Results Math (2022) 77:2

© 2021 The Author(s), under exclusive licence to
Springer Nature Switzerland AG
1422-6383/22/010001-30

published online November 2, 2021
https://doi.org/10.1007/s00025-021-01513-3

I Results in Mathematics

®

Check for
updates

Genericity of Continuous Maps with
Positive Metric Mean Dimension

Jeovanny Muentes Acevedo

Abstract. M. Gromov introduced the mean dimension for a continuous
map in the late 1990’s, which is an invariant under topological conju-
gacy. On the other hand, the notion of metric mean dimension for a dy-
namical system was introduced by Lindenstrauss and Weiss in 2000 and
this refines the topological entropy for dynamical systems with infinite
topological entropy. In this paper we will show if IV is an n dimensional
compact riemannian manifold then, for any a € [0, n], the set consisting
of continuous maps with metric mean dimension equal to a is dense in
C°(N) and for a = n this set is residual. Furthermore, we prove some
results related to the existence and, density of continuous maps, defined
on Cantor sets, with positive metric mean dimension and also continous
maps, defined on product spaces, with positive mean dimension.
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1. Introduction

Let X be a compact metric space with metric d. The notion of mean di-
mension for a topological dynamical system (X, ¢), which will be denoted by
mdim(X, ¢), was introduced by M. Gromov in [9]. It is another invariant under
topological conjugacy. Applications and properties of the mean dimension can
be found in [10,11,14-17].

Lindestrauss and Weiss in [15], introduced the notion of metric mean
dimension for any continuous map ¢ on X. This notion depends on the metric
d on X (consequently it is not an invariant under topological conjugacy) and

W Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-021-01513-3&domain=pdf
http://orcid.org/0000-0001-7419-482X

2 Page 2 of 30 J. M. Acevedo Results Math

it is zero for any map with finite topological entropy (see [15,16,20]). Some
well-known properties of the topological entropy are valid for both the mean
dimension and the metric mean dimension. We will study the veracity of other
fundamental and topological properties for the metric mean dimension.

In the next Section we will present the definitions of lower metric mean
dimension and upper metric mean dimension of a dynamical system (X, d, ¢),
which will be denoted by mdimy,(X,d, ¢) and mdimy (X, d, ¢), respectively.
The definition of the mean dimension mdim(X, ¢) can be found in [15].

In Section 3 we will show the following properties of the metric mean
dimension:

e It is well-known the metric mean dimension is not an invariant under
topological conjugacy. In Remark 3.2 we will present an example of a
path of topologically conjugate continuous maps with different metric
mean dimension.

e Misiurewicz in [18] proved if ¢ has an s-horseshoe with s > 2, then
hiop(¢) > logs. In Theorem 3.3 we present a formula for the metric
mean dimension related to the presence of horseshoes for a certain class
of continuous maps on the interval. This formula allows us to provide
an expression for the metric mean dimension of the compositions of a
continuous map (see Corollary 3.4).

eIfp: X - X and ¢ : Y — Y are continuous maps (Y is a metric
space with metric d’) we have hyop(¢ X V) = hiop(P) + hiop(10). This
equality is not always valid for the (metric) mean dimension (see Ex-
ample 3.8). For the mean dimension we have mdim(X x Y, ¢ x ¢) <
mdim(X, ¢) + mdim(Y,v) (see [15], Proposition 2.8). This inequality
can be strict (see [21], Example 1.2). In Theorem 3.7 we will present
lower and upper bounds for both mdimy (X x Y,d x d',¢ x ¢) and
mdim (X x Y,d x d', ¢ x ).

Let N be a compact riemannian manifold with n = dim(N). Yano in [24]
showed if n > 2, then set consisting of homeomophisms on N whose topological
entropy is infinite is a residual subset of Hom(N). In [4], the authors proved
if n > 2, then the set consisting of homeomorphisms with upper metric mean
dimension equal to n is residual in Hom(N). In Section 4 we will show for
any a € [0,n] the set consisting of continuous maps with lower and upper
metric mean dimension equal to a is dense in C°(N) (see Theorems 4.1 and
4.5). Furthermore, the set consisting of continuous maps with upper metric
mean dimension equal to n is residual (see Theorem 4.6). From these results
we have the metric mean dimension map is not continuous anywhere on the
set consisting of continuous maps defined on manifolds (see Corollaries 4.7 and
4.8).

In Section 5 we will show the existence of continuous maps on Cantor sets
with positive metric mean dimension (see Proposition 5.1). Bobok and Zin-
dulka in [3] shown the existence of homeomorphisms, defined on uncountable
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compact metrizable spaces with topological dimension equal to zero, with in-
finite topological entropy. We will use these techniques in order to prove there
exist continuous maps on the Cantor set with positive metric mean dimension
(see Proposition 5.1) and furthermore the density of these maps (see Theo-
rem 5.3). Block, in [2], proved the topological entropy map is not continuous
anywhere on the set consisting of continuous map on Cantor sets. This fact
also holds for the metric mean dimension map (see Theorem 5.5). We will fin-
ish this work showing some results related to the density of continuous maps,
defined on product spaces, with positive mean dimension (see Theorem 5.7).

2. Mean Dimension and Metric Mean Dimension

Let a be a finite open cover of a compact topological space X. Set

ord(a) = su 1y(x) — 1 and D(a) = minord((3),
(@)= sup 3 10(0) () = pinord(9)

where 1y is the indicator function and § > « means that g is a finite open
cover of X finer than «. Recall that for a topological space X, the topological
dimension is defined as

dim(X) = sup D(«),

where « runs over all finite open covers of X. For any continuous map ¢ : X —
X, define

ag t=a V(¢ @) V(672 (a) V-V (6T ().
Definition 2.1. The mean dimension of ¢ : X — X is defined to be

D n—1
mdim (X, ¢) = sup lim M

o Mn—oo n

)
where « runs over all finite open covers of X.

If dim(X) < oo, then mdim(X,¢) = 0 (see [15]). Furthermore, in [15],
Proposition 3.1, is proved that mdim(X%,0) < dim(X), where o is the shift
map on X2,

Let X be a compact metric space endowed with a metricd and ¢ : X — X

a continuous map. For any non-negative integer n we define d, : X x X —
[0, 00) by

dy(2,y) = max{d(z,y), d((x), 6(y)), .., d(6" " (x), 0" (y))}.
Fix e > 0. We say that A C X is an (n, ¢,e)-separated set if d,(z,y) > e,
for any two distinct points z,y € A. We denote by sep(n, ¢,e) the maximal
cardinality of an (n, ¢,¢)-separated subset of X. We say that E C X is an
(n, @, e)-spanning set for X if for any « € X there exists y € E such that
dn(x,y) < e. Let span(n, ¢,e) be the minimum cardinality of any (n,¢,¢)-
spanning subset of X. Given an open cover a, we say that « is an (n, ¢, £)-cover
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of X if the d,,-diameter of any element of « is less than . Let cov(n, ¢, ) be
the minimum number of elements in any (n, ¢, €)-cover of X. Set

e sep(op,e) = lim sup% log sep(n, ¢, €);

n—oo
e span(¢, &) = lim Sup% log span(n, ¢, €);
n—oo
e cov(¢p,e) = lim sup% log cov(n, ¢,¢).
n—oo

Definition 2.2. The topological entropy of (X, ¢,d) is defined by
hiop(¢) = lim sep(¢,e) = lim span(¢,e) = lim cov(¢, ¢).
e—0 e—0 e—0

Definition 2.3. The lower metric mean dimension and the upper metric mean
dimension of (X,d, ¢) are defined by

mdimy (X, d, ¢) = lim inf S22 _ jin i PAUGE) gy o p COVBE)
=0 |loge| =0 |loge| e=0  [loge|

mdimy (X, d, ¢) = limsup sep(@,€) = lim sup span(¢ €) = lim sup cov(6,€) )
-0 |loge| c—0  |loge]l c—0 |loge]

respectively.

Remark 2.4. Throughout the paper, we will omit the underline and the over-
line on the notations mdim,,; and mdimy; when a result be valid for both cases,
that is, we will use mdimy; for the both cases.

3. Some Fundamental Properties

One of the most important properties of the topological entropy is that it is an
invariant under topological conjugacy. Mean dimension is an invariant under
topological conjugacy (see [15]). It is well-known the metric mean dimension
for continuous maps depends on the metric d on X. Consequently, it is not
an invariant under topological conjugacy between dynamical systems. In the
next example we will show that we can find paths of continuous maps that are
topologically conjugate and have different metric mean dimension.

Ezample 3.1. Fix r € (0,00). Set ap = 0 and a,, = Z?:_Ol 3% for n > 1, where
C=—L1 =3=1 Foreachn>0,let T}, : I, := [an, ant1] — [0,1] be the

i=0 gir 3"
unique inc;easing affine map from I,, onto [0, 1].
For s € N, set ¢, : [0,1] — [0,1], given by ¢, |7, = Ty ' 0 g*" D o T,
for any n > 0, where g : [0, 1] — [0, 1], is defined by = — |1 — |3z —1|| (see Fig.
1). We will prove that

mdimy ([0, 1], ] - |, ¢s.r) = fj-s for any s € N.
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FIGURE 1. Graphs of g, g%, ¢°

Take any € € (0,1). For any k > 1 set g = 33‘(%1) = 3k(7‘fs)+sa where |I;| =

ak+1 — ag. There exists some k > 1 such that e € [ex, ex—1]. Note that

€x—1) for any n > 1.

Sep(”) ¢s,7'7 6) Z Sep(n7 ¢S,r7 8k—l) Z Sep(na d)s,r
From Lemma 6 in [22] it follows that for any n > 1 we have
3sk

n
33k
sep(n, Gs rlre_ 1y Ek—1) > (2> and hence  sep(¢s ., ) > log (2> .

Thus

S,Ty 1 3Sk
mdimy; ([0, 1], |- |, o) = lim inf SP(GerE) 5y, 108

0" T loge] ks Tlogex|
- log3* s
T e log 3k(r+s)+s 4 5
s(k+1)log 3

On the other hand, note that =T (r4s5)55) log3=Tog C T+§ as k — oo.

Hence, for any d > 0 there exists kg > 1 such that for any k > ky we have
k+1) log 3
((k—l)(:-(;-;);?s)oligg—logc < ;35 +0. Hence, suppose that ¢ is small enough such
that € < eg,—1. Let k > ko such that ¢ € [ef,ex_1]. For each 0 < j < k,
35(j+1)n|1j|

dividing each I; into sub-intervals with the same length, we have
the set consisting of the end points of these sub- intervals is an (n, ¢, €)-
spanning set (see [5], Corollary 7.2). Hence, if Y}, = U] olj, for every n > 1
we have &

k
3S(J+1)n I;
span(n, s rly,,€) < Z 14| < Z
=0

j=
i sn(]+l)35(k+l)3kr

j=

3s(]+1)n|I | 33(]+1>7L3$(k+1)‘]j|
[T

[=}

=0

(k + 1)35(k+1)n3s(k+1)+kr.

(=)

Hence
s(k+1)nqs(k+1)+kr
panDurlyin©) o dog(k + 13" 1
| loge n—oo n|logep_1|
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— limsup s(k+1)log3
nooo |((k—1)(r+s)+s)log3 —logC]
B s(k+1)log3 < S
(k—=1)(r+s)+s)logd —logC ~s+r
This fact implies that for any § > 0 we have

+ 0.

mdimy ([0, 1], ] - |, és.r) < T%S +6 and hence mdimy([0,1],] - |, és.r)

s
<
r+s
The above facts proves mdimy ([0, 1], | - |, ¢s,) = 35-
Note for each s > 1 and r € (0,1) we have
Qbs,r = Qbiq,r- (3'1)

Hence, in this case we have

mdimM([Ov 1]) | ’ |v (Z)i,r)
di 0,1],] -
- . s mdim (0,1, | -], $1.r) for each s € N.
r+s mdimy([0,1],]-],¢1-)(s+1)—1
Remark 3.2. Let 71 > 0 and ro > 0. For each n > 1, take I'' and I;? the
intervals obtained as in the Example 3.1, for r; and rs, respectively. Fix s > 1
and let ¢4, and ¢, ,, be the continuous maps defined above for r; and ra,
respectively. Note that, for each n > 0, @5, ;1 and ¢ ., |2 are topologically
conjugate by a continuous map hy, : IN' — I]2:

¢s,r1|121 = h’:Ll o ¢87T2|I7§2 0 hy.

Therefore, ¢5,, and ¢, ., are topologically conjugate by h : I — I given by

h|y = hy for each n > 0. This fact proves, for each s € N, A; = {¢s :
r € (0,00)} is a path of topologically conjugate continuous maps such that
mdimwm ([0, 1], | - |, ¢s,r) = ;2 for each r € (0, 00).

An s-horseshoe for ¢ : [0,1] — [0,1] is an interval J C [0, 1] which has
a partition into s subintervals Ji, ..., Js such that J7? N J7 = () for i # j and
J C ¢(J;) foreachi=1,...,s.

If g is the map defined in Example 3.1, we have I = [0, 1] is an 3-horseshoe
for g. Furthermore, for n > 0, each I,, can be divided into 3*("*1) closed

intervals with the same length I}, ..., I;O’LS("H), such that

¢s,(IL) =1, foreachiec{1,..., 3"V},

Consequently, each I,, is a 3°(»*1)_horseshoe for s

Misiurewicz in [18], proved if ¢ has an s-horseshoe with s > 2, then
hiop(¢) > logs. Suppose for each k € N there exists an sg-horseshoe for
¢ € C°([0,1)), Ij, = [ak—1,ax] C [0,1], consisting of sub-intervals I}, IZ, ..., I;*
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with the same length, where s > 2 for all k¥ > 1. From Lemma 6 in [22] we

can prove that (see Example 3.1)

mdimy ([0, 1], ] - |, ¢) > limsup

k—oo |] —

AR (3.2)

log sy

Next theorem provides upper bounds for the lower metric mean dimen-
sion.

Theorem 3.3. Suppose for each k € N there exists a si-horseshoe for ¢ €
C°([0,1]), Iy = [ak—1,ax] C [0,1], consisting of sub-intervals with the same

length I}, IZ, . .. SR and [0,1] = U2 I, We can rearrange the intervals and
suppose that 2 < s, < spy1 for each k. If each QS\I;C Il — Iy, is a bijective
affine map for all k andi=1,...,s, we have

i. mdimy ([0,1], |- [, ¢) < 11}5&ng~

it. If the limitklin;o@ exists, then mdimy ([0, 1], -], (b):lem HTI'Z‘

Proof. Let k; be a strictly increasing sequence of positive integers such that
1 ) 1

a:=liminf——— = lim ———.
k00 log |1 | i—oo |1 _ log|lk,]
L=3 L—=3
0g Sk 08 Sk;
For any 0 > 0, there exists kg such that if, k; > kg, then ﬁ < a+9.
' - logsk’L, ‘
For any k; > ko, set e, = u’“ |, For each 1 < j < k;, dividing each I; into

s, . .
sl sub-intervals with the same length, we have the set consisting of the end

"1

points of these sub-intervals is an (n, ¢|1;, e, )-spanning set (see [5], Corollary
7.2). Hence, if Yy, = UJ 115, for every n > 1 we have

span(n, ¢y, ,ex,;) < Z 57 Z ;k !

j=1 i

Thus

k; 521‘17‘
span(@lvi en) oo 108 s ]

<a+d

n— oo ﬂ|10g3k1 _log“[sz - ‘1 —

log Sk
This fact implies that for any § > 0 we have
mdimy,([0,1],] - ],¢) <a+d and hence mdimy,([0,1],]],¢) < a,

which proves i.
Next, we will prove ii. From (3.2) we have

mdimy, ([0,1],]-],¢) < ILOOW
log s
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We can prove that for any § > 0 there exists kg such that for any k > kg we
have
span(¢|y,, ) - span(¢|y,, €) - log sy, _ 1
|loge| = |logex| ~ |logsk — log |Ix|| ’1 _ log|Iy]

log sy

<a-+4,

for any € > 0 small enough such that ¢ < ¢ (see Example 3.1). Hence

— . 1
mdimy ([0, 1],] - |, @) < kh—{roloTuﬂ.
1 - log sk
The equality follows from (3.3). O

It is well-known that for any continuous map ¢ : X — X and s € N we
have

and this inequality can be strict. Next corollary, which follows directly from
Theorem 3.3, provides a formula for the metric mean dimension of the com-
positions of a map satisfying the conditions of the theorem.

Corollary 3.4. If ¢ is a map which satisfies the properties of Theorem 3.3 then
for any s € N we have

mdimM([Ov 1]a | ! |v¢s) > limsup 1oz|1k\ and mM([Ov Hv' : |v¢s)
k—o0 T Tog sy,
< B e
. . . 1 . - 1. .
If the limit klingow exists, then mdimy([0,1],] -], ¢%) = kllngom.

log sy, log s,

Note that in Example 3.1, for each map ¢, we have

m log [I| m log 3*" T
k—oo log sy k—oolog 3s(k+1) g

Ezample 3.5. Set ag = 0 and a, = Y i, % for n > 1. Set I, := [an—1,an]
for any n > 1. Let ¢ € C9([0,1]) be defined by ¢|;, = T,; ! 0 g" o T}, for any
n > 1, where T, and g are as in Example 3.1 (see Example 3.4 in [20]). For
©*, with s € N, we have s, = 3°* for each k € N. Therefore,
log |[Iy| i log k?
k—o0 logsk - k—>0010g35k
It is follows from Theorem 3.3 that

(0} = [
S

=0 forany s € N.

=1 forany s e N.

log sk

The equality mdimy,([0,1],] - |,¢®) = 1 can be proved as in Example 3.1.
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Ezample 3.6. Take I,, = [ap—_1,a,] as in the above example. Divide each in-
terval I,, into 2n + 1 sub-intervals with the same lenght, I, ..., I?"*1 For
k=1,3,....2n+ 1, let z/)|1§ : I,"f — I,, be the unique increasing affine map
from I* onto I,, and for k = 2,4,...,2n, let WIL" : I¥ — I, be the unique de-
creasing affine map from I¥ onto I,,. For °, with s € N, we have |I;,| = #
and s, = (2k + 1)® for each k € N. Therefore,

. log |Ix] . log k2 2
lim = —lim—2 ==
k—oo log sk k—oolog(2k + 1)° s
It follows from Theorem 3.3 that
— s 1 1 s
mdimy ([0, 1],] - |,2°) = klir&‘l Ll 542 for any s € N.
log sy

The equality mdimy, ([0, 1], |- [,%*) = ;35 can be proved as in Example 3.1.

Take ¢ : X — X and ¢ : Y — Y where Y is a compact metric space with
metric d’. On X x Y we consider the metric

(dx d)((x1,91), (¥2,42)) = d(z1,22) + d'(y1,52), for z1,22 € X and y1,52 € Y.
(3.4)
The map ¢ x ¢ : X xY — X x Y is defined to be (¢ x ¢)(z,y) = (¢(z),¥(y))
for any (z,y) € X x Y. The equality hiop(¢ X ) = hiop(¢) + hiop(¥) always
hold. Lindenstrauss in [15], Proposition 2.8, proved that

mdim(X x Y, ¢ x ) < mdim(X, ¢) + mdim(Y, ) (3.5)

and this inequality can be strict (see [13,21]). For the metric mean dimension
we have:

Theorem 3.7. Tuke two continuous maps ¢ : X — X and vy :' Y — Y. On
X XY consider the metric given in (3.4). We have:

i. mdimy (X X Y,d x d,¢ x ¥) < mdimy (X, d, ¢) + mdimy (Y, d’, ).
ii. mdimy (X, d, ¢) + mdimy, (Y, d',¢) < mdimy (X X Y,d x d', ¢ x ).
iit. mdimy, (X, d, ¢) + mdim; (Y, d’, ) < mdim (X x Y,d x d’, ¢ x v).
iv. mdimy (X xY,d x d', ¢ x ) < mdimy, (X, d, ¢) + mdimy (Y, d', ¢).
v. If mdimy(X,d, o) = mdimy; (X, d,¢) or wmdimy(Y,d, )
= mdimy, (Y, d', ), then

mdimy (X X Y,d x d', ¢ x ¢) = mdimy (X, d, ¢) + mdimy (Y, d’, 1))

and
mdim (X x Y,d x d’, ¢ x ¥) = mdim,, (X, d, $) + mdim,, (Y, d’, ).
Proof. For any € > 0, we always have

span(¢ x ¢, 2¢) < span(¢, ) +span(y, ) and  sep(¢px ¢, 2¢) > sep(¢, €) +sep(¢, €).



2 Page 10 of 30 J. M. Acevedo Results Math

Hence, item i. follows from

2
oy PO X B.2) L span(6.0) L spanis,e)
0 | log 2¢| 30 |log e| 30 |log g|
item ii. follows from
. sep(¢ x 1, 2¢)
limsup —————
e—0 | log 25'
> lim sup ————= sep(¢, <) +l prw’ )
c—o |loge] [loge| ’
item iii. follows from
2
lim inf w > liminf M + lim inf 2P, €) sep(,¢)
e—0 | log 2¢| =0 |loge| =0 |loge]
and item iv. follows from
2
i inf PO X V,28) e SPA(0.E) e, span(®.€).
e—0 | log 2¢| =0 |loge| c—0 |loge|
Note that item v. is a consequence of items i-iv. O

For the box dimension we have the following inequalities (see [8,23]):

dimp (X, d) + dimg(Y,d) < dimp(X x Y,d x d') < dimp(X, d) + dimp (Y, d)

(3.6)
and
dimy (X, d) + dimg (Y, d') < dimg (X x Y,d x d') < dimg (X, d) + dimp(Y, d').
(3.7)

If dimg (X, d) = dimp(X,d) or dimg(Y,d') = dimg(Y,d’), we can prove that
dimp (X x Y,d x d') = dimp (X, d) + dimp (Y, d’)

and
dimg (X x Y,d x d') = dimg (X, d) + dimg (Y, ).

Each inequality in (3.6) and (3.7) can be strict (see [23]). In the next example

we will prove the inequalities i-iv in Theorem 3.7 can be strict.

Ezample 3.8. Let (X, d) and (Y, d’) be any compact metric spaces. The metric
dxd on X% x Y7 is defined by
- - 1 1
(d xd )((m7y)? (Z7UJ)) - Z Wd(‘r’u Z?,) + Z 9l d (yla wz)a
€7 €7
for x = (l‘i)iez, zZ = (Zi)ieZ € XZ,?] = (yi)iez, w = (wi)iez € YZ. Further-
more, the metric (d x d’')* on (X x Y)Z is given by

(% @) (@), (7)) = 3 gy =) + 3 5 (e wo),

i€Z i€Z
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for (7,7) = (2i,vi)icz and (Z,W) = (z;, w;)iez in (X x Y)Z. Consequently, the
bijection

O: (X xY)? = XPxY?,  given by (zi,4:)icz — ((¢:)icz, (¥i)icz),
is an isometry and furthermore the diagram

(X xY)2 —7 (X xY)?

Je Je
X2 xy? X%, X7yl
is commutative, where o is the left shift on (X x Y)%, o is the left shift on
XZ and o4 is the left shift on YZ. It is clear that the metric mean dimension
is invariant under isometric topological conjugacy. Therefore,
mdimy (X% x Y%, dy x dy, 01 % 09) = mdimy (X x V)%, (d x d')*,0)

=dimp(X x Y,d x d')

and
mdimy, (X% x YZ,d, x da, 01 X 09) = dimp (X x Y,d x d').

If (X,d) and (Y,d’) are compact metric spaces such that each inequality in
(3.6) and (3.7) is strict (see [23]), then we can prove that the inequalities i-iv
in Theorem 3.7 are strict. For instances, if

HB(X XY, d x d/) < diilnB()(7 d) —|—di7m]3(Y, d/),
then

mdimy (X2 x Y2, dy x da, 01 X 02) = dimp(X X Y,d x d') < dimp (X, d) + dimp (Y, d’)

= mdimy (X%, d, 01) + mdimm (Y2, d', 02).

4. Density of Continuous Maps on Manifolds with Positive
Metric Mean Dimension

Yano in [24] proved that the set consisting of homeomorphisms with infinite
topological entropy defined on any manifold with dimension biggest to one
is residual in the set consisting of homeomorphisms on the manifold. Further-
more, the set consisting of continuous maps defined on the interval or the circle
with infinite topological entropy is residual. In this section we will prove if N
is any riemannian manifold, then for any a € [0, dim(N)] the set consisting of
continuous maps on /N whose metric mean dimension is equal to a is dense in
C°(N). Furthermore, the set consisting of continuous maps with upper metric
mean dimension equal to dim (V) is residual.
On C°(X) we will consider the metric

d(9,¢) = maxd(¢(x), p(z))  for any ¢,¢ € C°(X).
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For any a € [0,dimp (X, d)], set
Ca(X) = {¢ € C°(X) : mdimy (X, d, ¢) = mdim (X, d, ¢) = a}.

Note for any riemannian manifold N with riemannian metric d, we have
Co(N) is dense in C°(NV), since the set consisting of C'-maps on N is dense
in C°(N) and the metric mean dimension of any C''-map is equal to zero.

Examples 3.1 and 3.5 prove for any a € [0, 1] there exists a ¢, € C°([0,1])
such that

mdimy ([0, 1], ] - |, ¢a) = mdimy, ([0, 1],] - |, ¢a) = a.

In [4], Theorem C, the authors proved for each a € [0, 1] the set consisting
of continuous maps on [0, 1] with lower and upper metric mean dimension equal
to a is dense in C°([0,1]). We will present a proof of this fact for the sake of
completeness.

Theorem 4.1. C,([0,1]) is dense in C°([0,1]) for each a € [0,1].

Proof. We had seen that Cy([0, 1]) is dense in C°([0, 1]). Therefore, in order to
prove the theorem, it is sufficient to show if ¢g € Cy([0,1]), then for any € > 0
there exists ¢, € Cy([0,1]) such that d(¢o,1s) < €. Fix ¢¢ : [0,1] — [0,1] €
Cy([0,1]) and take e > 0.

Let p* be a fixed point of ¢g. Choose § > 0 such that |¢po(x) — ¢o(p*)| <
¢/2 for any x with |z — p*| < J. Take ¢, € C,([0,1]) for some a € (0,1]
(it is follows from Examples 3.1 and 3.5 that for any a € (0, 1] there exists
oo € Co(]0,1])). Set J; = [0,p*], Jo = [p*,p* + /2], J3 = [p* +0/2,p* + §]
and Jy = [p* + ¢, 1]. Take the continuous map ¥, on X defined as

do(x), ifx e JUJy,
Va(z) = S Ty ' paTo(x), ifx €,
T3($)7 ifx € Jg,

where T : Jo — [ is the affine map such that T»(p*) = 0 and To(p* +9/2) =1,
and T3 : J3 — [p* +6/2, do(p* + 9)] is the affine map such that T3(p* +6/2) =
p*+6/2 and Ts(p* 4 6) = ¢o(p* +6) (see Fig. 2). Note that d(v,, ¢o) < e. Set
A=U2.%(J2) and B = A°. Note that

Q¢ala) = QA¢al1,) € J2.
Hence
mdimp ([0, 1], | - [, %a) = max{mdimn (4, | - |, %a|a), mdimn (B, | - |, %alp)}
= mdim (Jo, | - |,%a) = a.
This fact proves the theorem. O

Remark 4.2. Note that in Theorem 4.1 we prove the set A consisting of maps
¢ € C°([0,1]) such that, for some a,b € [0,1], ¥|ap : [a,b] — [a,b] satisfies
the conditions in Theorem 3.3 and outside of [a, b] ¥ has zero entropy, is dense
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FIGURE 2. Graphs of ¢y and . ¢, = T{lqbaTg

in C°([0,1]). Therefore, Corollary 3.4 can be applied for any map in A, which
is a dense subset of CY([0,1]).

For a,b € (0,1], let ¢, ¢p € C°(]0,1]) be such that
mdimy([0,1],d, ¢,) = a and mdimy ([0, 1],d, ¢p) = b
(see Example 3.1). It follows from Theorem 3.7, item v, that
mdimy ([0,1] x [0,1],d X d, ¢a X ¢p) = mdimn([0,1], d, ¢a) + mdimn ([0, 1], d, $p) = a + b.

Hence, we have:

Lemma 4.3. Fiz n € N. For any a € [0,n], there exists ¢, € C°([0,1]™) such
that

mdimy ([0, 1™, d", ¢¢) = mdimy, ([0, 1]", d", ¢4) = a.
Furthermore, given that d™ (see (3.4)) and || - ||, where ||(z1,...,2,)] =

Vai+ -+ a2 for any (z1,...,3,) € R™, are uniformly equivalent, we have
for any a € [0,n], there exists ¢, € C°(X™) such that

mdimy ([0, 1), || - ], ¢a) = mdimy, ([0, 1], [ - |, ¢a) = a.

Remark4 4. Fix ry,ro,... € (0,00) and s1,82,...,8, € N and for i =
1,2,...,n take n maps ¢s, ” G C°([0,1]) defined as in Example 3.1. Thus for
each i =1,2,...,n we have

mdimM([07 1]7 | ) |7¢3i77'i) =

Si
7, + S

From Theorem 3.7, item v, we have

mdlmM([Ov 1]nadna¢51,7“1 X ¢5277"2 X X (rbsnﬂ“n) -
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Furthermore, it follows from 3.1 and Theorem 3.7 that for any k£ € N we have

mdimM([O, 1]n’ dnv (¢51"‘1 X X ¢Snmn)k) = mdimM([O, 1]n7 dn’ (¢-§1,T1 )k X X (d—’sn,rn)k)

= mdimy ([0, 1]™,d"™, sy, X -+ X Phsy,rp)
ul k'si

:ZM-‘rkSi'

=1

Throughout this section, we will fix a compact riemannian manifold N
with riemannian metric d and dim(N) = n > 1. The proof of the following
theorem consists in perturbing a map on small neighborhoods (on which we
will work using coordinate charts) of the orbit of a periodic point, that is,
on finitely many neighborhoods. Since the metric mean dimension depends
on the metric, we must be careful to choose the charts that will be used to
make the perturbations. For this reason we will take the charts given by the
exponential map, which provides us the required properties. Indeed, for each
p € N, consider the exponential map

exp,, : Bs(0,) C T,N — By (p) C N,
where 0, is the origin in the tangent space T,N, ¢’ is the injectivity radius of

N and B(z) denote the open ball of radius € > 0 with center x. We will take

onN = %. The exponential map has the following properties (see [6], Chapter
111

~

Since N is compact, &' does not depends on p.

exp,(0p) = p and exp,[Bsy (0,)] = Bsy (p);

exp,, : Bsy (0p) — Bsy (p) is a diffeomorphism;

If v € Bsy(0,), taking ¢ = exp,,(v) we have d(p, q) = [|v]|.
The derivative of exp,, at the origin is the identity map:

D(exp,)(0) =id : T,N — T},N.

Since exp,, : Bsy (0,) — Bsy (p) is a diffeomorphism and D(exp,,)(0) =
id : T,N — T,N, we have exp, : Bsy(0,) — Bsy(p) is a bi-Lipschitz map
with Lipschitz constant close to 1. Therefore, we can assume that if vy, vy €
By (0,), taking g1 = exp,,(v1) and g2 = exp, (v2), we have d(q1, ¢2) = [[vi—val|.
Furthermore, we will identify B;,, (0,) C T, N with B;, (0) = {z e R" : ||z]| <
51\/} C R"™.

Theorem 4.5. For any a € [0,n], the set

Cu(N) = {¢ € C°(N) : mdimy(N, d, ¢) = mdimy (N, d, ¢) = a}
is dense in CO(N).
Proof. Let P"(N) be the set consisting of C"-differentiable maps on N with
a periodic point. This set is C°-dense in C°(N) (see [1,12]). Hence, in order
to prove the theorem it is sufficient to show if ¢9 € P"(N), then for any

e > 0 there exists p, € Cy(N), with d(¢o, pa) < &. Fix ¢p € P.(N) and take
e € (0,6n). Suppose that p is a periodic point of ¢y with period k. We can
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FIGURE 3. Extension of @,

suppose that B.(¢4(p)) N Bo(¢}(p)) = 0, for i,5 = 1,...,k with i # j. Take
A € (0,£/4) such that ¢o(Bax(¢)(p))) € Beya( 1+1( )) fori=0,..., k—1. Take

Oq € CO([—%, %] ) obtained by a cartesian product of maps given in Example

3.1, with [—%, 3] instead of [0,1], such that mdimy([—3, 3]", || - [|,¢a) = @
(see Lemma 4.3). Set
A= [-gg} . B=[ANT\(-2V/3.20/3)",  C=[-AN"\(AUB).

Take the map ¢, : AU B — AU B defined by
da(x), fzxeA
gom):{ )

x, if x € B.
Note that
0o (0A) = 0A and ¢, (0([—27/3,2X/3]™)) = 0 ([-27/3,2)/3]").

Furthermore, if (z1,...,2,) € 0A, then z; € {—A/3,/3} for some i and we
have
Cal@1y ooy Tiyee oy Tn) = (Z1ye v oy Zic1y Tiy Zid 1y« - - 2n), (4.1)

for some z; € [—%,%], for 57 € {1,...,4 — 1,i + 1,...,n}. Hence
(X1, @iy ooy y) and g (a1, ..., 24, ..., Ty) belong to the same face of JA.
Considering this fact, we extend ¢, to a continuous map @, : [—A,\]"
[, A]™

For any = € 9([—2A/3,2)/3]™), take the line segment passing through
z and 0 € R™. This line passes through a unique point 6(z) € 9A. Any
y € C can be written as y = t0(z) + (1 — t)z, for some t € [0,1], where
x € O([-2X2/3,2)/3]") (see Fig. 3, noting that from (4.1) we have 6(z) and
©va(0(x)) belong to the same face of 9A). We define

Pa(y) = a(tf(x) + (1 — )a) = tpa(0(z)) + (1 —t)z,  foryeC.
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We have @, : [\, A]" — [=\, A\]" is a continuous map: For y,z € C, there

exist z,,x, € I([—2X/3,2X/3]") and t, s € [0, 1] such that
y=1t0(zy)+(1—t)z, and z=s0(z.)+ (1—s)z..

If y and z are close, then z,, x, are close and therefore §(z,) and 6(z. ) are close

(note that 6 : 9([-2M/3,2)\/3]") — OA is a continuous map), which implies

that ¢ and s are close. Given that ¢, is a continuous map, we have ¢, (6(x))

and ¢, (0(x,)) and therefore @,(y) and @,(z) are close. Next, if y € A, then
t =1 and thus y = 6(x). Therefore

Pa(y) = Pa(0(2)) = @a(6(2)).
If y € 9([—2A/3,2X/3]™), then ¢ = 0. Thus y = z and therefore
Pa(y) = @a(z) = T = pa(2).
From 4.1 we have if ¢ € [0,1] then t0(x)+ (1 —t)z and ¢, (t0(z)+ (1 —t)x)
belong to C. Given that @¢,(0C) = 9C (@, is the identity on OB and it is

equal to ¢, on A, which is surjective), we have by the continuity of @, that
?q(C) = C. Therefore, mdimy (C, || - ||, o) < a. Hence,

mdimM([_Uﬂ U]nv ” ' ||7 @a) = max{mdimM(Av ” ' ”7 @a)7 mdimM(B U Cv ” ! H7 @a)}
= mdlmM(Aa || : H7 @a) = mdimM(A7 ” : ”7 ¢¢l) = a.
Consider

_ 1 . _ ) _ .
exp¢é+1(p) 0 @q © expd),(i)(p)(q), ifge N; = exp%(p)([ A, A]™), for some ¢

Yalq) = ¢0(q), ifge B=N\ (-_1U kexp¢6(p)((—2)\, 2)\)")> .

Next, we extend 1, to a continuous map v, : N — N. For any
u € O([—2A,2A]"), take the line segment passing through w and 0 € R™.
This line passes through a unique point f(u) € [\ A]". Any w € C; =
eXPyi (p) [[=2A,2A]" \ [-A, A]"] can be written as

0 = Xy (18(0) + (1 — ),
for some t € [0,1], where u € ([—2X,2A]™). For w € C; we set
Ya(w) = Palexpgy; ) (t6(w) + (1 — t)u))
= expn ) 120 () + (1 = )exp b (Galexpg (1)
= exp11 ) [18(0) + (1~ Dexp L (Go(exps ()]

We have v, : N — N is a continuous map (note that 3 : 9([—2X,2\]") —
O[—\, A" is a continuous map). Furthermore, we have d(¢g,v,) < €. Note if
q € N;, we have

(V,)(q) = €XP (i) mod () O (@a)’ o exp(;,él(p) (¢) and

($a)" (@) = exDyy ) © (a)* 0 exp) 1 (a)-
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FIGURE 4. Strong horseshoe

Hence, A C [-A, A" is an (s, P, €)-separated set if and only if expy; ) (A) € N
_ k
is an (s,,, €)-separated set for any € > 0. Therefore, setting L = |J N;, we
i=1
have

sep(s,V,|1,€) = ksep(s,@,,€) and thus
mdimy (L, d,¥q|r) = mdimyg ([=A A || - [], @a)-
Set K = U2y, " (L) and Z = K. Note that Q(¢a|x) C L and ¢z is a
differentiable map. Hence mdimy(Z,d, ¥,|z) = 0 and therefore
mdimy (N, d, 1,) = max{mdimy (K, d, 1| i), mdimy (Z, d, 14| 2) }
= max{mdimy; (L, d, Vs|1), mdimn (Z, d, Vo] 2)}
= mdimy (L, d, .|1) = a,

which proves the theorem. O

In [4], Theorem A, the authors proved if dim(NN) > 2, then the set
consisting of homeomorphisms with upper metric mean dimension equal to
n = dim(N) is residual in Hom(N). Furthermore, they showed the set consist-
ing of continuous maps on [0, 1] with upper metric mean dimension equal to 1
is residual in C°(]0, 1]). Inspired by the proof of these facts, we will show the
set consisting of continuous maps on N with upper metric mean dimension
equal to n, which we will denote by C,,(N), is residual in CO(V).

A closed n-rectangular box is a product J" = J; x -+ x J, of closed
subintervals J; for any ¢ = 1,...,n. From now on, we denote by J" a closed
n-rectangular box and we set

[T = nin |7;], where J"=Jp XX Jp.
i=1,...,n

For any closed interval J = [a, b], let J= [Q‘IT'H’, %%]7 that is, the second third

of J. For a closed n-rectangular box J" = Jy X -+ X J,, set Jn = Jyx % jn
(see Fig. 4a).
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For e € (0,1) and k € N, we say a closed n-rectangular box J* C U C R”
is a strong (n, e, k)-horseshoe of a continuous map ¢ : U — R™ if |J"| > €

and J™ contains k closed n-rectangular boxes J{',...,J;» € J", with (J)° N
(JM° = 0 for s # r, such that |J*| > Q‘J]L and J" C (¢(J))° for any
i =1,...,k. In Fig. 4b we present an example of a strong (2, ¢, 20)-horseshoe.

We say ¢ € C°(N) has a strong (n, ¢, k)-horseshoe J", where J" C R™ is a
closed n-rectangular box, if there exist s exponential charts exp, : B(0,d0n) —
N, fori=1,...,s, such that:

® ¢ = eXP(;41)mods © P © exp; '+ B(0,8) — B(0,dy) is well defined for
some 6 < dp;

o J" C (¢;(J"))° for each i =1,...,s;

e J" is a strong (n, €, k)-horseshoe for ¢; for each i =1,...s.

To simplify the notation, we will set ¢; = ¢ for each i =1,...,s.
For e > 0 and k € N, set

H(n,e,k) = {¢ € C°(N) : ¢ has a strong (n, €, k)-horseshoe}

1 _
H(n,k) = UH <n,i2,3nk’>

i€N

H" = (H(n,k).
k=1

Theorem 4.6. H™ is residual and if ¢ € H"™, then mdimy (N, d, ¢) = n. There-
fore, for anyn > 1, if N is a n-dimensional compact riemannian manifold with
riemannian metric d, the set C,,(N) = {¢ € C°(N) : mdimy (N, d, ¢) = n} is
residual in C°(N).

Proof. We prove for any € € (0,0y5) and k € N, we have H(n, ¢, k) is nonempty.
In fact, consider the map ¢ : [0,1] — [0,1] defined in Example 3.1. For any
4 3

s >2, g° has a strong (1,1 — 5, 25-2)-horseshoe (see Fig. 5):

J:[l 4]%4 7]u-~-u{3 _53_2}, |J|=33—3>1—i

3573 3573 35 7 3 3s”
3r—1)+1 3(r—1)+4 3 1 1
DARES , = o5 > ot = oA
35 35 35 7 217 ~ 2(3° —3)
o/ 3 w0 S([3r=1)+2 30r—1)+37\\°
R IR

foranyr:L...,%.
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||

FIGURE 5. J is a strong (1,1-4/9,2)-horseshoe for g2

Take an s large enough such that 1—5% > eand 3°—3 > k. We have J" is a
strong (n, €, k)-horseshoe of § := gx---x g € C°(]0,1]"). We can make a affine
change of variable and we can assume that g : [-dn,d0n] — [—0n,On]. Let ¢ :
B(0,6y5) — N be an exponential chart. The map ¢ogoyp=1 : ([~dn, In]") —
Y([—In,dn]") can be extended to a continuous map g on N as we made in
Theorem 4.5 (note g has the properties needed in order to do this extension).
We have g € H(n, e, k).

H(n,e k) is open in C°(N): if ¢ € H(n, e, k) and J" is a strong (n, €, k)-
horseshoe of ¢ we can take a small enough open neighborhood U of ¢ such
that for any ¢ € U we have J" is a strong (n, €, k)-horseshoe of 9.

H(n, k) is dense in CO(N): fix ¢ € C°(N) with a s-periodic point. Every
small neighborhood of the orbit of this point can be perturbed in order to
obtain a strong (n, i%, 3"’”) horseshoe for a ¢ close to ¢ for a large enough ¢
(see the proof of Theorem 4.5).

The above facts prove that H" = (| H(n, k) is residual in C°(N).
k=1
Finally, we prove mdimy (N, d, ¢) = n for any ¢ € H". Take ¢ € H".
We have ¢ € H(n,k) for any k > 1. Therefore, for any k € N, there exists

ig, with i < ig41, such that ¢ has a strong (n,i%,?)"ki’“)—horseshoe i
k

consisting of 3"F% rectangular boxes J”(ik,l),...,J”(ik,?)"“k), such that
J" C (¢i(J"(ir,t)))° for each t =1,...,3"F*  where ¢; = XD ;1 1)mods © P ©

1

474%37}9”‘ For any m S N, set

expi_l. For each k € N, set ¢, =

Cni(to,ti, .. tmo1) ={z € Jj : ¢l(x) € jf‘ for alll € {0,...,m —1}}.

kst
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From the definition, we have [J] ;| > ey, for each t = 1,.. ., 37k i Thus, the

set consisting of any point on each an = exp[Cn,k(to,tl,...,tm,l)} is an
(m, ¢, i) separated set. Therefore, for each m € N we have

o\ sep(¢, ex) log 3% *
> (3nkix dh > : :
sep(m, ¢,ex) > ( )" and hence Toger] = "log3ti +Tog 472
log3kik . . .
Note ——r%>——+ — 1 as k — oo. This fact implies that

log 3% Tk +log 4i3
mdimy (N, d, ¢) > n,

which proves the theorem, since for any 1 € C°(N), the inequality
mdimy (N, d, 1) < n always hold. O

The continuity of the topological entropy is one of the most studied prob-
lem in dynamical systems (see [2,19,24]). If X is the interval or the circle,
Block, in [2], proved the topological entropy map is not continuous on con-
tinuous maps on X with finite topological entropy. Now, Yano in [24] proved
the topological entropy map is continuous on any continuous map ¢ € C%(N)
with infinite topological entropy. For the metric mean dimension, it follows
from Theorem 4.5 that:

Corollary 4.7. If N is any compact riemannian manifold with riemannian met-
ric d, then mdimy; : C°(N) — R is not continuous anywhere.

A real valued function ¢ : X — R U {oo} is called lower (respectively
upper) semi-continuous on a point x € X if

liminf p(y) > @(x) (respectively limsup ¢(y) < p(x)).

y—T Yy—x

p is called lower (respectively upper) semi-continuous if is lower (respectively
upper) semi-continuous on any point of X.

The map hiop : C°([0,1]) — R U {oo} is lower semi-continuous (see [18],
Corollary 1). However, for metric mean dimension we have if X = [0, 1] or S!,
then mdimy; : C°(X) — R is nor lower neither upper semi-continuous (see
[20], Proposition 7.6). Furthermore, from Theorem 4.5 we have:

Corollary 4.8. Let N be any compact riemannian manifold with riemannian
metric d. We have mdimy : C°(N) — R is nor lower neither upper semi-
continuous on maps with metric mean dimension in (0, dim(N)). Furthermore,
mdimy; : C°(N) — R is not lower semi-continuous on maps with metric
mean dimension in (0,dim(N)] and is not upper semi-continuous on maps
with metric mean dimension in [0, dim(N)).
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5. Density of Continuous Maps on Cantor Sets with Positive
Metric Mean Dimension

Bobok and Zindulka in [3] shown that if X is an uncountable compact metriz-
able space of topological dimension zero, then given any a € [0, oo] there exists
a homeomorphism on X whose topological entropy is a. In particular, there
exist homeomorphisms on the Cantor set with infinite topological entropy. We
will use the techniques presented by Bobok and Zindulka in order to prove
there exist infinitely many continuous maps on the Cantor set with positive
metric mean dimension. In fact, any « € [0,1] is written in base 3 as

T = anff” where z,, € {0,1,2}.
n=1

A number x belongs to the ternary Cantor set if and only if it has a ternary
representation where the digit one does not appear. Therefore, we can consider

C = {(x1,22,...) : 2, = 0,2 for n € N} = {0,2}" (5.1)

as being the Cantor set endowed with the metric

o o 0o
d((xhx% s )a (yhyQa s )) = Z 3_n|x7l - yn| = Z wng—n - Z yn3—n .
n=1 n=1 n=1
(5.2)

Proposition 5.1. For each j € N, there exists ¢; € C°(C) with

7log 2

mdimy (G, d, ;) = mdimy(C,d, ) = = yios.

Proof. For any k > 1, set
Cr={(z;)2y:2;=0fori<k—1,2,=2and z; € {0,2} for i >k + 1}.

Note that if k # s, then C,NCs =0 and C\U2, Cy = {(0,0,...)}. Further-
more, each C', is a clopen subset homeomorphic to C' via the homeomorphism

T.:Cr,— C, (0,...,0 ,2,21,29,...) — (x1,22,...),
———
(k—1)-times

which is Lipschitz. For j € N, take 1; € C°(C) the map defined as ¢;(0,0,...)
= (0,0,...) and ¥;| ¢, = T, '07* T}, for k > 1. It is not difficult to prove that
1; is a continuous map. Take € > 0. For any k > 1, set ¢, = RRCARY
There exists & > 1 such that ¢ € [egy1,ex]. For n > 1 and k > 1, take
7 =(21,..., z]lk), o Zn = (21, 20, with 28 € {0,2}, and set

Alzfl,.“,z,,,:{( 0,...,0 ,2,2%,...,zjl-k,...,zf,...,Z;Lk,ml,..,,xs,...) cx; €40,2}1}CC.

~———r
(k—1)-times
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Note that if A%
dp+1(Z,9) > ﬁ, where d,,; is considered with respect to ;. Therefore
sep(n + 1,15, ex) > 2/"% and hence

b logsep(n + 1,9, ¢)

5 7 Aa’fm,...,u’)n and T € AIZEL s, U € Afm,...,w,,a then

.....

logsep(n + 1,1, k)

ey =T 2 e =
> lim M = log 27%,
n—oo N+ 1
thus
log se N . log(27%
mdimy (€, d,¢;) = lim g_ls)g(w 2 lim bg(gﬁiw)m
~ lim kjlog2
k—oo (k+1)(j +1)log3
_ jlog2
~ (j+1)log3’
Therefore
7log2

mdimy (C, d, ;) > mdimy (C, d, ;) > (5.3)

(j+1)log3
On the other hand, note that for each I € {1,...,k}, the sets AL

3o ®n

have d,-diameter less than ;. Furthermore, the sets {(0,0,...)}and |J C;
s=k+1
has d,,-diameter less than ;. Hence

cov(n,j,er) < k2mk 49 < ofonik

and therefore

log(2k2m7* ,
cov(tpj,e) < lim log(2k2"7) = log 27%.
n— oo n
Hence
N ; ; j log 2
mdimy (C, d, ;) =limsup M <limsup cov(ty, ext1) < — J 08 .
cemo —loge koo —log ey, (j+1)log3
(5.4)
It follows from (5.3) and (5.4) that
mdimy,(C,d, %‘) = mdlmM(C,dﬂ/)j) = m7
which proves the proposition. O

For any continuous map ¢ : X — X we always have
mdimy (X, d, ¢) < dimp(X,d) and mdimy(X,d,$) < dimg(X,d).

Therefore mdimy (C,d, ¢) < dimg(C) = iggg for any continuous map ¢ :

C — C. A question that arises from the above proposition is: is there any

¢ (= CO(C) with mdlmM(Cada ¢) = izég?
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Remark 5.2. Consider 1; as in Proposition 5.1. Note that 1,; = ¢ for any
s € N. It follows from the proposition that
sjlog2 slog 2

dimy (€, d,95) = mdimy (C, d, 1bs;) = = ~
mlmM( ,,1/1]) mlmM( aﬂ/’]) (sj—|—1)10g3 (3—|—%)10g3

Therefore, for any s € N, we have

mdimy (C, d, ;) < mdimy(C,d, ;) < smdimy (C,d, ;).

For any m > 2, take X,, = {1,2,...,m}. We endow XX with the metric
d given in 5.2. It follows from Proposition 5.1 there exist continuous maps on
XX with positive metric mean dimension.

Theorem 5.3. Take K =N or Z. If C, = {¢ € C°(XE) : mdimy (XX, d, ¢) =
at # 0, then C, is dense in C°(XK).

Proof. We will prove the case K = N (the case K = Z is analogous). We will fix
a continuous map ¢ : X — XN given by ¢(x1,22,...) = (y1(Z), y2(Z),...),
for any 7 = (w1,72,...) € X.. We will approximate ¢ by a sequence of
continuous maps in Cl,.

Firstly, we prove that Cj is dense in C°(X2). Consider the sequence of
continuous maps on XY (¢, )nen, defined by

on(T) = (y1(Z), y2(Z), - . ., yn(T), zo, x0,...) for any n € N and some z¢ € X,.

(5.5)
Since the image of ¢,, is a finite set, then we have mdimy (XL, d, ¢,,) = 0 for
any n € N. Note that ¢, converges uniformly to ¢ as n — oo. This fact proves
the set Cp is dense in CO(X1)).

Next, fix a > 0 and suppose that C,, # (. Since C is dense in C°(X2), in
order to prove that C, is dense in C°(X2. ) we can prove that any map in C can
be approximate by a sequence of maps in C,. Therefore, we can suppose that
¢ € Cp is a map as the given in (5.5), that is, for any z = (21,22,...) € X2,

o(@) = (n1(Z),y2(Z), ..., yx (T), 20,20,...) for some K € N and some zg € Xp,.
Suppose that 1, € C, is given by
1pa(jj) = (Zl('i‘)wzQ(:i.)» . ) for any T = (!Bl,l‘g, B ) € XEIL

For each n > K + 1, set Z" = (xp+1,Tnyo,-..). Consider the sequence of
continuous maps on X2, (¢ )n> k41, where

On(Z) = (y1(Z), y2(Z), ...,y (Z), 20,...,20 ,21(T"), 22(Z"),...)
(n—K)-times

foranynZK—i—land:Icean.

We have ¢,, converges uniformly to ¢ as n — co. Note that
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o0 o
—j 1— —j+n—1
E 3NTjnt1 = Yj—ns1| =377 E 37 a1 — Yjna

Jj=n j=n
=317y 3wy — ). (5.6)
j=1

Next, fix n € N and take € > 0. For any p > n € N, let A be a (p, g, ¢€)-
separated set. Take
121 = {(l‘i)ieN T =20 for 1 S] S n, (zn+i)iEN S A} = {ZO} X e X {Zo} x A.

—_—
n-times
Note that if (z;);eny and (y;)ien are two different sequences in A, from (5.6)
we have
dﬁ"((Z(),...,Zo,]}l,.’L‘g,...),(Zo,. ..,Zo,yl,yg,...))
> 31_nd;)ba(($1, e ), (yl, e )) > Sl_nf.

Hence A is a (p, ¢, 31 "¢)-separated set. Therefore sep(¢q, &) <sep(¢n, 31 ")
and thus

. sep(Ya;€) _ .. sep(¢n,3' ") . sep(¢n, 3" "¢)
lim sup ——= < limsup T = limsup ————————,
0 [loge| c—0  |log3l—" +loge| e—0 |log 31—"¢]
which proves that mdimy (X, d,v,) < mdimy (X2, d, ¢y,).
On the other hand, note that
Qpp) C Xy X oo X Xy X {20} X oo X {20} X Xy X Xy X -+ := Z,

K-times (n—K)-times

where Q(p) is the non-wandering set of a continuous map ¢. Hence, we can
consider the restriction ¢,|z : Z — Z in order to find the metric mean di-
mension of ¢,. Take e < 37" small enough such that if d(Z,7) < e, then
d(¢(7),0(y)) < 37K. Let B be a (p,,,¢c)-spanning set and C a (p, ¢, ¢)-
spanning set. Set

C={(x1,...,2x) : (#)ien € C} and B=0C x{z} x---x {z} x B.
Take any § = (Y1,Y2, - - -y YK+ 20y - - - s 205 Ynt1s Ynt2, - - - ) € Z. There exists
0= (Y1,Y2y- YK > 20,20, Gnt1,0nia, ... ) € C
with df(y,a) < e (a has this form because e < 37"). Set
T=(Y1,Y2, -y YK 205 -+ 3205 Trpls Tty .- )s

for some (241, Tni2,...) € B with dg’“((ynH, Ynt2s -+ )s (Tnt1, Tng2y -0 ) <
e. In particular d((Yn+1, Yn+2,---)s (Tnt1, Tnt2,...)) < €. Note that Z € B.
Hence,
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d(g,i’) :d((yl,"'ayKaZO,'"aZO,yn+layn+2,"')a

(y17"‘7yK7Z07‘"7207xn+17xn+27"~))
o) o
= Z 37ys —ai| =37" Z 37 My —
i=n+1 i=n+1
oo
::3_4lzz:3_%|yn+i'_~rn+i
=1

:S_nd((yn+17yn+27 cee )a (xn+1axn+27 e )) < 3_n€ <e

and therefore

d((5), ¢(7)) < 37
It follows from the definition of ¢ that ¢(y) = ¢(Z). Thus

ceey

=  max 1{23j|(¢ﬁ(y))j—(¢ﬁ(f))jl+ > 3j|(¢ﬁ(y))j—(¢ﬁ(f))jl}

j=1 j=n+1

=  max 1{ZSjI(¢>’“(y))j(¢>'“(9?))j|+ > 3j(¢ﬁ(y))j(¢ﬁ(i))j}

j=1 i=n+1

L {3_n D37 - (d)f(ffn))j}
j=1

Il
=]
g
I3
»

=375 (Ynt1,Yn+2,- - ) (Tnt1, Tnga,...)) <3 e
This fact proves Bisa (p, dn, 37 "e)-spanning set. Hence

span(p, ¢n, 3™ "e) < span(p, ¥q, €) - span(p, ¢, €)

and thus
span(¢y,, 3™ "e) < span(iq, €) + span(g, ).
Therefore
) span(¢y,,37 ") span(¢y,, 3~ "¢)
limsup ——————— = limsup ——~
D0 |log 3—"e| c—0  |log3—" +loge|
< lim sup 7span(wa, ) + lim sup Lan(qﬁ, £)
0 |log €| 0 [log €|
= lim sup 7span(¢a, ) ,
P |log €|

which proves that mdimy (X2, d, ¢,) < mdimy (X)), d,v,). Analogously we
can prove that mdim, (XY d,,) = mdim\;(XY,d, ¢,). These facts proves
the theorem. O
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Remark 5.4. If p = (jilﬁiglfgg for some j € N, it follows from Proposition 5.1

and Theorem 5.3 that C), is dense in C°(X})).

Block, in [2], studied the continuity of the topological entropy map on
the set consisting of continuous maps on the Cantor set, the interval and the
circle. On the continuity of the metric mean dimension on the set consisting of
continuous maps on the product space XX (in particular on the Cantor set),
we have from (5.1), Proposition 5.1 and Theorem 5.3 that:

Theorem 5.5. If m > 2, then mdimy : CO(XX) — R is not continuous any-
where. In particular, mdimy; : C°(C) — R is not continuous anywhere.

It is well-known that any perfect, compact, metrizable, zero-dimensional
space is homeomorphic to the middle third Cantor set (see [7], Chapter 6).
Hence, suppose that X is a perfect, compact, metrizable, zero-dimensional
space and let ¥ : X — C be an homeomorphism. Consider the metric on X
given by

dy(z,y) = d((x),¢(y))  forz,y € X,

where d is the metric given in (5.2). Note that if p is other metric on X which
induces the same topology that dy on X, then p(¢,p) = mag(cpw(:v%ap(x)),
€

for any ¢, € C°(X), induces the same topology on C°(X) that the metric
dy (¢, ) = ma;((dq/,(gb(x), ¢(z)). Therefore, the continuity of mdimy; : C%(X) —
S

RU{oc} does not depend on equivalent metrics on X. It follows from Theorem
5.5 that:

Corollary 5.6. Suppose that X is a perfect, compact, metrizable,
zero-dimensional space endowed with the metric dy. The map mdimy
C°(X,dy) — R is not continuous anywhere. Therefore, for any perfect, com-
pact, metric, zero-dimensional space (X, d), the map mdimy; : C°(X,dy) — R
18 not continuous anywhere.

Next, we will consider the map mdim : C°(X) — R U {co}. Note if
X is a finite set, then dim(X™®) = 0. Therefore, mdim : C°(X¥) — R is a
constant map. More generally, if (X;);c7 is a family of compact Hausdorff
spaces with dim(X;) = 0 for each i € J, then dim(][,c, X;) = 0. Hence
mdim : CO(HZ.GJ X;) — R is a constant map. We will suppose that X is an
n (n > 1) dimensional compact metric space, with metric d. We endow X*
with the product topology, which is obtained from any metric equivalent to
the metric

d((xl,l’Q, ce ), (ylayQ, oo ))

= Z 37"d(xn, yn) for any (z1,w2,...), (y1,y2,-..) € X",
n=1



Vol. 77 (2022) Genericity of Continuous Maps Page 27 of 30 2

for K=N and
d((- o201, ), (oY1 b0y, - )) = Y37 M d (@, yn),
ne”Z
for any (..., 2_1,20,21,-- ), (-, Y—1,%0,Y1,--.) € X%, for K = Z.
Theorem 5.7. Take K =N orZ and X any finite dimensional compact metric
space.

i. The set consisting of continuous maps on X with zero mean dimension
is dense in CO(X™).

ii. If there ewists 1, € C°(X™) with mean dimension equal to a, then the set
consisting of continuous maps with mean dimension equal to a is dense

in CO(X™).

i, mdim : CO(X®) — R U {oo} is constant or is not continuous anywhere.
Proof. We consider K = N. We will fix a continuous map ¢ : X~ — XN, given
by ¢(z1,22,...) = (y1(Z),y2(Z),...), for any 7 = (v1,22,...) € X". Consider
the sequence of continuous maps on X, (¢, ),en, defined by

O (Z) = (y1(Z), y2(T), - - ., Yn(T), X0, Tg, . . . ) for any n € N and some zy € X.
Note that Q(d,) C X x --- x X ..., and then Q(¢,) is a finit
ote that Q(¢n) € X x---x X x {zp} x and then Q(¢,) is a finite

n-times
dimensional space. Hence mdim(¢p, X") = mdim(¢y[oe, ). 2(¢n)) = 0, since
any continuous map on a finite dimensional space has mean dimension equal
to zero. Note that ¢,, converges uniformly to ¢ as n — oo. This fact proves i.
We prove ii. Suppose there exists 1, € C?(X"), which is given by

Vo (T) = (21(%), 22(Z),...) for any T = (z1,22,...) € XV,

and mdim(¢,,, X~) = a > 0. Fix ¢ € C°(X"), which, without loss of generality,
we can suppose that

d(T) = (1(Z),y2(Z), ..., yx(Z), 20, 20, - . . ) for some K € N and some zy € X,
for any & = (x1,29,...) € X". For each n > K + 1, if z = (21,79, ...), set
" = (Tpt1,Tnt2,-..) and T, = (T1,22,...,Tn, 20,20, )
Consider the sequence of continuous maps on X, (én)n>K+1, where
¢n(i') - (yl((zn)ayQ(in)v s 7yK(fn)a 205+ 20 721(5”), 22(52”)7 . ) for
—_———
(n—K)-times
n>K+1and z € XN,

We have ¢,, converges uniformly to ¢ as n — oco. On the other hand, note
that

Qn) CX X x X x{z} x - x{z2}x X xXx =2

K-times (n—K)-times
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Hence, we can consider the restriction ¢,|z : Z — Z in order to find the mean
dimension of ¢,,. Define Z : XN — XN x XN defined by Z(z) = (Z,,2"), and
@, XN x XN — XN x XN defined by @,,(Z,7) = (¢(Zn), %a(7)). We have
P (Z(7)) = Pn(Tn, T") = (6(ZTn), ¥a(Z")) = L(Pn(Z)),
Hence,
mdim(XY, ¢,) < mdim(XY x XY, ®,,) < mdim(XY, ) + mdim (X", ;)
= mdim(X", 9,).
On the other hand, we can refine each open cover of Z to one of the form
A=A x - x A x{zo} x -+ x {z0} X Apt1 X Apya2 X -,
where A; is an open cover of X and, for some J, A; = X for all i > J. Set
B:AnH X Apqa X -+
B=Xx---xXx{z}x-x{2}xB

By (¢a) :B\/( HB)) V-V (g, ™ (B))
Am(%) = AV (¢, (A) V-V (¢,(A))
By (6n) =BV (6, (B)) V --- V (¢,™(B)).
Let 7 : XN — XN given by 7(21, ..., %, Tni1,---) = (Tni1, Tniz, ... ). Note
that
w(By'(¢n)) = By (Ya) and  AF(¢n) = By (dn)-
Hence

D(By(va)) < D(7(Bg'(¢n))) < DB (¢n)) < D(AF (¢n)) for each m € N.
Therefore

fy DBPW) _ L DIAT(0)

which proves that
mdim(¢,, X") > mdim(¢,, X) for any n > K + 1.

Note that iii follows from i and ii. O
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