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Abstract: This research addresses the problem of the optimal placement and sizing of (PV) sources
in medium voltage distribution grids through the application of the recently developed Newton
metaheuristic optimization algorithm (NMA). The studied problem is formulated through a mixed-
integer nonlinear programming model where the binary variables regard the installation of a PV
source in a particular node, and the continuous variables are associated with power generations as
well as the voltage magnitudes and angles, among others. To improve the performance of the NMA,
we propose the implementation of a discrete–continuous codification where the discrete component
deals with the location problem and the continuous component works with the sizing problem of
the PV sources. The main advantage of the NMA is that it works based on the first and second
derivatives of the fitness function considering an evolution formula that contains its current solution
(xt

i ) and the best current solution (xbest), where the former one allows location exploitation and the
latter allows the global exploration of the solution space. To evaluate the fitness function and its
derivatives, the successive approximation power flow method was implemented, which became the
proposed solution strategy in a master–slave optimizer, where the master stage is governed by the
NMA and the slave stage corresponds to the power flow method. Numerical results in the IEEE 34-
and IEEE 85-bus systems show the effectiveness of the proposed optimization approach to minimize
the total annual operative costs of the network when compared to the classical Chu and Beasley
genetic algorithm and the MINLP solvers available in the general algebraic modeling system with
reductions of 26.89% and 27.60% for each test feeder with respect to the benchmark cases.

Keywords: placement and sizing of PV generation; AC distribution networks; Newton metaheuristic
algorithm; radial distribution networks

1. Introduction

Electrical distribution networks cover hundreds of kilometers around urban and rural
areas in medium- and low-voltage levels to provide electrical energy services to all end
users (i.e., residential, commercial, and industrial users) [1]. The main characteristic of these
networks is that these are built up in a radial configuration to reduce the investment costs
of protection schemes and additional conductors [2]; however, this feature significantly
increases the number of power losses in all conductors of the network since the active
and reactive power travels along the grid from the substation to all the load terminals [3].
To reduce the annual operating costs of a distribution network (urban or rural), typical
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solutions based on reactive power compensation [4]; grid reconfiguration schemes [5]; or
shunt active power compensation with unity power factor [6]; and with variable power
factor [7] are commonly found in the specialized literature. However, due to the increas-
ing interest in the inclusion of renewable energy resources at medium- and low-voltage
levels, the problem of optimal power losses reduction, although an important problem,
passes to a second plane for utilities, since the main advantage of using renewables is to
reduce the amount of electrical energy purchased from the conventional power system (i.e.,
hydro-thermal power systems) for distribution networks interconnected with the main
transmission network [8]; or the number of diesel gallons in the case of isolated distribu-
tion networks [9], in addition to improving the grid efficiency in hybrid systems [10]. In
addition, the increasing usage of PV sources was also promoted by the reduction in PV
cells due to the advances in power electronics and generation materials such as silicon,
perovskite and tandem solar cells, as presented in [11].

An important study prior to the optimal placement and sizing of PV sources in
electrical networks is to explore the potential construction sites for objects that might
cause shading, including high-voltage transmission towers, whose shading effects can be
significant due to their height since these natural or artificial obstacles can significantly
reduce the expected efficiency of the PV generation system. All of these aspects were
carefully analyzed by the authors of [12].

In the specialized literature, multiple approaches focused on the optimal integration
of renewable energy in distribution levels were proposed, some of which are discussed
below: the authors of [13] presented the application of the recently developed vortex search
algorithm to locate and estimate the size of solar photovoltaic (PV) sources in distribution
networks. The classical IEEE 33- and 69-node test feeders were employed to validate
their numerical results, which were compared with the mixed-integer nonlinear solvers
available in the GAMS software. Numerical results demonstrated the effectiveness of the
proposed methodology; however, the authors focused their attention on the reduction
in the number of electrical energy losses for a typical operative day which can be an
unrealistic approach due to the final costs of PV sources that are not covered by the
reduction in the total cost regarding energy losses. In [14,15] Gil-González et al. have
presented two approaches for integrating renewable generation based on wind and solar
power in distribution networks. The main contribution of the authors of these studies
is the possibility of generating reactive power with the power electronic converters that
becomes the interface of the renewable generators with the power system. The exact mixed-
integer nonlinear programming (MINLP) models that represent the studied problems
were solved with the nonlinear solvers available in the GAMS software; even if numerical
results demonstrate the advantage of including reactive power capabilities in the final
objective function value with respect to the unitary power factor case, the authors did not
consider economical aspects in the objective function, which in some cases, caused large
renewable generation sizes that were not economically viable to the grid operator only
considering the costs of the energy losses as the recovering investment factor. The authors
in [16] presented a heuristic-based optimization approach based on the hybridization
of the mixed-integer linear programming model with the classical simulated annealing
method to solve the problem of the optimal selection and location of battery energy storage
systems and PV sources in medium- and low-voltage distribution networks. The simulated
annealing algorithm was used to define the type and location of the distributed energy
resources along with the distribution network; while the exact mixed-integer programming
was used to define their optimal daily operation. The main contribution of this research
corresponds to the inclusion in the objective function of the investment and operating
costs in the network presented using annualized costs. However, the main weakness of
this approach is that the sizes of the PV sources and the batteries were previously set
which implies that the problem becomes the optimal sizing of these devices into a selection
problem, which makes their optimal solutions be highly conditioned by the initial setting
of the studied devices. The authors of [8] applied the classical particle swarm optimization
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method to simultaneously locate battery energy storage systems and renewable energy
in electrical distribution networks. The main contribution of the authors is the economic
analysis introduced considering installation, operation, and maintenance costs; however,
the authors oversimplified the distribution grid, which reduces the complexity of the
MINLP model to a mixed-integer linear programming model. Even if it guarantees optimal
solutions for the unique nodal representation; it do not represent to the optimal solution
when the grid topology is included since the problem of the optimal location (nodes’
selection) is neglected. The authors in [8] proposed a new multiobjective algorithm to
determine the optimal sizing and allocation of PV systems in radial distribution systems.
The Jaya algorithm was modified to find the optimal PV capacities for limited bus locations
in the network. The proposed algorithm showed better performance against known
techniques, and the results were presented. However, the main problem with this research
corresponds to the feasibility of the final solution regarding investment and operating costs
since these were not considered in the optimization model.

Unlike in previously reported works, this research studies the problem of the opti-
mal sizing and locating of PV sources in AC distribution networks operating at medium-
voltage levels, considering the annualized investment and operating costs of the PV sources
summed with the total energy purchasing costs at the substation bus. The main contri-
butions of our research were the following: (i) the application of a recently developed
metaheuristic optimization algorithm named the Newton metaheuristic algorithm (NMA)
with a mixed discrete–continuous codification that allows defining the set of nodes where
the PV sources will be located as well as their optimal sizes [17]. The proposed optimization
scheme is based on the master–slave approach, where the master stage is the NMA and the
slave approach corresponds to a classical power flow method for AC distribution grids.
It is important to highlight that the NMA method has not previously been reported to
analyze electrical networks, which was an opportunity for research that this paper tried to
fulfill; and (ii) the comparison with the classical Chu and Beasley genetic algorithm using
the same discrete continuous codification and the exact MINLP implementation in the
general algebraic modeling system (GAMS) for two classical well-known distribution grids
which are the IEEE 34- and IEEE 85-bus test feeders.

The remainder of this document is organized as follows: Section 2 presents the
complete mathematical optimization model that describes the problem of the optimal
placement and location of PV sources considering an economic objective function indicator
based on the investments in PV sources and energy purchasing costs at the substation bus;
Section 3 presents the theoretical derivation of the Newton metaheuristic optimization
algorithm to solve combinatorial problems; Section 4 shows the main characteristics of
the IEEE 34- and IEEE 85-node test feeders including their branch and load parameters as
well as the daily behaviors of the demand at the substation terminal and the PV generation
profile; Section 5 describes all the numerical validations and comparisons of the proposed
NMA with the classical Chu and Beasley genetic algorithm and the BONMIN solver
available in GAMS software. Finally, Section 6 presents the main concluding remarks
derived from this work as some possible future research avenues.

2. Mathematical Formulation

The optimal integration of PV sources in electrical systems generates a mixed-integer
nonlinear programming model due to the presence of binary variables regarding the opti-
mal location of dispersed generators which are also combined with continuous variables
regarding power flows through the network and voltage variables in all the nodes of the
system [18]. The formulation of the exact MINLP model is presented below.

2.1. Objective Function Formulation

The problem of the optimal locating and sizing of PV sources in AC networks is
formulated from an economical point of view. The main idea is to minimize the investment
and maintenance costs of the PV sources summed with the total energy purchasing costs
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in the substation bus [16]. The objective function and its components are presented in
Equations (1)–(3), respectively:

Acost = z1 + z2, (1)

z1 = CkWhT

(
ta

1− (1 + ta)
−Nt

)(
∑

h∈H
∑

i∈N
pcg

i,h∆h

) ∑
ty∈T

(
1 + te

1 + ta

)t

y

, (2)

z2 = CPV

(
ta

1− (1 + ta)
−Nt

)(
∑

i∈N
ppv

i

)
+ CO&MT ∑

i∈N
∑

h∈H
ppv

i Gpv
h ∆h, (3)

where Acost represents the total annual operative cost of the network; z1 is the component
of the objective function regarding the expected annualized energy purchasing costs in the
substation buses; z2 is the component of the objective function regarding the investment
costs in PV sources summed with their maintenance and operation costs. CkWh is the
average energy purchasing costs in the substation bus; T represents the number of days in
an ordinary year (i.e., 365 days); ta corresponds to the internal return rate expected for the
investments made by the utility during the duration of the project; Nt is the total number
of periods of the planning project in years; pcg

i,h is the active power generation output at
each conventional generator connected to node i during the period of time h; ∆h is the
length of the period of time where the electrical variables are assumed to be constants; te is
the average expected percentage of increment in the energy purchasing cost during the
planning horizon. CPV represents the average costs of installing a kW of PV power; ppv

i is
the size of a PV source connected to node i; CO&M is the maintenance and operating costs
of a PV source; and Gpv

h is the expected PV generation curve in the area of influence of the
distribution network. Note that H, N , and T are the sets that contain all the periods of
time in a daily operation scenario, the nodes of the network; and the number of years of
the planning period, respectively.

2.2. Set of Constraints

The set of constraints in the problem of the optimal placement and sizing of PV sources
in grid-connected distribution networks includes active and reactive power balance con-
straints, voltage regulation bounds, and devices capabilities, among other constraints [19].
The complete list of constraints is listed from Equations (4)–(11) [6]:

pcg
i,h + ppv

i Gpv
h − Pd

i,h = vi,h ∑
j∈N

Yijvj,h cos
(

θi,h − θj,h − ϕij

)
, {∀i ∈ N , ∀h ∈ H}, (4)

qcg
i,h −Qd

i,h = vi,h ∑
j∈N

Yijvj,h sin
(

θi,h − θj,h − ϕij

)
, {∀i ∈ N , ∀h ∈ H}, (5)

pcg,min
i ≤ pcg

i,h ≤ pcg,max
i , {∀i ∈ N , ∀h ∈ H} (6)

qcg,min
i ≤ qcg

i,h ≤ qcg,max
i , {∀i ∈ N , ∀h ∈ H} (7)

xi p
pv,min
i ≤ ppv

i ≤ xi p
pv,max
i , {∀i ∈ N}, (8)

vmin
i ≤ vi,h ≤ vmax

i , {∀i ∈ N , ∀h ∈ H} (9)

∑
i∈N

xi ≤ Nava
pv , (10)

xi ∈ {0, 1}, {∀i ∈ N}, (11)

where Pd
i,h and Qd

i,h are the active and reactive power demands at node i during the period
of time h; qcg

i,h is the reactive power injection in the conventional source connected to node
i during the period of time h; vi,h and vj,h are the voltage magnitudes at nodes i and j
in the period of time h, respectively; Yij is the magnitude of the admittance that relates
nodes i and j which has an angle ϕij; θi,h and θj,h are the voltage angle values in nodes
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i and j during each period of time; pcg,min
i and pcg,max

i are the active generation bounds

associated with the conventional generator connected to node i; and qcg,min
i and qcg,max

i are
the corresponding reactive power generation bounds, respectively. xi is the binary variable
associated with the installation (xi = 1) or not (xi = 0) of a PV source at node i; ppv,min

i
and ppv,max

i are the minimum and maximum sizes allowed for the PV integration in the
distribution grid. min

i and max
i represent the minimum and maximum voltage regulation

bounds allowed at node i; and Nava
pv is a constant parameter associated with the maximum

number of PV sources available for installation along with the distribution grid.

2.3. Model Interpretation

The interpretation of the MINLP model defined from (1) to (11) is the following:
Equation (1) defines the objective function of the optimization problem which adds the
energy purchasing costs to the conventional generators (i.e., substation buses) as defined
in Equation (2) with the annualized investments in PV sources including its maintenance
and operating costs as defined by Equation (3). Equality constraints (4) and (5) present the
active and reactive power equilibrium at each node of the system for each period of time.
These equations are the most complex constraints in the studied problem since these are
nonlinear, non-convex, and typically require numerical methods to be properly addressed.
Box-type constraints (6) and (7) define the lower and upper bounds associated with the
active and reactive power generation outputs in the conventional sources; the Box-type
constraint (9) defines the PV lower and upper generation capabilities for the PV sources in
case that the binary variable is activated; the Box-type constraint (10) presents the lower
and upper voltage regulation limits allowed for all nodes of the network. This is a typical
constraint imposed by regulatory entities and utility operation practices. The inequality
constraint (10) limits the maximum number of PV sources that can be installed along with
the distribution network; finally, constraint (11) shows the binary nature of the decision
variable regarding whether or not to locate a PV source in a particular node of the network.

It is worth mentioning that the main complication of the optimization model (1)–(11)
is its MINLP nature, since binary and continuous variables are combined with nonlinear
non-convex relations mainly defined by the power balance equations. To solve MINLP
models, in the current literature, the use of master–slave optimization strategies is a popular
method to decouple the binary problem from the continuous problem [20]. In the studied
problem defined by (1)–(11), the Newton metaheuristic algorithm is used in the master
stage and the successive approximation power flow method is used in the slave stage.

3. Methodology of Solution

To solve the complex MINLP model defined by (1)–(11) in this research, we adopted a
recently developed combinatorial optimization method named the Newton metaheuristic
algorithm which was originally proposed in [21] to solve a discrete optimization problem
regarding the optimal design of steel structures. Here, the NMA is used as the master
optimization stage to define the optimal placements and sizes of the PV sources in the AC
distribution network by using a discrete–continuous codification with the form presented
in (12) [13]:

xt
j =

[
2, k , . . . , n | ppv

2 , ppv
k , . . . , ppv

n

]
, (12)

where xt
j is the solution of individual j at iteration t; in addition, the dimension of this

vector is 1× 2Nava
pv and the first Nava

pv is associated with the nodes where the PV sources
will be installed (discrete part of the codification), while its second part is regards their
optimal sizes (continuous part of the codification). The main idea of the NMA is to evolve
the initial population through the solution space by using the same ideas of the Newton
algorithm to solve sets of nonlinear equations and find their roots.
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3.1. Master Stage

The general evolution rule to solve a nonlinear equation f (x) = 0 by starting from the
initial point x0

j with the Newton’s method takes the structure reported in Equation (13) [21]:

xt+1
j = xt

j −
f
(

xt
j

)
f ′
(

xt
j

) , (13)

where f ′
(

xt
j

)
is the derivative of the function evaluated at point xt

j . The main advantage
of this iterative algorithm is that its convergence is quadratic, which implies that in a few
iterations, the searched solution can be found; however, when we try to apply this rule to an
optimization problem, where the objective is to find a local (or global) minimum/maximum,
we know that f ′

(
xt

j

)
= 0. This also implies that the evolution rule (13) is undefined. To deal

with this problem, the authors of [21], proposed the application of the Newton evolution
rule to the derivative of the function f

(
xt

j

)
, i.e., f ′

(
xt

j

)
, that produces a modified evolution

rule defined in (14).

xt+1
j = xt

j −
f ′
(

xt
j

)
f ′′
(

xt
j

) , (14)

where the main challenge is to determine the values of the functions f ′
(

xt
j

)
and f ′′

(
xt

j

)
as

a function of the known value of f
(

xt
j

)
. Note that the value of the f

(
xt

j

)
at each individual

xt
j will be provided by the solution of the power flow problem in the slave stage that will

be subsequently explained herein.
To obtain the value of the derivatives f ′

(
xt

j

)
and f ′′

(
xt

j

)
, we considered that the

distance of the previous and the following solutions with respect to xt
j taking the form

presented in Equations (15) and (16) [21]:

xt
j − xt

j−1 = τ
(

xt
j+1 − xt

j−1

)
, (15)

xt
j+1 − xt

j = (1− τ)
(

xt
j+1 − xt

j−1

)
, (16)

where τ is a positive parameter.
To obtain a relation between function f (x) and its first and second derivatives, the

Taylor’s series expansion was applied, considering its first two terms, which produced the
relation defined in Equation (17):

f (x) = f
(

xt
j

)
+
(

x− xt
j

)
f ′
(

xt
j

)
+

(
x− xt

j

)2

2
f ′′
(

xt
j

)
. (17)

Now, if we define λ as xt
j+1 − xt

j−1, and we also combine Equations (14)–(16), then
the function values at points xt

j+1 and xt
j−1 can be obtained as presented in Equations (18)

and (19):

f
(

xt
j+1

)
= f

(
xt

j

)
+ λ(1− τ) f ′

(
xt

j

)
+

λ2(1− τ)2

2
f ′′
(

xt
j

)
. (18)

f
(

xt
j−1

)
= f

(
xt

j

)
− λτ f ′

(
xt

j

)
+

λ2τ2

2
f ′′
(

xt
j

)
. (19)
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Simultaneously, solving Equations (18) and (19) for f ′
(
xt

i
)

and f ′′
(
xt

i
)

yields Equations (20)
and (21):

f ′
(

xt
j

)
=

τ2 f
(

xt
j+1

)
+ (1− 2τ) f

(
xt

j

)
− (1− τ)2 f

(
xt

j−1

)
τ(1− τ)

(
xt

j+1 − xt
j−1

) . (20)

f ′′
(

xt
j

)
=

2τ f
(

xt
j+1

)
− 2 f

(
xt

j

)
+ 2(1− τ) f

(
xt

j−1

)
τ(1− τ)

(
xt

j+1 − xt
j−1

)2 . (21)

By combining Equations (20) and (21) in Equation (14), the evolution rule of the
Newton metaheuristic algorithm takes the form defined in Equation (22):

xt+1
j = xt

j +
τ2 f
(

xt
j+1

)
+ (1− 2τ) f

(
xt

j

)
− (1− τ)2 f

(
xt

j−1

)
2τ f

(
xt

j+1

)
− 2 f

(
xt

j

)
+ 2(1− τ) f

(
xt

j−1

) (
xt

j−1 − xt
j+1

)
. (22)

Note that the evolution rule presented in (22) depends on the parameter τ which was
defined as recommended in [21] as presented in Equation (23):

τ =

∥∥∥xt
j − xt

j−1

∥∥∥∥∥∥xt
j+1 − xt

j−1

∥∥∥ , (23)

Remark 1. Based on the recommendations of the authors in [21], the evolution rule (22) can
be improved by considering the position of the best optimal solution at the current iteration (i.e.,
xt

best) which generates the evolution rule to explore and exploit the solution space that is defined in
Equation (24).

xt+1
j = xt

j +
t

tmax
r1Γ
(

xt
j−1 − xt

j+1

)
+

(
1− t

tmax

)
r2

(
xt

best − xt
j

)
, (24)

where r1 and r2 are random numbers between 0 and 1, tmax is the maximum number of iterations,
and Γ takes the form presented in Equation (25):

Γ =
τ2 f
(

xt
j+1

)
+ (1− 2τ) f

(
xt

j

)
− (1− τ)2 f

(
xt

j−1

)
2τ f

(
xt

j+1

)
− 2 f

(
xt

j

)
+ 2(1− τ) f

(
xt

j−1

) , (25)

It is worth mentioning that the evaluation of the Γ function requires knowing the
objective function values f

(
xt

j−1

)
, f
(

xt
j

)
, and f

(
xt

j+1

)
, respectively. The evaluation of

these functions were obtained through the slave stage, which is presented below.

3.2. Slave Stage

The slave optimization stage in master–slave optimization algorithms corresponds
to the core (i.e., heart) of the metaheuristic since this explores and exploits the solution
space [22]. In the case of the optimization applied to the electrical networks, the slave
stage is typically associated with the recursive evaluation of the power flow problem for
each individual xt

j . In this research, we employ the power flow approach known as the
successive approximation method initially reported in [23] for AC distribution networks,
with the main advantage that its convergence can be guarantee through the application of
the Banach fixed-point theorem [24].
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The recursive power flow formula to solve power flow problems in AC distribution
networks takes the structure presented in Equation (26) [25]:

Vm+1
d,h = Y−1

dd

[
diag−1

(
V?,m

d,h

)(
S?pv,h − S?d,h

)
−YdsVs,h

]
, (26)

where m represents the counter of iterations, Vd,h is the vector that has all the voltage
variables in the demand nodes in complex form (note that for t = 0, we consider the
plane voltages, i.e., Vt+1

d,h = 1∠0◦). Ydd and Yds are sub-components of the general nodal
admittance matrix that connect the demand and slack nodes among them. S?pv,h is a vector
that contains all the complex power injections in the PV sources (where it is assumed that
they are designed with unity power factor); Vs,h represents the vector with the complex
voltage outputs in the slack sources (i.e., known voltage values). It is worth mentioning
that the operator diag(θ) transforms the vector θ into a diagonal matrix; and θ? is the
complex conjugate value of the vector θ.

The recursive evaluation of the power flow formula (26) ends when the convergence
error is met between two consecutive voltage iterations. This criterion is defined in (27):

max
{∣∣∣∣∣∣Vt+1

d,h

∣∣∣− ∣∣∣Vt
d,h

∣∣∣∣∣∣} ≤ ζ, (27)

where ζ represents the error of convergence which is assigned as 1× 10−10 based on the
recommendation of [24].

Note that the NMA sends the combination of the output powers for the PV sources
with their locations to the slave stage, i.e., S?pv, which are considered inputs for the power
flow formula (26). With this information, the fitness function that guides the exploration
and exploitation process in the master optimization stage is calculated. Note that, to
calculate the annualized energy purchasing costs at the substation buses, all the voltages
provided by the solution of the power flow problem were evaluated in (28), i.e., Vd,h, which
allowing to compute the total slack complex power generation as defined in Equation (28).

S?cg,h = diag
(
V?

s,h

)
[YsdVd,h +YssVs,h]. (28)

The evolution through the solution space for the NMA is guided by the value of
the fitness objective function value, which corresponds to the summation of the objective
function of the studied problem with some penalties associated with the constraints to
ensure the solutions’ feasibility. The proposed fitness function is presented in Equation (29):

z f = Acost + α1 max
h

{
0,
∣∣Vd,h

∣∣− vmax
}
− α2 min

h

{
0,
∣∣Vd,h

∣∣− vmin
}
− α3 min

h

{
0, real

{
S?cg,h

}}
, (29)

where α1, α2, and α are the penalization factors associated with the violation of the voltage’s
regulation bounds, and the non-negativeness requirement of the power generation in the
slack source, respectively. These factors generate adaptive penalty factors defined as a
function of the deviation value regarding the lower and upper voltage bounds in the case
of the voltages, or the magnitude of the violation of the non-negative requirement of the
power output at the substation bus. It is worth mentioning that the fitness function (z f ) is
equal to the objective function when all the constraints in the mathematical model (1)–(11)
are met.

In the case of the upper and lower bounds of the PV generation, these are guaranteed
with the proposed codification generation. In the case that one descending individual xt+1

j
is out of the generation bounds, this is corrected through the rule defined in Equation (30):

xt+1
j,k =

{
xt+1

j,k : xmin
j,k ≤ xt+1

j,k ≤ xmax
j,k

xt+1
j,k : xmin

j,k + r
(

xmax
j,k − xmin

j,k

) (30)
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where r is a random number between 0 and 1, and xmin
j,k , and xmax

j,k are the maximum and
minimum values allowed for the decision variables regarding the location and sizing of
the PV sources.

3.3. General Solution Flow Chart

To summarize the main aspects of the proposed optimization approach based on the
hybridization of the NMA with the successive approximation power flow method for the
optimal locating and sizing of PV sources in AC distribution networks, we present the flow
diagram depicted in Figure 1.

Start: Proposed
methodologyAC network info. Load and PV profiles

Define algorithm
parameter tmax
and set t = 0

Generate the initial
population xt

j .

Solve the recursive
power flow problem.

Calculate the
power output at
the slack sources

Obtain the fitness
function value

Order the population
and select the best

individual xt
best

Evaluation
ends?

End: Analy-
sis of results

Report xt
best

Apply the evo-
lution rule (24)

no

yes

Figure 1. Implementation guide for the proposed optimization approach.

Note that the flow diagram presented in Figure 1 is general and can be applied for
any combinatorial optimization technique that works in a master–slave connection with a
power flow to locate and size renewable generation sources in AC distribution networks.

4. Test Feeders

To validate the effectiveness and robustness of the proposed master–slave optimization
approach to locate and size PV sources based on the NMA, two test feeders composed of 34 and
85 buses were employed. The main characteristics for both test feeders are presented below.
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4.1. IEEE 34-Node Test Feeder

The IEEE 34-node test feeder is an electrical distribution network comprising 34 nodes
and 33 lines with radial structure, where the substation is operated at 11 kV. The inter-
connection among nodes for this test feeder is depicted in Figure 2 [25]. The peak power
consumption in this system is 4636.50 + j2873.50 kVA, which generates 221.75 kW and
65.12 kvar of power losses at the peak hour, respectively.

where F1 and F2 are defined as

F1 ¼ Min ðCostÞ

F2 ¼ MinðPTotal lossÞ
where cost function is defined as

Cost ¼ KiPTotal loss þ
Xn

p¼1

KCQpC ð14Þ

Subjected to the following constraints:
(i) Voltage limits.

Vmin 6 jVpj 6 Vmax ð15Þ
(ii) Reactive power compensation limits.

QpC 6
Xn

p¼1

QLp ð16Þ

Cost function defined in Eq. (14) is divided into two mod-
ules. The first term is cost of real power provided by the sub-

station. This can be reduced by minimizing the total active
power loss of the system and the second term is cost of the
reactive power provided by the capacitors which has been

installed in the system.

4. Proposed work implementation

WOA based approach for placing capacitors optimally in the
network to reduce operating cost and minimizing power losses
by enhancing voltage profile, takes the following steps:

Step 1: Initialize input data such as line impedance and load
power.
Step 2: Calculate total power loss, operating cost and bus

voltages using Forward–Backward sweep method [27].
Step 3: Initialize the number of search agents to be opti-
mized. If the search agents go beyond the boundaries then

bring back to within the boundary by inserting the limits.
Step 4: Initialize the counter.
Step 5: Calculate the fitness function for each search agent
using Eq. (14) and obtain the initial best agent.

Step 6: For each search agent update a, A, C, l and p using
Eqs. (3) and (4), where l and p are random numbers.
Step 7: If (p < 0.5) go to Step 8 otherwise go to Step 10.

Step 8: If |A| < 1, then update the position of current
search agent by using Eq. (2).
Step 9: If |A|P 1, then calculate new search agent and

update its position by using Eq. (6).
Step 10: Update the position of current search agent by
using Eq. (7).

Table 1 Possible sizes of capacitors in kVAr and costs in $/kVAr.

Capacitor size 150 300 450 600 750 900 1050 1200 1350

Cost in $/kVAr 0.5 0.35 0.253 0.220 0.276 0.183 0.228 0.170 0.207

Capacitor size 1500 1650 1800 1950 2100 2250 2400 2550 2700

Cost in $/kVAr 0.201 0.193 0.187 0.211 0.176 0.197 0.170 0.189 0.187

Capacitor size 2850 3000 3150 3300 3450 3600 3750 3900 4050

Cost in $/kVAr 0.183 0.180 0.195 0.174 0.188 0.170 0.183 0.182 0.179

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12

17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34

Figure 4 IEEE-34 bus radial distribution test system.

Table 2 Simulation results of 34-bus system.

Base case PSO[14] MINLP[16] PGS[13] BFOA[10] Proposed

Optimal size (bus) – 300 (4)

600 (10) 640 (25)

781 (19) 100 (14) 1200 (19) 625 (10) 665 (10)

803 (22) 500 (18) 639 (22) 940 (20) 590 (17)

479 (20) 300 (22) 200 (20) 610 (25) 619 (20)

1000 (27)

Total size of capacitors (kVAr) – 2063 2800 2039 2175 2514

Ploss (kW) 221.67 168.87 163.21 169.12 160.95 159.47

% Reduction in Ploss – 23.82 26.37 23.71 27.40 28.06

Qloss (kVAr) 65.1 48.91 47.39 48.97 47.22 46.75

% Reduction in Qloss – 24.87 27.20 24.78 27.46 28.19

Vmin (pu) 0.9417 0.9496 0.9521 0.9492 0.9499 0.9504

Total operating cost/year ($) 1,35,928 1,03,946 1,00,810 1,04,155 99,250 98,448

Savings/year ($) – 31,982 35,118 31,773 36,678 37,480

% Savings/year – 23.53 25.83 23.37 26.98 27.57

502 D.B. Prakash, C. Lakshminarayana

Figure 2. General interconnection among nodes in the IEEE 34-node test feeder.

The information concerning branch parameters and load consumptions for the IEEE
34-node test feeder were reported in Table 1. In all the computational validations, 11 kV
and 1000 kVA were considered as voltage and power bases for this system, respectively.

Table 1. IEEE 34-node test feeder parameters.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.1170 0.0480 230 142.5 18 19 0.2079 0.0473 230 142.5
2 3 0.1073 0.0440 0 0 19 20 0.1890 0.0430 230 142.5
3 4 0.1645 0.0457 230 142.5 20 21 0.1890 0.0430 230 142.5
4 5 0.1495 0.0415 230 142.5 21 22 0.2620 0.0450 230 142.5
5 6 0.1495 0.0415 0 0 22 23 0.2620 0.0450 230 142.5
6 7 0.3144 0.0540 0 0 23 24 0.3144 0.0540 230 142.5
7 8 0.2096 0.0360 230 142.5 24 25 0.2096 0.0360 230 142.5
8 9 0.3144 0.0540 230 142.5 25 26 0.1310 0.0225 230 142.5
9 10 0.2096 0.0360 0 0 26 27 0.1048 0.0180 137 85
10 11 0.1310 0.0225 230 142.5 7 28 0.1572 0.0270 75 48
11 12 0.1048 0.0180 137 84 28 29 0.1572 0.0270 75 48
3 13 0.1572 0.0270 72 45 29 30 0.1572 0.0270 75 48
13 14 0.2096 0.0360 72 45 10 31 0.1572 0.0270 57 34.5
14 15 0.1048 0.0180 72 45 31 32 0.2096 0.0360 57 34.5
15 16 0.0524 0.0090 13.5 7.5 32 33 0.1572 0.0270 57 34.5
6 17 0.1794 0.0498 230 142.5 33 34 0.1048 0.0180 57 34.5
17 18 0.1645 0.0457 230 142.5 — — — — — —

4.2. IEEE 85-Node Test Feeder

The IEEE 85-bus system has a radial medium-voltage distribution network composed
of 85 nodes and 85 lines, operated with 11 kV. The total active and reactive power demand
for this system is 2570.28 + j2622.20 kVA. The electrical configuration of this system is
provided in Figure 3, and all its parametric information was taken from [26], which is given
in Table 2.
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5.2. IEEE-85 bus system

Single line diagram of the system is shown in Fig. 9 and the
system data are listed in Table A2, in appendix. The base val-

ues are considered as 100 MVA and 11 kV. The total real and

reactive power loss for the base case is computed using
MATLAB and losses are found to be 316.12 kW and
198.6 kVAr respectively, Operating cost is 1,93,845 $/kWh
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Figure 9 IEEE-85 bus radial distribution test system.
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Figure 10 Bus voltages at each bus after compensation by different techniques for 85-bus test system.

Optimal siting of capacitors in radial distribution network 505

Figure 3. General interconnection among nodes in the IEEE 85-node test feeder.

Table 2. IEEE 85-node test feeder parameters

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.108 0.075 0 0 34 44 1.002 0.416 35.28 35.99
2 3 0.163 0.112 0 0 44 45 0.911 0.378 35.28 35.99
3 4 0.217 0.149 56 57.13 45 46 0.911 0.378 35.28 35.99
4 5 0.108 0.074 0 0 46 47 0.546 0.226 14 14.28
5 6 0.435 0.298 35.28 35.99 35 48 0.637 0.264 0 0
6 7 0.272 0.186 0 0 48 49 0.182 0.075 0 0
7 8 1.197 0.820 35.28 35.99 49 50 0.364 0.151 36.28 37.01
8 9 0.108 0.074 0 0 50 51 0.455 0.189 56 57.13
9 10 0.598 0.410 0 0 48 52 1.366 0.567 0 0
10 11 0.544 0.373 56 57.13 52 53 0.455 0.189 35.28 35.99
11 12 0.544 0.373 0 0 53 54 0.546 0.226 56 57.13
12 13 0.598 0.410 0 0 52 55 0.546 0.226 56 57.13
13 14 0.272 0.186 35.28 35.99 49 56 0.546 0.226 14 14.28
14 15 0.326 0.223 35.28 35.99 9 57 0.273 0.113 56 57.13
2 16 0.728 0.302 35.28 35.99 57 58 0.819 0.340 0 0
3 17 0.455 0.189 112 114.26 58 59 0.182 0.075 56 57.13
5 18 0.820 0.340 56 57.13 58 60 0.546 0.226 56 57.13
18 19 0.637 0.264 56 57.13 60 61 0.728 0.302 56 57.13
19 20 0.455 0.189 35.28 35.99 61 62 1.002 0.415 56 57.13
20 21 0.819 0.340 35.28 35.99 60 63 0.182 0.075 14 14.28
21 22 1.548 0.642 35.28 35.99 63 64 0.728 0.302 0 0
19 23 0.182 0.075 56 57.13 64 65 0.182 0.075 0 0
7 24 0.910 0.378 35.28 35.99 65 66 0.182 0.075 56 57.13
8 25 0.455 0.189 35.28 35.99 64 67 0.455 0.189 0 0
25 26 0.364 0.151 56 57.13 67 68 0.910 0.378 0 0
26 27 0.546 0.226 0 0 68 69 1.092 0.453 56 57.13
27 28 0.273 0.113 56 57.13 69 70 0.455 0.189 0 0
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Table 2. Cont.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

28 29 0.546 0.226 0 0 70 71 0.546 0.226 35.28 35.99
29 30 0.546 0.226 35.28 35.99 67 72 0.182 0.075 56 57.13
30 31 0.273 0.113 35.28 35.99 68 73 1.184 0.491 0 0
31 32 0.182 0.075 0 0 73 74 0.273 0.113 56 57.13
32 33 0.182 0.075 14 14.28 73 75 1.002 0.416 35.28 35.99
33 34 0.819 0.340 0 0 70 76 0.546 0.226 56 57.13
34 35 0.637 0.264 0 0 65 77 0.091 0.037 14 14.28
35 36 0.182 0.075 35.28 35.99 10 78 0.637 0.264 56 57.13
26 37 0.364 0.151 56 57.13 67 79 0.546 0.226 35.28 35.99
27 38 1.002 0.416 56 57.13 12 80 0.728 0.302 56 57.13
29 39 0.546 0.226 56 57.13 80 81 0.364 0.151 0 0
32 40 0.455 0.189 35.28 35.99 81 82 0.091 0.037 56 57.13
40 41 1.002 0.416 0 0 81 83 1.092 0.453 35.28 35.99
41 42 0.273 0.113 35.28 35.99 83 84 1.002 0.416 14 14.28
41 43 0.455 0.189 35.28 35.99 13 85 0.819 0.340 35.28 35.99

The same voltage and power bases used for the IEEE 34-node test system were
considered in the IEEE 85-node test feeder. Note that the total apparent power losses for
the peak load condition in this test feeder are approximately 316.12 + j198.60 kVA [27].

4.3. PV Curve and Objective Function Parametrization

The evaluation of the proposed optimization approach uses as the PV generation curve
a typical 24 h curve reported in [22] for the city of Medellín in Colombia. The generation
and demand curves are depicted in Figure 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.01

Time (h)

D
em

an
d/

So
la

r
cu

rv
es

(p
.u

) Demand Solar

Figure 4. Solar generation and demand curves typical for the city of Medellín, Colombia.

The calculation of the objective function value was made by using the parameters
reported in Table 3. Some of the parameters reported in this table were adapted from
references [8,28], respectively.

Table 3. Parametrization of the objective and fitness functions.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % te 2 %
Nt 20 years ∆h 1 h

CPV 1036.49 USD/kWp CO&M 0.0019 USD/kWh
ppv,max

i 2400 kW ppv,min
i 0 kW

Nava
pv 3 — ∆V ±10 %

α1 100× 103 USD/V α2 100× 103 USD/V
α3 100× 103 USD/W — — —
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In the case of the NMA, we considered a population with 10 individuals, 1000 itera-
tions and 100 repetitions.

5. Numerical Validation and Discussion

To compare our proposed master–slave optimization approach based on the hybridiza-
tion of the NMA with the successive approximation power flow method, we employed the
GAMS software and the solver BONMIN to resolve the exact MINLP model (1)–(11) and a
discrete–continuous version of the Chu and Beasley genetic algorithm (i.e., DCCBGA). The
implementation of our proposed methods was in the MATLAB programming environment
using own scripts. In the case of MATLAB implementations, its 2021b version was used
on a PC with an AMD Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM, running on a
64-bit version of Microsoft Windows 10 single language. It is worth mentioning that to
confirm that the GAMS and MATLAB models were complete equivalents, the benchmark
cases were evaluated in both software, which provides the same operative costs when no
PV sources are installed.

Note that Figure 5 illustrates the general implementation of the proposed NMA
combined with the successive approximation power flow method in the MATLAB pro-
gramming environment.

Individual Codification Fitness function

X1 [3 5 8 0.25 0.75 1.14] 1255010

X2 [33 14 188 0.55 0.52 1.25] 1753600

X3 [19 25 29 1.15 0.89 1.05] 1823400

X4 [13 28 30 0.65 1.55 1.96] 1465894

Evaluation of the 

derivatives

Evolution criteria

Evaluation of the 

fitness function

Power flow solution: 

fitness function 

calculation

Population 

updating

NEWTON METAHEURISTIC ALGORITHM

Eq. (24) with 

revision using Eq.

(30)

Figure 5. Implementation of the proposed methodology in the MATLAB programming environment.

In the general algorithm implementation presented in Figure 5, it is worth mentioning
that all the system data are previously charged with the information of the test feeders as
well as the generation and demand curves since these are input data that are required in
the power flow solution and the algorithm evolution though the solution space (as can be
seen in flow diagram in Figure 1).

5.1. Results in the IEEE 34-Node Test Feeder

Table 4 presents the numerical results provided by the BONMIN solver in the GAMS
optimizer, the comparative DCCBGA, and the solution reached by the proposed NMA in
the IEEE 34-node test feeder.

The numerical results in Table 4 show that: (i) the proposed NMA finds the best
objective function value with an objective function value of USD 3,354,676.16/year which
corresponds to a reduction of 26.89% with respect to the benchmark case, while the best
solution reached by the DCCBGA is USD 35/year more expensive; (ii) the small differences
between the solutions of the NMA and DCCBGA are mainly related to the nodes selected
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for the location of the PV sources since nodes 10 and 24 in the NMA are replaced by
neighborhood nodes 11 and 25 in the DCCBGA case; and (iii) the total power injections
in the peak load cases are 4483.45 kW for the BONMIN solver, 4460.58 kW for the NMA,
and 4460.52 kW for the NMA; this implies that with similar levels of power injections, the
NMA finds a better set of nodes to locate all the generators owing to the objective function
which is minimum for this algorithm when compared with the DCCBGA and the BONMIN
solver, respectively.

Table 4. Optimal locations and sizes provided by the GAMS and the proposed approach in the IEEE 34-bus system.

Method Site (Node) Size (kW) Acost (USD/Year) z1 (USD/Year) z2 (USD/Year)

Bench. case — — 4,588,283.80 4,588,283.80 0
BONMIN {26, 27, 34} {2400, 747.45, 1336.00} 3,355,261.86 2,788,935.98 566,325.88
DCCBGA {11, 23, 25} {1055.54, 1347.95, 2057.09} 3,354,711.16 2,791,274.19 563,436.97

NMA {10, 23, 24} {994.25, 1409.42, 2056.85} 3,354,676.16 2,791,246.03 563,430.13

An important fact when the DCCBGA and the NMA are applied to solve the studied
problem is that the former algorithm finds 11 solutions with the better objective function
than the BONMIN solver, and the proposed NMA finds 12 additional solutions with better
numerical performance with regard to the exact solver. This is particularly important since
having multiple options for the location and sizing of the PV sources in the AC distribution
network allows the utility to select the most adequate solution as a function of its grid
needs and intervention possibilities.

To ensure that all the voltages are between their assigned regulation bounds, in
Figure 6,the maximum and minimum voltage magnitudes experienced in the IEEE 34-node
test feeder along the operation day are presented, where all the voltage magnitudes are
contained in all the nodes of this AC grid.
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Figure 6. Minimum and maximum voltage magnitudes in the IEEE 34-node test feeder when the NMA solution is
implemented.

The main result in Figure 6 is that for all the periods of time, all the voltages are
between the assigned regulation bound, i.e., ±10%. In the worst case, hours 20 and 21, the
active power injection in the PV sources is zero and the demand is maximum, the minimum
voltage is 0.9417 pu; while in the period of time when the active power injections in the
PV sources are maximum (hour 14), the maximum voltage in the grid has a magnitude of
1.0197 pu.

5.2. Results in the IEEE 85-Node Test Feeder

Table 4 presents best numerical results reached by the DCCBGA and the proposed
NMA. It is worth mentioning that the BONMIN solvers do not converge to any solution
for the IEEE 85-bus system.
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The numerical results in Table 5 show that both algorithms present a very similar
performance with respect to the final objective function value with a small difference of
USD 48.02 per year of operation. In the case of the DCCBGA, 2594.03 kW of PV power are
installed and the NMA installs 2598.44 KW of PV generation, i.e., a difference lower than
4.50 kW. However, the main difference lies in the nodes selected by each algorithm. These
differences regarding nodes can be attributed to the fact that for the studied problem, the
multi-period nature of the optimal power flow solution with PV sources can have multiple
near-optimal solutions, i.e., different combinations of nodes with pretty similar objective
function values.

Table 5. Optimal locations and sizes provided by the GAMS and the proposed approach in the IEEE 34-bus system.

Method Site (Node) Size (kW) ACost (USD/Year) z1 (USD/Year) z2 (USD/Year)

Bench. case — — 2,686,114.05 2,686,114.05 0
DCCBGA {47, 48, 68} {260.33, 1165.68, 1168.02} 1,944,779.15 1,617,114.52 327,664.63

NMA {35, 67, 71} {1631.31, 463.33, 503.80} 1,944,731.13 1,616,509.04 328,222.09

On the other hand, Figure 7 presents the maximum and minimum voltage values for
all the nodes in the IEEE 85-bus system for the solution provided by the NMA. Note that
in the periods of time between 2020 and 2021 when the demand was maximum and the
PV generation was zero, the voltage profiles of the network had a minimum of 0.87131 pu,
which is a normal operative condition for this system [27] due to the fact that the only
source in this period of time is the slack source.
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Figure 7. Minimum and maximum voltage magnitudes in the IEEE 85-node test feeder when the NMA solution is
implemented.

Note that in the periods of time where the PV generation is prominent, i.e., 10 and
16 h, the voltage profile improves significantly, with respect to the benchmark voltage
case; however, when no PV generation is available, the minimum voltage is equal to the
benchmark case which is an expected behavior for this PV applications without batteries.

5.3. Additional Results

To observe the effect of the PV generation in the slack power source, we plotted the
output power in the slack source for the benchmark case and the solution provided for the
proposed NMA in both test feeders in Figure 8.
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Figure 8. Slack generation output in the benchmark case and with the solution provided by the NMA: (a) IEEE 34-node test
feeder; and (b) IEEE 85-bus system.

The behavior of the power generation as expected in the benchmark case follows the
total power demand curves added to the terminals of the substation; however, when the
PV generation was installed, we found the typical duck curve that decreases the power
requirements in the slack node until zero when the PV generation is maximum. Note that
the optimal solution provided by the NMA algorithm ensures that the total power in the
slack source is always positive or zero, since our proposed model does not consider the
possibility of selling energy to the sub-transmission system.

6. Conclusions and Future Works

The problem of the optimal sizing of PV sources in AC distribution networks was
addressed in this research through the application of a master–slave optimization approach.
In the master stage, the NMA was implemented which was entrusted to determine the
nodes where the PV sources must be located and their corresponding sizes using discrete–
continuous codification, where the discrete component was associated with the nodes
and the continuous part with the assigned PV sizes; in the slave stage, each combination
provided by the NMA was evaluated using the successive approximation power flow
approach. Numerical results in the IEEE 34- and IEEE 85-bus systems demonstrated that
the proposed NMA reaches better numerical results than the classical CBGA using the
same codification and an exact solver in GAMS; in addition, for the IEEE 85-node test
feeder, the exact approach with the BONMIN solver did not converge towards any feasible
solution. The proposed NMA reaches reductions of approximately 26.89% and 27.60%
regarding the benchmark cases for the IEEE 34- and IEEE 85-node test feeders. Differences
with respect to the DCCBGA were less than USD 50 per year in both test feeders, even if
these differences are small, these confirm that the proposed approach is better regarding
the final objective function value with the main advantage that minimum parameters are
required in its tuning when compared with the DCCBGA.
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Even if the proposed optimization algorithm is general regarding the optimal sizing
and location of the PV sources, an interesting research work that can be derived would
be that of evaluating multiple PV generation curves—especially for countries (regions)
that present high variations on the weather conditions as is the case of the four seasons.
This will be an important analysis since the expected annual reductions in the total grid
operational costs will be drastically reduced when PV generation availability becomes
lower than 50% of their nominal capacities for long periods of time. Additional future
works would be: (i) the application of the NMA to determine the optimal location and size
of the distribution static compensators and capacitor banks in distribution networks; and
(ii) the extension of the proposed algorithm to the simultaneous combination of renewable
generation based on wind power and PV sources including reactive power compensation.
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