]. Note that
the implementation of the metaheuristic optimizers was performed with MATLAB 2021b
using the researchers’ own scripts on a PC with an AMD Ryzen 7 3700 2.3-GHz processor
and 16.0 GB RAM, running on a 64 bit version of Microsoft Windows 10 Single language.
In addition, to evaluate all the metaheuristic optimizers, a population size of 10 individuals,
1000 iterations, and 100 repetitions of each algorithm were considered.

The best optimal solution for the proposed MGbMO and the comparative methodolo-
gies are reported in Table 4. Numerical results in this table show that:

Table 4. Comparative results in the IEEE 34-bus grid when compared with the proposed MGbMO
and the literature reports.

Method Site (Node)
Size (kW) Acost (USD/Year) Proc. Time (s)

Bench. case — 4,588,283.80 —
BONMIN

{
26(2400), 27(747.45), 34(1336.00)

}
3,355,261.86 5.475

DCCBGA
{

11(1055.54), 23(1347.95), 25(2057.09)
}

3,354,711.16 5.977
NMA

{
10(994.25), 23(1409.42), 24(2056.85)

}
3,354,676.16 21.285

GbMO
{

11(1554.01), 21(1337.90) 26(1541.03)
}

3,355,105.86 24.126

MGbMO
{

11(1064.55), 23(2050.01), 25(1340.94)
}

3,354,495.20 21.867

X The best current solution for the IEEE 34-bus system was found by the proposed
MGbMO with an annual operative cost value of USD 3,354,495.20 per year. This
solution was obtained by locating the PV units at Nodes 11, 23, and 25, with a total
nominal generation capacity of 4455.50 kW. In addition, this solution allows for the
reduction of the grid’s operating costs by about 26.89%, about USD 1,233,788.60 per
year of operation, with respect to the benchmark case;

X The second-best solution for the IEEE 34-bus system was found by the NMA with an
annual reduction of USD 1,233,607.64, implying that the proposed MGbMO allows an
additional reduction of about USD 180.96 per year of operation;

X The original GbMO solves the studied problem by reaching an objective function
of about USD 3,355,105.86 per year, which is better than the solution obtained by
the GAMS optimization solver with the BONMIN solver; however, the proposed
improvement of this algorithm with the vortex search exploration and exploitation
characteristics showed that an additional USD 610.96 per year of operation can be
recovered with the proposed method;
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X Regarding processing times, it is important to mention that all algorithms took less
than 25 s to solve the studied problem. This is an excellent time for any master–
slave optimization approach that solves planning problems since it permits hundreds
of evaluations to be conducted prior to the final decision regarding the physical
implementation of the optimal solution.

To illustrate the general performance of the metaheuristic optimizers after each one
of the 100 evaluations, the general efficiency of each of the algorithms with respect to the
benchmark case is plotted in Figure 4.
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Figure 4. Average performance of the metaheuristic optimizers.

The results in Figure 4 show that: (i) the proposed MGbMO is the only solution methodol-
ogy that maintains its solutions during the 100 consecutive evaluations, with improvements
higher than 26.84% with respect to the benchmark case; this implies that it ensures cost reduc-
tions higher than USD 1,231,342.42 per year in all the solution cases; (ii) in terms of algorithm
stability, the second-best performance was reached by the CBGA followed by the NMA, since
this ensured improvements of the objective function higher than 26.74% and 26.67% with
respect to the benchmark case; (iii) the original GbMO presented higher oscillations during
the solution process, which are attributable to the presence of a difference between two values
of the objective function in its evolution Formula (12); however, these oscillations were mini-
mized with the introduction of the adaptive exploration and exploitation stages based on the
hyper-ellipses with a variable radius.

To ensure that all the voltages in all the nodes of the network were within their upper
and lower bounds throughout the day, the maximum and minimum voltage magnitudes
obtained in the IEEE 34-bus system when the solution of the proposed MGbMO was
implemented are plotted in Figure 5.
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Figure 5. Minimum and maximum voltage magnitudes in the IEEE 34-node test feeder when the
MGbMO solution was implemented.
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The most important result in Figure 5 is that all the voltages in the distribution
network were maintained between their assigned voltage regulation bounds during the
daily operation, i.e., ±10%. The worst voltage case occurred for Hours 20 and 21, where
the active power injection from the PV units was null and the demand was under its
peak operating condition. The minimum voltage coincided with the benchmark case, i.e.,
0.9417 pu. Nonetheless, for the period of time where the PV generation was maximum,
i.e., Hour 14, the voltage in some nodes exceeded the slack voltage with a magnitude of
1.0183 pu, which was the result of the low demand and high PV power injection.

Finally, to ensure that the generation in the slack node fulfilled the positive definite
condition, the slack power generations for the benchmark case and the proposed MGbMO
solution are compared in Figure 6.
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Figure 6. Generation output in the slack source for the benchmark case and the solution of our
proposed MGbMO.

As expected for the benchmark case, the behavior of the active power generation in
terminals of the substation followed the demand curve in Figure 3. Nevertheless, when the
PV generation units provided by the proposed MGbMO were installed in the distribution
network, the generation requirements in the slack source decreased considerably, zero in the
case of the maximum PV generation, i.e., Hour 14, which produced the typical duck curve.
The result shown in Figure 6 confirms that the MGbMO generation in the slack source was
always positive or zero, which was a condition imposed by the fitness function in (25), since
this proposal did not consider the possibility of selling energy to the transmission system.

Extension to Meshed Grids

In order to validate the effectiveness of the proposed MGbMO to solve the problem
of the optimal placement and sizing of PV generation units in distribution networks with
meshed operative conditions, Table 5 presents the application of this optimization method
to a modification of the IEEE 34-bus system that includes three additional lines with the
information as listed.

Table 5. Additional lines for the meshed configuration if the IEEE 34-bus system.

Node k Node m Rkm (Ω) xkm (Ω)

12 25 0.1310 0.0225
16 30 0.2096 0.0360
30 34 0.1886 0.0310

The first five results obtained after 100 consecutive evaluations of our proposed
MGbMO in this meshed configuration are reported in Table 6.
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Table 6. Best five solutions reached with the MGbMO in the meshed configuration of the IEEE
34-bus grid.

Solution Number Site (Node)—Size (kW) Acost (USD/Year)

Bench. case — 4,532,947.02
Solution 1

{
21(1727.43), 23(467.41), 25(1920.32)

}
3,327,455.92

Solution 2
{

20(1249.11), 23(1386.91), 26(1779.56)
}

3,327,474.92
Solution 3

{
20(1229.27), 23(896.28), 25(2287.21)

}
3,327,481.21

Solution 4
{

21(787.26), 23(1584.50) 25(2046.15)
}

3,327,482.45
Solution 5

{
21(1129.60), 23(1591.20), 25(1696.55)

}
3,327,486.36

The numerical results in Table 6 show that:

X The difference between benchmark cases was about USD 55,336.78 per year when the
radial (see Table 4) and meshed configurations were compared, and the difference
between both optimal solutions was about USD 27,039.28 per year. These results
confirm that the meshed configuration allows the amount of power losses in the whole
distribution network to be reduced, which is represented by a reduction of the total
energy generation requirements in the slack source when compared with the radial
configuration case;

X The maximum benefit in the meshed configuration case was reached with the first
solution, with a reduction of 26.59% with respect to the benchmark case, i.e., USD
1,205,491.10 per year. In addition, the difference between the first five solutions
was less than USD 30.44 per year of operation, which confirms the stability of the
proposed MGbMO to deal with the problem of the optimal placement and sizing of
PV generation sources in distribution grids;

X In all the first five solutions, the proposed MGbMO found Nodes 23 and 25 as the
optimal locations for the PV sources and Nodes 20 and 21 as varying among these so-
lutions. The total peak power injection in the first solution was about USD 4115.16 kW,
while the fifth solution had a value of USD 4417.36 kW, which is a difference of less
than 2 kW. These results confirm that the proposed MGbMO reaches solutions that
are closer to one another and are constrained to a small radius hyper-sphere around
the average solution (i.e., USD 3,327,970.82 per year).

Regarding processing times, it is important to mention that after the 100 consecutive
evaluations, the MGbMO took about 19.950 s to solve the studied problem in the meshed
configuration, which is about 1.917 s faster than the radial configuration. This behavior
was expected since for distribution networks, the total number of iterations required by the
power flow solution is reduced when a meshed configuration is introduced [23].

6. Conclusions and Future Works

The problem of the optimal placement and sizing of PV generation units in medium-
voltage distribution grids was addressed in this research through the application of the
gradient-based metaheuristic optimizer and an improvement based on the vortex search
algorithm for radial and meshed distribution grid configurations. The main limitation of
the proposed approach is associated with the non-consideration of battery energy storage
systems in the mathematical formulation since these devices will help with additional
improvements in the final operative costs of the distribution network; despite this, the
numerical results in the IEEE 34-bus system showed that:

i. The proposed MGbMO reached the best current solution for this system in the current
literature with a reduction about 26.89% of the total annual operative costs with
respect to the benchmark case in the radial configuration and 26.59% in the meshed
configuration. In the case of the radial configuration, the achieved result corresponded
to an improvement of about USD 180.96 per year with respect to the best current
solution reported by the NMA in the current literature;
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ii. The improvement in the exploration and exploitation characteristics of the GbMO
by using the hyper-ellipses with a variable radius around the best current solution
Zt

best allowed the proposed MGbMO to have the most stable behavior during all
100 iterations, with reductions higher than 26.84% with respect to the benchmark
case in the radial configuration scenario, which was only followed by the CBGA
with improvements higher than 26.74%. In the case of the meshed configuration, the
proposed MGbMO showed an average reduction of USD 26.58% with respect to the
benchmark case, i.e., a difference of 0.01% with respect to the optimal solution;

iii. The voltage profiles’ behavior throughout the day in the radial simulations scenario
showed that for all the nodes of the system, these were between ±10%, the worst case
being when the PV generation was at the minimum (Hour 20 or 21) with a magnitude
of 0.9417 pu and when the PV generation was at the maximum (Hour 14), the voltages
in some nodes exceeding the slack voltage with a magnitude of 1.0183 pu;

iv. In the case of the slack power generation, the benchmark case showed that this
variable followed the demand generation curve; however, when the PV generation
was installed, the well-know duck curve was obtained in the slack source (in the radial
configuration), which had a zero value when the PV generation was at the maximum,
demonstrating that all the model constraints were satisfied by the studied solution
method. This behavior was also confirmed in the meshed configuration.

For future studies, it will be possible to develop the following research:

i. Consider the possibility of variable generation output in the PV sources throughout
the day (between zero and the nominal generation curve), which will help to find
additional objective function improvements;

ii. Study the simultaneous location of distribution static compensators and PV generation
units in distribution networks for annual operative costs’ minimization;

iii. Propose a mixed-integer conic formulation to solve the MINLP model studied in this research
in order to ensure the global optimum finding without referring to statistical validations;

iv. Apply the Harris hawks optimization algorithm and the water cycle algorithm to
solve the problem of the optimal placement and sizing of renewable energy sources
in distribution grids and compare their efficiency and robustness with the MGbMO
proposed in this research.
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