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Abstract—The skin prick test (SPT) is performed to
diagnose different types of allergies. This medical procedure
requires measuring the size of the skin wheals that
appear when the test is performed. However, the manual
measurement method is cumbersome and suffers from intra-
and inter-observer errors. Thus, multiple approaches have
been developed to improve the reproducibility of the test.
This work aims to improve part of the automated reading
of the SPT to improve the reliability of the wheal detection
procedure through the use of convolutional neural networks
(CNN). Our proposal starts from the 3D images of the SPT
from the arm of patients. They are processed for global
surface removal, and then a CNN is trained to produce an
output mask that detects the wheals. Finally, the contour of
each wheal and its largest diameter is obtained. Encouraging
results with mean difference 0.966 mm and mean coefficient
of variation 7.29% show that the proposed method provides
reliable automated skin wheal detection.

Index Terms—SPT, skin prick test, wheal, 3D image,
convolutional neural network.

I. INTRODUCTION

The skin prick test is one of the most performed
tests on patients to identify allergic reactions to
various substances. The key aspect of the test is
the size of the wheal that appears after the skin
is pricked. The physician measures the diameter of
the wheal to determine the degree of sensitization
to an allergen [1]. The reading of the test has been
performed wusing different devices and techniques,
making evaluation and comparison between different
studies challenging [2]. Therefore, the Global Allergy
and Asthma European Network determined a standard
guideline for performing the test, including aspects such
as the distance between two pricks (> 2 cm) and
the minimum diameter of the wheal to be considered
a positive reaction (3 mm) [3]. The wheals are often
measured by considering them as ellipses and measured
along their longest diameter [4].

Conventionally, the measurement of wheals has been
performed directly on the patient’s forearm, using a
millimeter ruler as shown in Fig. 1. Note that often the
wheals have irregular shapes, which impede a reliable
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manual measurement. As a result, this Method suffers
from intra- and inter-observer errors [5], [6].

Other authors have attempted to tackle this problem
with conventional 2D digital imaging of the region
of interest. However, despite sophisticated image
processing software, the results are not entirely
reliable [7] or have problems with skin tone [8].
Alternatively, Pineda et al. [9] recently proposed
a robust method using a 3D imaging system and
measuring the wheal size automatically. This method is
based on pyramidal surface decomposition and Principal
Component Analysis (PCA) to detect the wheals and
perform parametric fitting to calculate their diameter.
Nevertheless, the automated detection stage requires
lots of parameter tuning that may not work well in all
circumstances.

We propose to replace the wheal detection stage with
a deep-learning-based approach. Specifically, we use a
U-Net architecture for the automated segmentation and
diameter estimation of the SPT wheals [10]. The U-Net
architecture has been successfully used in many medical
domains for reliable segmentation. The network used
can segment multiple skin wheals in a single pass.

Typical wheal shapes
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Fig. 1: (A) SPT is performed on the patient’s forearm.
(B) After 15 minutes, the diameter of the wheals are
measured with a ruler. (C) Common wheal shapes. (D)
The wheals are approximated as ellipses for measuring
their diameter.
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Fig. 2: The stages of the classical method replaced by our proposal are enclosed in the red box.

II. METHOD

We cast the problem of the detection of wheals
obtained from a 3D reconstruction of the SPT as a binary
classification problem. The method is based on training
a CNN for wheal detection and then determining their
longest diameter by a parametric approximation due to
the irregular shape of the wheals.

The method proposed by Pineda et al. [9] consisted
of multiple stages. First, the wheals are detected
via multi-scale filtering with Laplacian of Gaussians,
second decomposing the image into patches, and third
determining their centers of mass using PCA. Here,
we propose to simplify this multi-stage approach using
a U-Net style CNN that directly outputs the detected
wheals.

Fig. 2 shows a block diagram of the conventional
method. The dashed-line block shows the stage we
propose to replace with a CNN. Specifically, the input
is the 3D representation of the arm, which goes through
a global surface removal stage. S’ is the output of
this stage, where white arrows indicate the wheals.
Moreover, the preprocessed surface is the input to our
proposed network.

We use these images because they are less likely to
have noise or information unrelated to the wheals. These
are converted to intensity images with an accompanying
mask of the detected wheals. This procedure was carried
out with the conventional method.

A. Image acquisition

The images used to train and validate the neural
network are the same from Pineda et al. [9], in which
the fringe projection system shown in Fig. 3 is used, and
the 3D images of the forearm are like the one shown in

Fig. 4.

B. Pre-processing

For the CNN input, images are constructed from 3D
depth information, the data is handled as one channel
depth image. All images were zero-padded to have all
training data of the same size. Also, all depth images
were normalized from range [0, 255] to range [0, 1].

Camera 2
Camera 1

Projector

Overlaping
Region

Fig. 3: Fringe projection system, consisting of 2 cameras,
2 lasers and 1 projector, capable of reconstructing an area
of 150 mm x 250 mm [9].

Caml Cam2

Overlaping
Region

Fig. 4: Reconstruction 3D of the arm. The area marked by
the red box indicates the region where both observation
systems overlap [9].

C. Data augmentation

We performed data augmentation to improve the
robustness of the model. It was carried out through the
Keras image data preprocessing API [11]. We obtained
an increased number of images performing random



operations such as horizontal and vertical flip, rotation
(range from 0° to 180°), cropping (range from 0% to 20%)
and zoom (range from 0% to 20%).

In total, 14 images were acquired for data training
before data augmentation, and a total of 47 wheals were
identified. After data augmentation, a total of 84 training
images were obtained. The number of wheals after
data augmentation is variable due to random geometric
transformations; however, it is well above 200.

Fig. 5: Transformed images and masks for data

augmentation.

Fig. 5 shows an example of the transformed images
for data augmentation, where the first and third
columns are entry images with random transformation
arguments and the second and fourth columns are the
corresponding masks with the same transformation
arguments. The first row has two transformed
images from the same original image, with different
transformation arguments.

D. CNN architecture

The implemented network has a U-Net type
architecture due to the efficiency obtained in other
medical segmentation tasks [10].

Fig. 6 shows a diagram of the used CNN. The
network has 18 convolutional layers distributed in 9
main blocks. The decoder is consists of 4 blocks, each
one conformed by two repeats of 3 x 3 convolution
layers, followed by batch normalization and ReLU.
A 2 x 2 max-pooling with stride 2 follows each
decoding block for downsampling, where the number
of filters is doubled. The skip connection consists of
two repetitions of 3 x 3 convolutional layer, followed
by batch normalization and ReLU. The encoder consists
of 4 block, each one conformed by a 2 x 2 transposed
convolution layer, followed by batch normalization,
ReLU, a concatenation with corresponding feature map
from decoding blocks, and two repetitions of 3 x 3
convolutional layers, followed by batch normalization
and ReLU. In each upsampling, the number of filters
is halved. The number of filters start at 64, in the bridge
block are 1024 and finish at 64.

atch_norm—ReLU - Conv 3x3 - batch_norm—RelU

Conv_transpose 2x2 - batch_norm—RelU

Fig. 6: Visual representation of the CNN architecture.

III. REsurLTs AND DiscussioN

The CNN was trained during 150 epochs, with an
Adam loss function. The training dataset contains 14
images, and the testing dataset contains 4 images.

The results obtained with CNN wused in the
predictions, evidence a high performance even when the
entry data quantity is not as large as desired.

Fig. 7: CNN output (in pixels) from the untransformed
images with aproximated ellipses drawn.

Output images are shown in Fig. 7. These results
show good predictions on the images. First, the image
without wheals shows how the CNN can differentiate
pixels that are not part of a wheal. Note that large
wheals are detected sufficiently well, whereas not all
smaller wheals are detected. Moreover, the wheals are
measured in pixels, so it is necessary to obtain their value
in millimeters.



Fig. 8 CNN output
untransformed images
drawn.

(in millimeters) from the

with aproximated ellipses

In Fig. 8, we show the diameter of the wheals in
millimeters. For this process, we obtain the coordinates
(X)Y) of the extreme points of the ellipse and compute its
Euclidean distance (in millimeters) in the reconstruction
3D. Images show that most wheals are detected and
measured reliably well despite minor problems in the
segmentation for very small wheals.

Wheal | Reference Measurement | CNN | Difference | CV (%)
1 7.554 8.020 0.466 4.230
2 5.661 6.370 0.709 8.340
3 8.173 10.370 2.197 16.760
4 11.003 13.620 2.617 15.030
5 10.147 10.440 0.293 2.020
6 12.007 12.690 0.683 3.910
7 4.253 - - -
8 4.647 - - -
9 5.341 - - -
10 8.726 8.890 0.164 1.320
11 - 11.700 - -
12 5.975 6.570 0.595 6.710
Mean 0.966 7.29
TABLE 1. Measurements record (in millimeters)

with difference and coefficient of variation (CV) as
performance indicators. The symbol (-) represents
wheals not detected by the network, wheals not
accepted by the physician and indicators not calculated.

In table I, the reference measurements obtained by
averaging three measurements from the physician on
a computer screen and the proposed CNN are shown,
with their difference and coefficient of variation (CV).
Note that overall performance is satisfactory with mean
difference 0.966 mm and mean CV 7.29%. However, there
are three cases (2, 3 and 4) that have CVs of 8%, 16%
and 15%. In these cases, the presence of pseudopods or

extensions of the wheals makes it difficult to agree with
the real measurement, and in those large wheals, there
is no doubt about their positivity.

IV. CoNcLUSIONS

We proposed a wheal detection and diameter
estimation algorithm based on a U-Net convolutional
neural network. Despite the small amount of data, the
network successfully detected the wheals in the test
dataset. We believe that the preprocessing stage for
removing the global shape of the arm gives a reliable 3D
surface which greatly facilitates the detection. Further
validation studies are required to thoroughly test the
robustness of the proposed approach.
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