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PREDICTION OF MOTORCYCLIST TRAFFIC CRASHES IN CARTAGENA
(COLOMBIA): DEVELOPMENT OF A SAFETY PERFORMANCE FUNCTION

Holman Ospina-Mateus1,2, Leonardo Augusto Quintana Jiménez2,
Francisco J. Lopez-Valdes3 and Shib Sankar Sana4,∗

Abstract. Motorcyclists account for more than 380 000 deaths annually worldwide from road traffic
accidents. Motorcyclists are the most vulnerable road users worldwide to road safety (28% of global
fatalities), together with cyclists and pedestrians. Approximately 80% of deaths are from low- or middle-
income countries. Colombia has a rate of 9.7 deaths per 100 000 inhabitants, which places it 10th in
the world. Motorcycles in Colombia correspond to 57% of the fleet and generate an average of 51% of
fatalities per year. This study aims to identify significant factors of the environment, traffic volume, and
infrastructure to predict the number of accidents per year focused only on motorcyclists. The prediction
model used a negative binomial regression for the definition of a Safety Performance Function (SPF)
for motorcyclists. In the second stage, Bayes’ empirical approach is implemented to identify motorcycle
crash-prone road sections. The study is applied in Cartagena, one of the capital cities with more traffic
crashes and motorcyclists dedicated to informal transportation (motorcycle taxi riders) in Colombia.
The data of 2884 motorcycle crashes between 2016 and 2017 are analyzed. The proposed model identifies
that crashes of motorcyclists per kilometer have significant factors such as the average volume of daily
motorcyclist traffic, the number of accesses (intersections) per kilometer, commercial areas, and the
type of road and it identifies 55 critical accident-prone sections. The research evidences coherent and
consistent results with previous studies and requires effective countermeasures for the benefit of road
safety for motorcyclists.
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1. Introduction

The World Health Organization (WHO) estimates 1.35 million fatalities in road traffic crashes [63]. Motor-
cyclists account for more than 380 000 annual deaths worldwide (28% of global fatalities). The 80% of deaths
are from low- or middle-income countries. The most vulnerable victims in these countries are in the age range
of 15–35 years. Motorcycle users are at greater risk due to their level of exposure and lack of an efficient pro-
tection system [35, 45]. The growth of the vehicle fleet, the deficit of roads, and the increase in journeys are
important aspects of the accident of motorcyclists [62]. In South America, the Dominican Republic, Paraguay,
and Colombia have the highest proportions of fatalities in motorcyclists with more than 50% of road users (see
Tab. 1). Colombia faces a rate of 9.7 fatal motorcyclists per 100 000 inhabitants, ranking tenth worldwide, third
in the region, and second in South America [46,48].

In 2019, motorcycles in Colombia correspond to 57% of the vehicle fleet (8.6 million) [43] and motorcycles
make approximately 50 million daily trips [12]. Between 2012 and 2018, an average of 3100 motorcyclist fatalities
have occurred, corresponding to 51% of road fatalities [44]. In Colombia, a motorcyclist dies every 2.5 h, six
motorcyclists injured in an hour [48]. Global road traffic crashes are critical, and Colombia is no exception when
analyzing vulnerable users such as motorcyclists. The present study seeks to identify environmental factors
and prioritize sections prone to crashes in motorcyclists. In a practical context, collisions can be reduced by
implementing specific actions in strategic places with a high potential for road crashes.

The objective of this study is to identify significant factors of the environment, infrastructure, road flow, and
road conditions, as well as critical sections prone to motorcyclist accidents in Cartagena. The prediction model
used a negative binomial regression for the definition of a Safety Performance Function (SPF) of motorcyclists. In
the second stage, Bayes’ empirical approach is implemented to identify critical sections of motorcycle crashes.
This study includes 7 sections. Background and context relating to the development of safety performance
functions are described in Section 2. Section 3 describes the theoretical framework and settings. Section 4
describes the methodology used, the data, and the variables. Section 5 contains the results of the predictive
models developed. Finally, the discussion and conclusions are presented in Sections 6 and 7, respectively.

2. Background and literature review

Road safety as a public health problem requires techniques to identify multidimensional aspects of the envi-
ronment, individuals, and vehicles [42]. The identification of critical sections is one of the main strategies and
analyzes carried out for the benefit of road safety programs [54]. From an environmental perspective, the devel-
opment of prediction models for crash frequency analysis has made substantial progress in recent years, these
are known as Safety Performance Functions (SPF) [53]. Prediction models based on SPFs are statistical anal-
ysis tools to identify the association between accident risks and accident conditions [25]. The SPFs relate the
frequency of crashes with characteristics of the road (quality, size, lanes, separators, accesses, curves, among
others), traffic flow (volume), speed, as well as environmental conditions (signaling, traffic lights, type of area)
[1]. These models have been estimated with Poisson regression techniques, negative binomial, generalized linear
models, and the Bayesian approach [34]. Currently, predictive models based on the development of an SPF and
the empirical Bayesian approach are widely recommended [53]. These analyzes allow detailed interaction of the
environment variables and identifying critical road sections with a high probability of crashes [1].

Road crashes are random, non-negative, and discrete events, these can be represented using the Poisson
probability distribution or the non-negative binomial distribution, if there is “over dispersion” [34]. Studies
by Hauer et al. [26], Cheng and Washington [14], and Montella [41] have showed that the number of traffic
crashes follows a non-negative binomial distribution, based on excessive dispersion compared to a Poisson
model. Several studies have used and recommended non-negative binomial regressions as best-fit models to
analyze the association between traffic crashes and environmental, infrastructure, and operational conditions
[2, 4, 37, 56, 57]. Furthermore, the Bayesian empirical approach has been widely used in road safety analysis to
identify prone sections and black spots [50]. Elvik [18] has described a black spot as “a place that has a higher



PREDICTION OF MOTORCYCLIST TRAFFIC CRASHES IN CARTAGENA 1259

Table 1. Ranking of countries with the highest rate of motorcycle accidents per 100 000 inhab-
itants in 2016 [63].

Country Income

level

Population

numbers
(million)

Total

registered
vehicles

(million)

Registered

motorcycle

Fatalities Fatalities

per 100 000
population

Fatalities

per 100 000
population

Total (Mil-

lions)

(%) Total Motorcycle (%)

Thailand Middle 68.9 37.3 20.5 55% 21 745 16 178 74% 32.7 24.3

Dominican

Republic

Middle 10.6 3.9 2.1 54% 3118 2089 67% 34.6 23.2

Togo Low 7.6 0.1 0.0 71% 514 368 72% 29.2 20.9

Benin Low 10.9 0.5 0.2 42% 637 360 57% 27.5 15.5

Cook
Islands

High 0.02 0.01 0.01 55% 5 4 80% 17.3 13.8

Cambodia Middle 15.8 3.8 2.7 72% 1852 1361 74% 17.8 13.1
Myanmar Middle 52.9 6.4 5.4 84% 4887 3167 65% 19.9 12.9

Paraguay Middle 6.7 1.9 0.6 33% 1202 627 52% 22.7 11.8

Mali Low 18.0 0.3 0.1 16% 541 229 42% 23.1 9.8
Colombia Middle 48.7 13.5 7.5 56% 7158 3758 53% 18.5 9.7

Notes. MC: motorcyclists.

expected number of accidents than other similar places as a result of a local risk factor”. Several studies have
implemented this approach to prioritize black spots, critical sections, accident-prone segments [5, 8, 20,58,65].

Road safety investigations are necessary to identify factors associated with the accident of a highly vulnerable
user, such as motorcyclists in a specific context [47]. In the global context, motorcycle accident prediction models
are limited. Analyses based solely on accident statistics are insufficient to evaluate the road safety performance
of the environment. Designing road safety models from a predictive approach contributes to the definition of
efficient policies. In the global context, there have been successful studies in the application of safety performance
Functions such as those developed by Lord and Persaud [36], El-Basyouny and Sayed [17], Vogt and Bared [60],
Tegge et al. [59], and Bauer and Harwood [7], among others.

When the SPF models for motorized vehicles are established within the 2010 Highway Safety Manual (HSM),
it aims to promote this type of model for vulnerable actors such as motorcyclists and cyclists [13]. Those studies
with motorcyclists are still ongoing. Among the studies are those developed by Abdul Manan et al. [3], de
Lapparent [16], Xin et al. [64], Radin Umar et al. [55], Harnen et al. [30] and Lyon et al. [38].

Abdul Manan et al. [3] developed a negative binomial regression to predict fatal crashes in motorcyclists
on Malaysian primary roads. The findings show that motorcyclist deaths per kilometer on major roads are
statistically significantly influenced by the average daily number of motorcycles and the number of access points
per kilometer. de Lapparent [16] has developed a model based on the empirical approach of Bayes to identify the
severity of accidents involving motorcyclists in urban areas in France. Xin et al. [64] have quantified the effects of
horizontal curve parameters and contributing factors on the occurrence of motorcycle crashes in specific sections
of the road with a random parameter negative binomial regression model. Radin Umar et al. [55] have developed
a multivariate analysis of motorcycle accidents and the effects of motorcycle exclusive lanes in Malaysia. Haque
and Chin [23] have endeavored to identify the factors that affected motorcycle accidents at reported three- or
four-legged intersections by developing Bayesian accident prediction models in Singapore. Finally, Lyon et al.
[38] have developed an analysis of the total annual average daily traffic as a surrogate for motorcycle volume in
estimating safety performance functions for motorcycle accidents in the USA.

In Colombia, studies on road safety for motorcyclists are limited; therefore, detailed analyzes are required
on factors associated with motorcycle accidents [32,48,49]. Many studies that evaluate the performance of road
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safety at a global level are applied with a generalized focus on all road actors [3,16]. Due to the limited studies
focused on motorcycling, the need for this type of research is evident, and more so in a developing country
(LMIC) such as Colombia.

This research is a pioneer in the development of a predictive model in the capital city with high accident rates
for motorcyclists and where informal transport on motorcycles is most practiced in Colombia (Motorcycle taxi
riders). Developing a reliable accident prediction model is a demanding task. Therefore, it is an opportunity
to expand the line of knowledge to vulnerable road users such as motorcyclists. In addition to being a new
model in road safety for motorcycles in Colombia, the model considers aspects of infrastructure, environmental
conditions, and the road. Likewise, the proposed model assesses the impact of road accidents on the total traffic
volume and the volume exclusively of motorcyclists.

3. Theoretical framework and setting

3.1. Negative Binomial Regression

The Negative Binomial Regression is an adjusted model in which the dependent variable Y consists of
counts or frequencies. The model relates Y to one or more predictor variables X, which can be quantitative
or categorical. This regression is like the Poisson regression process; however, the conditional variance of Y is
greater than the mean. Thus, the model is relevant in terms of “over-dispersion” compared to a Poisson process.
The statistical model is expressed as follows:

p (Y ) =
Γ
(
Y + α−1

)
Γ (Y + 1)Γ(α−1)

[
α−1

α−1 + µ

]α−1 [
µ

α−1 + µ

]Y
, µ > 0, α ≥ 0

where the mean µ is the product of λ, the rate at which accidents occur, and the observation period t, thus:

E (Y ) = µ = λt.

The variance of Y is given with the parameter of over-dispersion α, as follows:

Var (Y ) = µ+ αµ2.

To relate to the frequency of accidents, there is a need to express it in terms of an exponential function
representing the expected number of accidents with a positive value. The accident frequency can be estimated
with predictive variables on one log-linear scale as follows:

E (Y ) = Exp

[
k∑
i=0

βiLn (Xi)

]
Log (Y ) = β0 + β1Ln (X1) + β2Ln (X2) . . . βkLn (Xk)

where β is the estimation coefficient, and Xi are the independent variables.

3.2. Application of the Bayesian empirical approach

The application of the method is also known as “regression to the mean” or in road safety studies “before
and after” [33]. The approach eliminates bias in the observed number of accidents due to random fluctuations.
The method calculates the expected number of accidents with the observed number and the estimated number
of accidents in a road section [27]. In the model, the number of accidents is normalized by sections and these
are expressed as accidents per unit of length of the road. The result of predicting road accidents by sections is
a linear combination of two numbers, like this:

E (A) = wYpre + (1− w)Cobs
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where E(A) is the estimated number of expected accidents in a unit of time. Ypre is the predicted number,
and Cobs is the number of observed accidents in a unit of time. Finally, w is a statistical value-weighted and is
calculated as follows:

w =
1

1 +NαYpre

where N is the number of observation periods. α is the over-dispersion parameter associated with the accident
prediction model. The w value varies between 0 and 1. This value controls the relevance between the predictions
of the model and the number of accidents. If the data used in the accident prediction model show little dispersion,
w will be higher, since in this situation the proposed model will be more reliable. The final step in the definition
of critical sections consists of calculating the excess in the frequency of expected accidents, which corresponds
to the difference between the estimates predicted by the model and the estimation with the empirical Bayes
adjustment and it is formulated as follows:

∆ = E (A)− Ypre.

The value (∆) identifies the sections which have the highest frequency of expected accidents in contrast to
the frequency of accidents predicted by the model. These sections have priority because they are considered to
respond better to the proposed mitigation measures, as they have a significant excess that can be reduced.

In the methodological context, the application of the Bayes method considers three important aspects that
make it more precise than others: the availability of data, the regression bias to the mean, and the performance
threshold [27,33]. Bayes’ approach allows the accident-prone sections that produce the lowest proportion of false
negatives and false positives to be identified. These considerations emphasize that it is a widely recommended
method for estimating traffic accidents [52].

3.3. Setting

The research is applied in the city of Cartagena, Colombia. The city has more than 1 million inhabitants and
more than 130 000 vehicles in circulation. Cartagena has an extension of 650 km2 and has a road network of more
than 730 km. The city is in the north of Colombia in the Caribbean region. The city has a tourist, industrial,
and port vocation, but with high informal underemployment. In the last 8 years, Cartagena has been considered
among the most dangerous cities in road safety for motorcyclists, after Medelĺın, Cali, Bogotá, and Barranquilla
[44]. In the country, due to the increase in commuting, informal transportation, and mobility difficulties, the
use of motorcycles has increased, as well as the phenomenon of motorcycle taxi drivers as an informal activity
[39]. Cartagena and the cities of Barranquilla, Monteria, and Sincelejo are the capital cities where this informal
transport activity is most practiced in Colombia [31, 39]. Mototaxism is a typical and uncontrolled activity in
Cartagena, which turns out to be an illegal practice and without minimum safety standards [40].

In Cartagena, in the last 4 years (2016–2019), 174 fatalities have occurred, and more than 1750 crashes
in motorcyclists with serious injuries per year. Cartagena presents an official registry of 68.000 motorcycles
until March 2019 [43]. It is estimated that more than 75.000 motorcycles circulate, coming from nearby cities
and municipalities. According to official statistics, 60%–75% of motorcycles are engaged in informal passenger
transportation. In 2018 in Cartagena, motorcycles represents the second most used means of transportation
[11]. The high level of exposure and accidents that exist in the city is a favorable and representative setting to
analyze the crashes of motorcycles on the roads.

4. Method

The research methodology is based on 4 stages as recommended by Elvik [18] and Polders and Brijs [53].
First, identify the road sections that will be included in the analysis. Second, obtain historical information
on motorcyclist traffic crashes. Third, predict the number of crashes on the road sections with the Safety
Performance Function. The predictive model will be estimated with the negative binomial regression. Fourth,
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Figure 1. Location of Cartagena (Boĺıvar, Colombia), and the road sections with motorcycle
crashes (Google maps).

estimate the expected number of crashes in road sections using Bayes’ empirical approach, applying the number
of observed and predicted accidents.

4.1. Collection and processing of information

The first two methodological stages that describe the environment information and the road accident data
from Cartagena (Colombia) are presented below. The data of 2884 motorcycle crashes between 2016 and 2017
are analyzed. The database is provided by the Department of Traffic and Transportation (DATT) of Cartagena,
which manages mobility and road safety in the city. The crash dataset includes information on the timing, type
of collision, location, road users, and severity. The road crashes were manually geo-located to determine the
analysis sections within the study. The records have identified the accident data in all localities. The traffic
accident dataset ranges from property damage to minor injuries, serious injuries, and fatalities. Table A.1
provides statistical information from the dataset.

In total, 121 road sections are identified within the dataset. Figure 1 shows the location of the city and
the road sections with motorcycle crashes. The sample size corresponds to 242 road sections for two years
(2016–2017).

4.2. Definition of variables

In the development of the prediction model (SPF), a set of infrastructures, operational, environmental, and
traffic volume variables (12 quantitative variables and 5 categorical variables) are considered. The number of
motorcycle crashes per kilometer be the dependent variable within the model which represent the frequency of
collisions on the road sections in equivalent units. The quantitative variables are the number of curves, number
of accesses (intersections), the number of traffic lights, annual average daily traffic (AADT) by road users (cars,
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buses, heavy vehicles, and motorcycles) and the type of area (commercial, residential, industrial) in percentage
coverage.

The categorical variables are sense of the road, type of road (arterial, collector, local, and rural), lane con-
figuration, use of separators (median), and pavement condition (quality) of the road. The data related to the
length, geometry, and infrastructure of the road sections are collected directly on the road and validated with
satellite geo-referencing with Google Maps. Traffic volume is provided by studies of the consortium mobility
and traffic of the city between 2016 and 2017.

The type of road refers to the categorization of roads in Colombia. Arterial roads refer to the main roads with
greater interconnection, such as avenues. Collector roads are sections of roads that connect with main roads.
Local roads refer to inter-neighborhood sections. Finally, rural sections are defined as interurban or perimeter
connection routes between the city and the townships. The definition of pavement conditions (quality) is assessed
considering a functional valuation of serviceability, as defined by Fuentes et al. [21]. These categories are good,
regular (poor) and bad (very poor).

Table 2 shows the analysis variables of the road sections. The road sections are diverse in road characteristics
and not homogeneous. Road sections range from 1 to 65 motorcycle crashes. The length of the sections ranges
from 0.4 to 17.2 km. The total length of the sections corresponds to 220.1 km. The average volume of daily
motorcycle traffic is 47%. Automobiles correspond to 46% of the total traffic. The residential coverage area has
the highest proportion with 57%, followed by commercial areas (35%). Most of the sections are characterized
by collector type (40%), double lanes (68%), and double direction (sense) (70%).

4.3. Development of the prediction model

In the third stage of the study, the dataset be processed and analyzed with the statistical software SSPS
ver. 25. The prediction model has used a negative binomial regression to define a safety performance function
(SPF) for motorcyclist accidents. The SPSS software is configured for negative binomial with log link analysis.
The estimation of the parameters is considered with the “hybrid” method and the scale estimation (Pearson
Chi-square). The effects of the model are estimated with the “type I and III” analysis, while chi-square statistics
are set as “likelihood ratio”. The model is considered with the intercept or constant because it allows a better fit
[3,9]. The significance of the variable is to be examined with the chi-square test with a 95% confidence interval.

Before estimating the model, a Pearson correlation analysis is proposed on the identified continuous variables.
This analysis avoids errors in the estimation of the parameters when the independent variables have a strong
correlation. Additionally, this strategy allows reducing the number of variables for an adequate estimation of the
final parameters of the model [2]. The variables considered in the model are those with correlations (Pearson’s
value) with values less than 0.5 [3]. Table A.2 shows the correlation matrix of the qualitative variables.

The continuous variables to consider in the model are the number of accesses (intersections), number of
curves, type of areas commercial and industrial areas, average annual daily traffic (AADT), and average annual
daily traffic of motorcyclists (AADT-MC). The ADDT and ADDT-MC variables are considered in alternative
models because including them simultaneously would affect the significance and quality of the predictions [61].
Table 3 summarizes the total set of variables that are considered in the models.

The dependent variable Y is declared as the number of motorcycle crashes, which is accompanied by an offset
variable “length of the road section”. This fitting in the software allows the dependent variable to be interpreted
as the number of motorcycle crashes per kilometer. The application of the “offset” serves so that the parameters
of the linear component can be interpreted in terms of expected rates and not of expected counts. In general
terms, the model can be expressed as follows:

Y = exp
(
β0 ·Xβ1

1 ·Xβ3
3 ·Xβ4

4 ·Xβ5
5 ·Xβ6

6 ·Xβ7
7 ·Xβ8

8 ·Xβ9
9 ·Xβ10

10 ·Xβ11
11

)
.

With the transformation of some quantitative variables (variables from X1 to X6) in logarithmic scale (Ln), the
model can be expressed like as follows:

Y = Exp (β0) ·Xβ1
1 ·Xβ2

2 ·Xβ3
3 ·Xβ4

4 ·Xβ5
5 ·Xβ6

6 · Exp (X7β7 ·X8β8 ·X9β9 ·X10β10 ·X11β11) .
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Table 2. Statistical summary of quantitative and categorical variables.

Quantitative variables

Variables Notation N Minimum Maximum Mean Standard
deviation

Units

Motorcycle
crashes

Cra 242 1 65 12 11.7 number

Length (kilometers) Le 242 0.4 17.2 1.8 1.9 kilometers
Motorcycle crashes
per kilometers

Cra/Le 242 0.2 41.5 8.1 7.2 number/km

Number of accesses
(intersections)

NA 242 4 57 18.2 10.5 number

Number de curves Cu 242 0 12 2 2 number
Number of traffic
lights

Li 242 0 7 1.1 1.3 Number

AADT AADT 242 1181 80416 17185 13697 vehicles/day
AADT of cars ADDT-C 242 18 92 46 18 % vehicles/day
AADT of buses ADDT-B 242 18 15 3 3 % vehicles/day
AADT of heavy
vehicles

ADDT-HV 242 0 10 2 2 % vehicles/day

AADT of
motorcycles

ADDT-MC 242 0 76 49 19 % vehicles/day

Type of area –
Commercial

% Com 242 6 80 35.2 20.1 %

Type of area –
Residential

% Res 242 1 100 57.1 24.6 %

Type of area –
Industrial

% Ind 242 1 80 6 15 %

Type of area –
Rural

% Ru 242 1 100 3.5 13.1 %

Categorical variables
Variables Notation Description Total %
Type of road TR Arterial 56 23%

Collector 96 40%
Local 80 33%
Rural 10 4%
Total 242 100%

Lane configuration LC Four lanes 22 9%
Two Lanes 164 68%
Two-four lanes 32 13%
Three-six lanes 24 10%
Total 242 100%

Direction of the road DR Double 170 70%
Mixed 20 8%
Simple 52 21%
Total 242 100%

Median Me Without median 188 78%
With Median 54 22%
Total 242 100%

Pavement conditions PC Good 76 31%
Bad 82 34%
Regular-medium 84 35%
Total 242 100%
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Table 3. Summary of variables considered in the predictive model.

Type of variable Variable Notation Coding

Dependent Motorcycle crashes Cra Y

Off-set Length (Kilometers) – Ln (Le)
Independent-quantitative Number of accesses per kilometers Nit/Le X1: Ln (NA/Le)

Number of curves per kilometers Cu/Le X2: Ln (Cu/Le)
Type of area – Commercial Com X3: Ln (Com)
Type of area – Industrial Ind X4: Ln (Ind)
AADT AADT X5: Ln(AADT)
AADT-MC AADT-MC X6:: Ln(AADT-MC)

Independent-categorical Type of road – Arterial TR 1 X7

Type of road – Collector 2
Type of road – Local 3
Type of road – Rural 4
Lane configuration – Four LC 1 X8

Lane configuration – Two 2
Lane configuration – Two-four 3
Lane configuration – Three-six 4
Direction of the road – Double DR 1 X9

Direction of the road – Mixed 2
Direction of the road – Simple 3
Median-without separator Me 1 X10

Median-with separator 2
Pavement conditions – Good PC 1 X11

Pavement conditions – Bad 2
Pavement conditions – Regular 3

The quantitative variables are included within the model as covariates and categorical variables as factors.
These factors are raised by levels and are created as a “dummy”. Their participation in the model is binary,
and the number of variables per factor is the number of levels minus one. In this study, it is important to
highlight that the proposed dependent variable (motorcycle accidents per kilometer) is put back in motorcycle
accidents to be executed within the SPSS Software. However, the introduction of an offset variable (Length, km)
in the adjustment process in the software allows the final model to be interpreted as the number of motorcycle
accidents per kilometer. This method follows the models of Harnen et al. [30] and Abdul Manan et al. [3].

5. Results

In this section, the results of the models proposed with the software to predict the number of motorcycle
crashes per kilometer in the road sections of Cartagena are presented. Table 4 shows the results of the pro-
posed models. In the validation of the models, the goodness-of-fit measure is considered as Deviance, Pearson
Chi-Square, Akaike’s Information Criterion (AIC), and Bayesian Information Criteria (BIC). Four models are
proposed here. Models 1 and 2 contain the variable ADDT, while models 3 and 4 have the variable ADDT-MC.
The four models are statistically significant within the omnibus test (P -value < 0.05). Models 1 and 3 are not
representative. Some variables are not statistically significant with P -value > 0.05. Models 2 and 4 are found
by reducing the variables to obtain statistical significance (P -value < 0.05) of all estimated parameters. The
goodness-of-fit statistics of these models have very good results with the data. Pearson Chi-square values divided
by the degrees of freedom are within the permissible and acceptable range (around 1.1) for a negative binomial
distribution.
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Models 2 and 4 have the representation of three continuous variables and one categorical variable. Models 2
and 4 can be presented as follows:

Model 2:

Y = exp (−3.45) · Nit
Le

0.36

· COM0.18 ·AADT0.31 × exp (TR1 (1.31) · TR2 (1.04) · TR3 (0.93)) .

Model 4:

Y = exp (−2.26) · Nit
Le

0.30

· COM0.21 ·AADT0.20 × exp (TR1 (1.43) · TR2 (1.02) · TR3 (0.86)) .

Models 2 and 4 have in common the variable number of accesses (intersections) per kilometer, commercial area,
and type of road. These two models include average daily traffic (AADT) and average daily traffic of motorcycles
(AADT-MC) respectively. According to the models, the number of motorcyclist traffic accidents increases as
the volume of traffic increases due the number of accesses per kilometer, commercial coverage, and changes in
the type of road.

These two models represent the performance function in road safety to estimate annually the number of
motorcycle crashes per kilometer, with the exploratory variables. The AADT and AADT-MC variables represent
the measure of exposure, while the rest of the variables represent the risk factors in each of the models. For
the deviation criteria, Pearson’s Chi-square, Likelihood ratio Chi-square, Akaike’s Information Criterion (AIC),
and Bayesian Information Criterion (BIC), models 2 and 4 show a better statistical adjustment. In terms of
goodness-of-fit, model 2 is statistically better than the model 4 in the Akaike’s Information Criterion (AIC)
and Bayesian Information Criteria (BIC). From this perspective, considering the two models to predict the
frequency of accidents per kilometer can be adequately accepted.

Theoretically, the AIC and BIC values are affected by the number of explanatory variables in the model, so
these metrics tend to be lower. However, the values between models 2 and 4 are very close. The AIC metric is
typically used to compare various models, without necessarily being a formal inference [28]. In this condition,
we have carried out an analysis of Cumulative Residuals (CURE) where the models share some continuous
variables such as the number of accesses. A CURE plot that fluctuates closer to zero shows a model with a
better fit between the ranges of the variables [19]. Figure 2 shows the CURE plot, which compares models 2 and
4. The graph shows that model 4 is closer to zero. At 65% of the points evaluated, model 4 oscillates closer to
zero. Between 4 and 14 accesses per kilometer, model 4 shows the best fit in this range of the analyzed variables.

In the fourth stage of the study, the sections prone to traffic accidents in motorcyclists are identified. The
fourth model is used as a reference because it has less residual variability in prediction with the number of
accesses. The over-dispersion (α) of the model is 0.33. The weight (wi) and the analysis between the predicted
and observed values for the road sections are evidenced in Table A.3 for two years. Finally, 45 critical sections are
obtained, corresponding to 45% of the sections (Tab. A.4). Figure 3 shows the results of predicting the annual
frequency of traffic accidents per kilometer (density), and the sections prone to traffic accidents in motorcyclists
are analyzed in the city with Google Maps.

6. Discussion

In the present study, a safety performance function of motorcyclists is developed with a negative binomial
regression. The disaggregated analysis of exploratory variables of the environment, infrastructure, and opera-
tions has allowed identifying factors associated with the number of accidents per kilometer of motorcyclists in
Cartagena. Risk factors include the number of accesses, traffic volume, land use, type of road, and pavement
conditions. This study coincides with the findings of previous research in cities in emerging countries (LCIMs),
where mobility solutions are limited, and informal transport practices are common [3, 28, 30, 55]. Also, this
research has allowed the definition of road sections prone to accidents. These sections can be prioritized for the
development of effective counter measures to the benefit of road safety of motorcyclists.
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Figure 2. CURE plot for models 2 and 4.

In models 2 and 4, with better statistical significance, it is possible to identify that vehicle volume (AADT,
ADDT-MC) is a key factor in the number of road accidents, as indicated by Elvik [18]. These factors are related
to the level of exposure to motorcyclists. Considering the volume of motorcycles in traffic has a better fit in
the prediction. This improves sensitivity and precision due to the increase or adjustment in the composition
of the vehicle flow. These findings are also emphasized by Abdul Manan et al. [3], Lyon et al. [38] and Elvik
et al. [19]. In this way, focusing the analysis on model 4 could be the most logical, as evidenced by the analysis
of variance and error. Furthermore, the accident rate for motorcyclists is found to be slightly elevated when
interacting with cars (58%). This condition is ratified by the most representative of daily traffic volume which
are motorcyclists (47%) and automobiles (46%).

The number of (accesses) intersections is another of the important quantitative variables. The preliminary
descriptive analysis has identified that the areas with the highest accidents correspond to intersections (77%),
where the not signalized intersections correspond to 80%. Cartagena has territorial planning problems, which
have not enabled an adequate demographic distribution. The city has most streets in a transversal and diagonal
direction, increasing the number of accesses by road sections. The Literature has shown that intersections are
more likely to cause serious accidents for motorcyclists [15, 16, 24]. Intersections are important due to being
a high interaction that connects main roads with traffic at different speeds [23]. Among the most common
accidents for motorcyclists is a violation of the right of way at intersections [16, 51]. Pai [51] in a literature
review of the conditions in the crashes has evidenced problems in the visibility, and the crossing judgment
(gap/time, distance/speed) of the motorcyclist. Speeding at urban intersections can influence error behaviors,
such as failure to observe [15].

This study has identified that the commercial intensity of the road sections is a risk factor. The increase in the
commercial intensity of a sector influences the density of vehicular traffic, as well as the presence of pedestrians.
Within the identified critical sections, the commercial intensity of the sections is greater than 35%. It is common
to see in the city environment, the deficiency of side-walks for pedestrian circulation. Pedestrian side-walks in
commercial areas, and on arterial and collector roads very often become parking areas. This condition generates
moving pedestrians on the road. Commercial areas on local roads are obstructed by the parking of vehicles on
the road. This condition encourages motorcyclists to ride on the side-walks, or in the opposite direction. The
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(a)

(b)

Figure 3. (a) Density and (b) sections prone to a road crash on motorcyclists in Cartagena.



1270 H. OSPINA-MATEUS ET AL.

indicated scenarios generate a high risk for the safety of all road users. These findings are consistent with the
evidence by Harnen et al. [29] in Malaysia.

The type of road as a significant factor has a high relationship with the concentration of traffic. For example,
arterial and collector roads are the largest connectivity and congestion. These allow greater displacement in
population settings. Furthermore, local roads have showed high participation (55%) in crash-prone sections (see
Tab. A.4). This condition is related to the lack of signaling and lighting, as well as the speeding of motorcyclists
on inter-neighborhood roads. For example, motorcycle taxi drivers in the city take alternative roads to speed
up their travel, evade authority, or mobilize areas with little connectivity. Additionally, most of the sections
identified relate to areas with high socio-economic vulnerability. These areas are the most difficult in mobility
due to the lack of efficient transport systems. These towns are the most prone to motorcycle taxi drivers.
These socio-economic findings are consistent with the results found by Gutierrez and Mohan [22] on informal
transportation by motorcyclists.

The estimated models for the prediction of accidents in motorcyclists correspond to the first analyzes in
Colombia. Studies on the road safety of motorcyclists cannot be generalized, because these depend on the
context and local conditions [6]. Under these aspects, this study is novel in the Latin American context. These
types of models can be replicated in cities with similar conditions, developing adjustments or calibrations for
future studies as recommended by Polders and Brijs [53] and Aashto [1]. As a recommendation and future work,
it is planned to integrate GIS tools for spatial analysis. This study required manual and time-consuming work
on the geo-location of crashes to increase the reliability of the analyzes.

Among the limitations, the road accident information recorded by the control entities may likely suffer from
under-reporting. This phenomenon has been reported in other studies in motorcycling in Colombia [32, 48].
The results of this study allow prioritizing the accident-prone sections for the development of new studies. For
example, identifying by direct observation, the behavioral risk factors are associated with motorcycle accidents.

6.1. Managerial insights

Road safety problems require a detailed analysis of time and causality. The development of the safety per-
formance function is a demanding activity that seeks to locate all accidents to identify characteristics of the
infrastructure, mobility, and interactions of road actors. Based on the results of this study, some measures
focused on improving road safety for motorcyclists and road actors involved in the urban environment are
recommended as follows:

– Prioritize solutions in local road sections, by improving signaling (stops and speed signs) and lighting at
intersections related to arterial and collector roads.

– Improve pedestrian zone signage at all critical intersections.
– Implement traffic light studies on critical sections with high traffic density and accident frequency.
– Regulate and decrease speed on critical local roads with reducers and traffic agent control.
– Intensify traffic and mobility control in commercial environments.
– Develop road education campaigns focused on vulnerable age groups (i.e., youth between 18 and 20 corre-

sponds to 62% of victims).
– Carry out road tolerance campaigns between motorcyclists and automobiles. These road users have the

highest relation in accidents (58%).
– In large road segments (arterial or collector) allow the possibility of exclusive lanes for motorcyclists.

The results of the proposed model help to improve specifically the urban planning, resource projection for
road signs, traffic volume management, and operational support for mobility. All these benefits indicated in the
literature are aspects in which it is expected to contribute to the research in the city of Cartagena, due to its
complex problems with mobility, transport, and infrastructure. These findings are consistent with the results of
the factors associated with road accidents in the city of Cartagena developed by Cantillo et al. [10].
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To reproduce this model, adequate accident information, with all environmental characteristics, must be
collected. Additionally, updated information is required for the vehicle capacity records on the different roads
of the city. Nowadays, intelligent counting technology is recommended in traffic lights and specialist cameras.
Otherwise, investments are needed to monitor vehicle capacity in significant time slots.

7. Conclusion

The methodological combination of the performance function and the empirical approach of Bayes has identi-
fied environmental risk factors associated with the accident of motorcyclists in Cartagena. The proposed model
show that motorcycle accidents per kilometer have significant factors such as the daily volume of motorcyclists,
the number of accesses per kilometer, commercial area, and the type of road. Bayes’ analysis is the statistical
identification of 55 high-risk sections, where local authorities can focus and prioritize solutions. The applied
methodology shows the importance of analyzing road accidents to consider risk factors associated with the envi-
ronment. The research evidenced coherent and consistent results with previous studies and demand effective
countermeasures for the benefit of road safety for motorcyclists.

This study is the first model for the prediction of accidents in motorcyclists in Colombia with the declaration
of a performance function for road safety. Additionally, this research is applied in Cartagena, a city with a
high level of exposure, due to the number of motorcyclists who circulate, where the majority is dedicated
to motorcycle taxis. The results of the proposed model give significance to the influence of the commercial
environment of the road as well as the type of road. Reference models only highlight the importance of the
volume of traffic and the number of intersections of the road section. Likewise, the results rule out that the
pavement conditions have a significant influence on the accident rate. It is because of these findings that the
results are found to contribute to urban planning as well as the definition of effective policies for mobility and
transportation. The Cities with characteristics like Cartagena in infrastructure and social economy, such as
Monteria, Sincelejo, Barranquilla, can be favorable scenarios to replicate and compare the results of this study.

Appendix A.

Table A.1. Descriptive analysis of motorcyclist accidents between 2016 and 2017 in Cartagena.

Trimester 2016 2017 Total %

1 400 317 717 25%
2 521 279 800 28%
3 498 390 888 31%
4 250 229 479 17%
Day
Monday 262 157 419 15%
Tuesday 244 195 439 15%
Wednesday 258 179 437 15%
Thursday 232 187 419 15%
Friday 176 129 305 11%
Saturday 275 198 473 16%
Sunday 222 170 392 14%
Motorcyclist Age
18–20 1062 731 1793 62%
21–40 509 332 841 29%
50> 75 44 119 4%
No Register 23 108 131 5%
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Table A.1. continued.

Trimester 2016 2017 Total %

Non-motorcyclist age
18–20 435 342 777 38%
21–40 516 341 857 42%
50> 160 114 274 13%
No Register 55 95 150 7%
Type of day
Normal 1582 87 1669 58%
Festive 1169 46 1215 42%
Type of location
Intersection 1276 939 2215 77%
Roundabout 41 24 65 2%
Continuous section 352 252 604 21%
Type of area
Commercial 752 539 1291 45%
Rural 18 26 44 2%
Industrial 202 154 356 12%
Residential 439 350 789 27%
Commercial-residential 258 146 404 14%
Severity
Minor injuries 348 242 590 20%
Severe injuries 1276 935 2211 77%
Fatalities 45 38 83 3%
Class of collision
Rolled 106 71 177 6%
Vehicles fall 10 12 22 1%
Crash-shock 1547 1130 2677 93%
Dump 6 2 8 0%
Collision interaction
Solo motorcycle 293 193 486 17%
Between-motorcycles 210 130 340 12%
Motorcycle-vehicle 979 708 1687 58%
Motorcycle-heavy vehicle 60 61 121 4%
Motorcycle-bus 111 101 212 7%
Motorcycle (others; IE Bikes) 16 22 38 1%
Type of road
Arterial 763 505 1268 44%
Collector 603 463 1066 37%
Local 261 204 465 16%
Rural 42 43 85 3%
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Table A.2. Correlation analysis between independent variables.

Cu Nit % Res % Com % Ind % Ru AADT AADT-A AADT-MC AADT- B AADT-HV

Cu 1.00
Nit 0.50 1.00

% Res −0.12 −0.03 1.00
% Com −0.12 −0.11 −0.61 1.00

% Ind 0.26 0.09 −0.49 −0.16 1.00

% Ru 0.11 0.13 −0.37 −0.20 0.00 1.00
AADT 0.01 0.13 −0.46 0.46 0.19 −0.07 1.00

AADT-C 0.05 0.04 −0.50 0.43 0.28 −0.05 0.94 1.00

AADT-MC −0.05 0.19 −0.30 0.43 −0.01 −0.10 0.91 0.73 1.00
AADT-B 0.04 0.19 −0.46 0.44 0.21 −0.05 0.84 0.80 0.72 1.00

AADT-HV 0.16 0.11 −0.52 0.05 0.77 0.01 0.51 0.56 0.30 0.43 1.00

Table A.3. Results of the proposed model 4 in Predicted vs. Observed values.

Road section Condition Observed (cobs) Predicted (Y ) W E(A) ∆

1 No Critical 5 7 0.2 5.4 −1.6
2 No Critical 8 9 0.1 8.5 −0.5
3 No Critical 0 1 0.6 0.9 −0.1
4 No Critical 3 6 0.2 3.7 −2.3
5 No Critical 12 16 0.1 12.7 −3.3
6 Critical 22 19 0.1 21.3 2.3
7 No Critical 16 17 0.1 15.8 −1.2
8 Critical 27 19 0.1 25.9 6.9
9 No Critical 12 16 0.1 12.6 −3.4
10 No Critical 6 8 0.2 6.5 −1.5
11 No Critical 5 7 0.2 5.8 −1.2
12 No Critical 5 11 0.1 5.3 −5.7
13 No Critical 5 6 0.2 4.8 −1.2
14 Critical 9 8 0.2 8.9 0.9
15 No Critical 10 11 0.1 9.8 −1.2
16 Critical 5 5 0.2 5.3 0.3
17 No Critical 2 3 0.3 2.2 −0.8
18 No Critical 3 6 0.2 3.6 −2.4
19 No Critical 2 5 0.2 2.6 −2.4
20 No Critical 4 5 0.2 4.2 −0.8
21 Critical 7 6 0.2 6.9 0.9
22 Critical 5 3 0.3 4.5 1.5
23 Critical 10 6 0.2 9.4 3.4
24 No Critical 5 5 0.2 4.7 −0.3
25 No Critical 5 5 0.2 5.0 0.0
26 No Critical 9 11 0.1 9.4 −1.6
27 No Critical 8 10 0.1 8.1 −1.9
28 Critical 11 6 0.2 9.6 3.6
29 No Critical 9 9 0.1 9.0 0.0
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Table A.3. continued.

Road section Condition Observed (cobs) Predicted (Y ) W E(A) ∆

30 No Critical 7 11 0.1 7.1 −3.9
31 No Critical 4 7 0.2 4.2 −2.8
32 No Critical 1 3 0.3 1.3 −1.7
33 No Critical 1 5 0.2 1.8 −3.2
34 Critical 15 11 0.1 14.1 3.1
35 No Critical 3 7 0.2 4.1 −2.9
36 Critical 6 6 0.2 6.1 0.1
37 Critical 10 9 0.1 9.6 0.6
38 No Critical 9 10 0.1 8.8 −1.2
39 No Critical 2 5 0.2 2.7 −2.3
40 Critical 20 14 0.1 19.8 5.8
41 Critical 23 15 0.1 21.9 6.9
42 No Critical 2 5 0.2 3.1 −1.9
43 No Critical 6 7 0.2 6.0 −1.0
44 No Critical 5 8 0.2 5.4 −2.6
45 Critical 11 9 0.1 10.6 1.6
46 Critical 17 8 0.2 15.4 7.4
47 Critical 8 6 0.2 8.0 2.0
48 Critical 28 14 0.1 26.1 12.1
49 Critical 6 6 0.2 6.4 0.4
50 No Critical 7 7 0.2 6.8 −0.2
51 No Critical 2 2 0.4 1.7 −0.3
52 No Critical 4 7 0.2 4.5 −2.5
53 No Critical 2 8 0.2 3.3 −4.7
54 No Critical 6 8 0.2 6.2 −1.8
55 No Critical 5 6 0.2 5.5 −0.5
56 No Critical 5 6 0.2 5.3 −0.7
57 No Critical 5 7 0.2 5.5 −1.5
58 No Critical 4 5 0.2 4.6 −0.4
59 No Critical 3 6 0.2 3.3 −2.7
60 Critical 13 9 0.1 12.5 3.5
61 Critical 12 9 0.1 11.8 2.8
62 Critical 6 3 0.3 5.2 2.2
63 Critical 3 3 0.3 3.4 0.4
64 No Critical 3 8 0.2 3.5 −4.5
65 No Critical 1 6 0.2 2.2 −3.8
66 Critical 6 4 0.3 5.4 1.4
67 Critical 7 3 0.3 6.0 3.0
68 Critical 9 8 0.2 8.7 0.7
69 No Critical 1 7 0.2 2.1 −4.9
70 No Critical 2 3 0.3 2.4 −0.6
71 Critical 3 2 0.4 2.4 0.4
72 Critical 4 4 0.3 4.3 0.3
73 No Critical 2 6 0.2 2.9 −3.1
74 No Critical 2 4 0.3 2.8 −1.2
75 Critical 18 7 0.2 15.7 8.7
76 Critical 18 8 0.2 16.1 8.1
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Table A.3. continued.

Road section Condition Observed (cobs) Predicted (Y ) W E(A) ∆

77 No Critical 1 5 0.2 2.0 −3.0
78 Critical 12 8 0.2 11.6 3.6
79 No Critical 5 7 0.2 5.8 −1.2
80 Critical 5 5 0.2 5.3 0.3
81 No Critical 3 9 0.1 4.2 −4.8
82 No Critical 3 4 0.3 3.7 −0.3
83 Critical 8 5 0.2 6.9 1.9
84 No Critical 2 8 0.2 3.0 −5.0
85 Critical 10 2 0.4 7.0 5.0
86 Critical 7 6 0.2 6.7 0.7
87 Critical 7 5 0.2 6.1 1.1
88 Critical 6 6 0.2 6.2 0.2
89 Critical 7 6 0.2 7.0 1.0
90 Critical 21 8 0.2 18.6 10.6
91 Critical 6 3 0.3 5.1 2.1
92 Critical 14 8 0.2 13.1 5.1
93 Critical 13 11 0.1 12.6 1.6
94 No Critical 2 5 0.2 2.3 −2.7
95 No Critical 10 10 0.1 9.9 −0.1
96 No Critical 2 5 0.2 2.8 −2.2
97 Critical 14 9 0.1 13.5 4.5
98 Critical 17 10 0.1 16.1 6.1
99 Critical 15 10 0.1 14.8 4.8
100 No Critical 4 6 0.2 4.2 −1.8
101 No Critical 1 1 0.6 0.8 −0.2
102 No Critical 5 17 0.1 5.8 −11.2
103 Critical 36 14 0.1 33.5 19.5
104 Critical 30 19 0.1 29.4 10.4
105 Critical 17 17 0.1 17.4 0.4
106 No Critical 7 7 0.2 6.8 −0.2
107 No Critical 13 14 0.1 12.8 −1.2
108 Critical 16 10 0.1 14.9 4.9
109 Critical 11 9 0.1 11.0 2.0
110 Critical 27 16 0.1 26.0 10.0
111 No Critical 1 4 0.3 1.8 −2.2
112 No Critical 5 8 0.2 5.8 −2.2
113 Critical 11 8 0.2 10.5 2.5
114 No Critical 3 8 0.2 3.8 −4.2
115 Critical 6 4 0.3 5.6 1.6
116 No Critical 2 6 0.2 2.6 −3.4
117 Critical 5 4 0.3 4.9 0.9
118 Critical 7 4 0.3 6.5 2.5
119 No Critical 9 9 0.1 8.8 −0.2
120 Critical 3 1 0.6 2.1 1.1
121 No Critical 0 1 0.6 0.8 −0.2
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Table A.4. Road section prone to accidents by type of road.

Type of road Total Critical road %

Arterial 28 12 43%
Collector 48 20 42%
Local 40 22 55%
Rural 5 1 20%
Total 121 55 45%
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