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d Programa de Ingeniería Eléctrica, Universidad Tecnológica de Pereira. AA: 97 - Postcode: Pereira 660003, Colombia 
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A B S T R A C T   

This paper presents a model for stabilizing multi-terminal high voltage direct-current (MT-HVDC) networks with 
constant power terminals (CPTs) interfaced with power electronic converters. A hierarchical structure of hier
archical control is developed, which guarantees a stable operation under load variations. This structure includes 
a port-Hamiltonian formulation representing the network dynamics and a passivity-based control (PBC) for the 
primary control. This control guarantees stability according to Lyapunov’s theory. Next, a convex optimal power 
flow formulation based on semidefinite programming (SDP) defines the control’s set point in the secondary/ 
tertiary control. The proposed stabilization scheme is general for both point-to-point HVDC systems and MT- 
HVDC grids. Simulation results in MATLAB/Simulink demonstrate the stability of the primary control and the 
optimal performance of the secondary/tertiary control, considering three simulation scenarios on a reduced 
version of the CIGRE MT-HVDC test system: (i) variation of generation and load, (ii) short-circuit events with 
different fault resistances and (iii) grid topology variation. These simulations prove the applicability and effi
ciency of the proposed approach.   

1. Introduction 

Renewable sources and energy storage devices are integrated using 
power electronic converters, which allow the use of multi-terminal high 
voltage direct current MT-HVDC networks. These technologies allow to 
obtain advantages, such as lower losses, lack of synchronization, reac
tive power requirements, and high-reliability [1]. These networks 
require to act coordinately in order to guarantee stability and optimal 
operation. Renewable sources need to be operated coordinately to pre
serve suitable nodal voltage and maintain the energy storage devices 
between their operation limits. The grid must also preserve a constant 
power consumption at specific points named as constant power termi
nals (CPTs) [2,3]. 

The operation of MT-HVDC networks requires integrating advanced 
control and optimization techniques. The former is required to operate 

power electronic converters associated with each energy resource [4,5] 
and the latter is required to define the best operation point [6,7]. Hence, 
a primary control stabilizes the network in a particular operating point, 
and a secondary/tertiary control defines the best operative point 
considering economic and physical constraints [6,8]. 

The control of an MT-HVDC is similar to a stand-alone DC microgrid 
which includes a hierarchical control. In [9], a port-Hamiltonian model 
in conjunction with the interconnection and damping assignment 
passivity-based control (PBC) was presented for the primary control. In 
[8], an optimal power flow from a dynamic analysis based on 
port-Hamiltonian models for controlling power flows in MT-HVDC sys
tems was proposed. This same approach was adopted in [10] via 
port-Hamiltonian models for resistive networks. The authors in [11,12] 
proposed consensus strategies for power-sharing in DC networks with 
multiple constant power loads and distributed energy resources. While 
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in [13], the authors combined the consensus algorithm to a 
plug-and-play control approach for power control in DC networks. The 
authors in [14] presented a detailed revision of different control archi
tectures for the voltage and power regulation of DC networks via a hi
erarchical control. Some distributed control approaches were also 
discussed in [15,16] considering grid topology variations or communi
cation delays. The authors in [4] proposed a general nonlinear control 
with feedback based on the Lyapunov control theory to stabilize DC 
networks with multiple CPTs and actuators for islanded grid applica
tions by modeling each power electronic converter. In [17], a predictive 
fuzzy control model for the dynamic stabilization of DC microgrids is 
proposed. In [18], a nonlinear stabilization method for DC networks 
using a curvature Kalman filter was recently proposed. 

In the secondary/tertiary control, most of the publications reported 
in the specialized literature focus on an optimal power flow (OPF) so
lution via metaheuristic or exact mathematical techniques [19]. The 
authors in [7] presented a hybrid Gauss-Seidel genetic algorithm for 
solving the OPF problem in DC networks with multiple CPTs and 
voltage-controlled nodes. The authors in [2] provided a convex opti
mization model based on second-order cone programming for solving 
the OPF problem in islanded DC networks with CPTs. In contrast, [20] 
proposed semidefinite programming (SDP) model for determining the 
voltage stability index on DC networks via OPF formulation. The authors 
in [21] presented a multi-period SDP model for the economic dispatch of 
renewable generation and batteries in DC networks. The authors in [22] 
proposed an SDP model for an OPF solution in high-voltage DC networks 
by including a quadratic formulation of the power losses in the DC-DC 
converters. Whereas [6] proposed a convex model for solving the OPF 
problem via Taylor’s series approximation of the power balance 
equations. 

Based on the review mentioned in the above state-of-the-art, we 
propose a combination of the PBC theory for primary (stabilization) 
control purposes on DC networks. This method guarantees globally 
asymptotic stability properties. In comparison with the recent contri
bution presented in [9], the main advantage of this approach is that our 
proposed PBC control does not require communication channels in the 
control step and avoids parametric dependence on the capacitive filter 
values at each power electronic converter. The approach in [9] required 
this information to develop its PBC control strategy. Additionally, to 
define the desired operative point for the proposed PBC approach, we 
proposed as a secondary/tertiary control approach an OPF methodology 
based on an SDP model. This optimization strategy guarantees unique
ness in the solution as presented in [21]. This hierarchical control ex
ploits the most important advantages of nonlinear control and convex 
optimization to propose a robust DC grid operation strategy that was not 
previously found in the specialized literature. According to the above, 
the contributions of this study can be summarized:  

• A primary control for MT-HVDC grids with CPTs based on passivity 
theory is described. The proposed strategy uses a PI control to sta
bilize the DC-voltage and guarantee stability using Lyapunov’s 
theory.  

• A secondary/tertiary control based on the SDP model for minimizing 
the power losses in MT-HVDC grid is developed.  

• The proposed control’s performance is analyzed for the different 
values of proportional and integral gains. Furthermore, the robust
ness is also investigated under large disturbances as faults and trip
ping transmission lines. 

The rest of the paper is organized as follows: Section 2 presents the 
mathematical modeling of MT-HVDC and its dynamic representation for 
primary control purposes and its static formulation for secondary/ter
tiary control. Section 3 presents the PBC theory’s mathematical foun
dation for nonlinear port-Hamiltonian systems and the different control 
designs, including the proportional and PI PBC proposed approaches. 
Section 4 shows the desired operative point’s selection via convex 

optimization by showing the original non-convex OPF model’s trans
formation into a convex representation via an SDP relaxation. In Section 
5, a pseudo-code compacts the proposed hierarchical control method
ology. In contrast, Section 6 presents the simulation results in MATLAB/ 
Simulink that demonstrate the stability of the primary control and the 
optimal performance of the secondary/tertiary control, considering 
three simulation scenarios on a reduced version of the CIGRE MT-HVDC 
test system. Finally, in Section 7, the main conclusions derived from this 
work are presented. 

2. Network modeling 

An MT-HVDC may contain different active components as depicted 
in Fig. 1. Its mathematical representation depends on whether the 
objective is to stabilize or optimize the operation. While a dynamic 
model is essential in the former case, a steady-state model is sufficient in 
the latter situation [6]. Both models are nonlinear and highly inter
connected, so it is a challenge for theoretical and practical viewpoints. 
Thus, a dynamic model from an MT-HVDC network requires focusing on 
the power electronic converters [9]. In contrast, an optimization model 
needs a detailed representation of the network configuration, but a 
simplified description of those converters [23,24]. Fig. 2 illustrates the 
control structure of a conventional DC-bus voltage, which is composed 
of an inner loop (current control) and an outer loop (voltage control) 
[25]. 

In addition to renewable generation sources, an MT-HVDC grid may 
include CPTs. These terminals introduce a negative resistive effect that 
reduces the stability margin of the system. Besides, they add nonlinear 
and non-convex constraints into optimization models, so they are also a 
challenge for the secondary/tertiary control. These aspects are discussed 
below. 

2.1. Dynamic modeling 

A CPT is usually interconnected to a power electronic converter. 
However, it is convenient to simplify its model as presented in Fig. 3. 

By applying Kirchhoff’s first law at node k, the following first-order 
differential equation is obtained: 

ckv̇k = pkv− 1
k − gkvk − ik, (1)  

where ck corresponds to the capacitive shunt filter associated with the 
power electronic converter connected at node k; gk represents a linear 

Fig. 1. Schematic representation of a MT-HVDC network with energy re
sources, storage, linear loads, and constant power loads. 
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resistive load connected at node k; pk is the constant power value 
managed by the power electronic converter, which is positive for gen
erators and negative for CPTs; ik is the total injected current at node k; 
and vk represents its voltage. 

For compactness purposes on the dynamic modeling given by Eq. (1), 
all power electronic converter nodes were grouped in the set S with 
cardinality s, which implies that Eq. (1) can be rewritten with a matrix 
form as presented below: 

CS v̇S = diag
(
v− 1

S

)
pS − GS vS − iS , (2)  

where CS ∈ Rs×s is a positive definite matrix that contains all the 
capacitive effects of the power electronic converter; GS ∈ Rs×s is a 
positive semidefinite matrix that contains all the conductive effects at 
the nodes contained in the set S ; diag− 1(vS ) ∈ Rs×s corresponds to a 
positive definite matrix with the inverse of each voltage at its diagonal; 
iS ∈ Rs×1 represents the vector of injected currents while vS ∈ Rs×1 

corresponds to the voltage at the power electronic converter. 
Now, we focus on the MT-HVDC network that interconnects the 

power electronic converters to the other nodes (see Fig. 1). This grid can 
be modeled by an admittance matrix that represents the nodal relation 
between net injected currents and voltage nodes. We apply the voltage 
nodal method as presented below: 
(

iS

iR

)

=

[
GSS GSR

GRS GRR

](
vS

vR

)

, (3)  

where GSS ∈ Rs×s represents the conductance between power electronic 
converters; GSR ∈ Rs×r and GRS ∈ Rr×s define the admittance between 
power electronic converters and linear nodes1; whereas GRR ∈ Rr×r 

determines the conductance between linear nodes; r corresponds to the 
cardinality of the set R associated with the linear nodes; finally iR ∈

Rr×1 and vR ∈ Rr×1 correspond to the injected current and nodal voltage 
at linear nodes. 

Notice that the injected current at linear nodes is identically to zero, 
i.e., iR , since not constant power loads, distributed generators, energy 
storage systems or grid interconnections appear in these nodes (see 
nodes 4 and 6 in Fig. 1). Therefore, by applying the Kron’s reduction 
over Eq. (3), the following result is reached [26]: 

iS =
(
GSS − GSR G− 1

RR GRS

)
vS = YSS vS , (4)  

where YSS ∈ Rs×s represents the equivalent admittance between power- 
controlled nodes after applying a Kron’s reduction. Note that the Kron’s 
reduction is possible since GRR is a positive definite matrix, i.e., it has 
inverse. 

Finally, to achieve the final dynamic modeling of the MT-HVDC 
network for control purposes, Eq. (4) is substituted in Eq. (2) which 
produces the following result: 

CS v̇S = diag− 1(vS )pS − KS vS , (5)  

where KS = GS + YSS . 

2.2. Stationary-state modeling 

Conventionally, a DC grid can be modeled by a set of nonlinear 
non–convex equations for power flow and optimal power flow problems 
[2,20]. These models assume that all the voltages of the DC network 
have been stabilized by a primary control, which implies that the system 
is in a stationary state [21]. Considering this assumption, v̇S = 0 and 
Eq. (5) can be rewritten under steady-state as follows: 

pS = diag(vS )KS vS . (6) 

Power system readers widely know expression in Eq. (6) as the set of 
power flow equations for DC networks with CPTs. Some recent in
vestigations have also demonstrated that these equations can be solved 
by Newton–Raphson methods [3], Gauss-Seidel approximations [7,26], 
or linear methods [6,23]. In this paper, those equations are essential 
input for formulating a convex optimization problem with a unique 
solution to determine the set-point, as discussed in the next section. 

3. Stabilization by passivity–based control 

The PBC approach is a well-studied and strong mathematically 
founded nonlinear control technique for designing systems with 
Lagrangian or Hamiltonian representation. This method guarantees 
stability in the sense of Lyapunov’s for closed-loop operation [27,28]. It 
exploits the strong relation between the energy storage in the system and 
its dynamics to generate a control strategy that preserves passive and 
dissipative properties [29,30]. Based on the well-known passive prop
erties of electrical networks, we proposed a control using a 
port-Hamiltonian formulation  [31]. 

Proposition 1. The reduced dynamic system in Eq. (5) can be represented 
as a port-Hamiltonian system with an affine structure as follows: 

D ẋ = (M − N )x + G (x)u, (7)  

where D ∈ Rs×s is a positive definite matrix known as the inertia matrix; 
M ∈ Rs×s and N ∈ Rs×s correspond to the interconnection and damping 
matrix, which are skew–symmetric and positive semidefinite, respectively; 
x ∈ Rs×1 represents the vector of the state variables, G (x) ∈ Rs×s corre
sponds to the positive define input matrix and u ∈ Rs×1 is the input vector. 

Proof. The proof of this proposition is straightforward by comparing 
Eq. (5) to Eq. (7) and making the following definitions: 

x = vS , u = pS , D = CS (8)  

M = 0, N = K S , G (x) = diag− 1(vS ). (9)  

□ To define a control law that allows moving the current operative 
point x to the desired operative point x★, let us define the dynamics of 
the error in the state variables as x̃ = x − x★; besides, it is clear that for 
DC grids x★ is constant, which implies that ˙̃x = ẋ. 

Fig. 2. Block diagram of a conventional control for the DC-bus 
voltage controlled. 

Fig. 3. Simplified model of a constant power terminal [9].  

1 Note that GRS = G⊤
RS 
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Proposition 2. A control input u exists such that the port-Hamiltonian 
system in Eq. (7) takes a gradient form for a closed-loop operation as pre
sented below: 

D ẋ = − N ★x̃, (10)  

where N ★ is a positive definite matrix that guarantees that (10) is expo
nentially stable. 

Proof. To determine the control input law that allows transforming 
Eq. (7) into Eq. (10), both equations are equaled by assuming that G (x)
is a full–rank square invertible matrix. This is a reasonable assumption 
since the voltages x must be guaranteed for DC grid operation and 
contained between xmin and xmax, such that xmin > 0. Considering this 
assumption, then the control input takes the following form, and the 
proof is completed: 

u = G
− 1
(x)(N x − N ★x̃), (11)  

where N ★ ∈ Rs×s is a positive definite matrix that contains all control 
gains. □ The proposed control law defined by Eq. (11) was initially 
proposed by [9]. Nevertheless, the control law’s main disadvantage is its 
dependence on the voltage measurements at all power electronic con
verter nodes since N corresponds to a full rank matrix. 

For providing an alternative control law that avoids depending on 
voltage measurements at each power electronic converter, we propose a 
modification to Eq. (11) as follows: 

u = G
− 1
(x)(N x★ − N ★ x̃). (12)  

Proposition 3. The control law in Eq. (12) guarantees a global asymptotic 
stable response for the dynamic system in Eq. (7). 

Proof. To obtain a closed–loop dynamic behavior of the system in Eq. 
(7), let us substitute Eq. (12) with Eq. (7) and rearrange some terms as 
follows: 

D ẋ = − (N +N ★)x̃. (13) 

To proof the exponential stability of the dynamic system given by 
Eq. (3), let us define the following candidate Lyapunov function [28]: 

V (x̃) =
1
2
x̃⊤D x̃. (14) 

Applying the temporal derivative of V (x̃) and considering that D =

D
⊤, the following result is achieved: 

V̇ (x̃) = − x̃⊤(N +N ★)x̃. (15) 

The result given by Eq. (15) shows that the dynamic system in Eq. 

(13) is asymptotically stable according to Lyapunov’s theory [31]. 
Furthermore, it is also exponentially stable since, V̇ (x̃) ≤ − βV (x̃) if we 
select β ≤ λmin(D

− 1(N + N ★)). □ 

An integral action can be added to the control for reducing steady 
state errors without affecting the exponential stability of the closed-loop 
dynamic system as presented below: 

u = G
− 1
(x)(N x★ − N ★x̃ − K iz),

ż = x̃,

where K i = K ⊤
i corresponds to a symmetric matrix that contains all 

integral gains. For proving the asymptotically stability of these PI con
trol refer to [27]. 

Fig. 4 depicts the proposed control implemented at node k. Initially, 
the control law computed in Eq. (14) is a power. Therefore, the control 
law is converted into a current dividing by the dc-voltage at node k. 
However, the control law is also multiplied by this same dc-voltage. 
Hence, this step was simplified. 

4. Convex OPF for reference selection 

The set-points primary control set-points constitute a secondary/ 
tertiary layer, typically associated with an optimization model. Hence, 
the system dynamics are usually negligible since this optimization layer 
focuses on obtaining the desired operative point under steady-state 
conditions. The static DC model presented in Eq. (6) is involved inside 
optimal power flow problems as a balanced power set of constraints [6]. 
This paper focuses on a convex transformation of the classical nonlinear 
non-convex OPF problem since the convex model guarantees a global 
optimum solution with low computational effort [22,32]. 

The nonlinear non-convex conventional OPF problem has the 
following model: 

Model 1 (Non convex OPF-DC). 

Minimize ploss = x⊤Y SS x
pS = pg

S − pd
S = diag(x)K S x

pg,min
S

≤ pg
S

≤ pmax
g

xmin ≤ x ≤ xmax

(16)  

where ploss ∈ R+ is the objective function associated to the active power 
losses, pg

S
∈ Rs×s and pd

S
∈ Rs×s represent the power generation and load 

consumption at distributed energy resource nodes and CPTs, respec
tively. 

Notice that the solution of the optimization problem given by (16) 
corresponds to the set-point x★ for the control problem treated previ
ously. Nevertheless, the solution of Model 1 is not easy since the power 
flow balance is nonlinear and non-convex. For this reason, we use the 

Fig. 4. Block diagram of the proposed control for voltage control  
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convex reformulation of the OPF problem as proposed in [21] to obtain 
its approximated solution to guarantee uniqueness in the solution [33]. 

Model 1 is reformulated as a convex problem via SDP approxima
tion. Let us define X = xx⊤ as a decision matrix, which entails to the 
following transformation: 

Model 2 (SDP convex OPF-DC). 

Minimize ploss = tr(X)
pg

S − pd
S = diag(K S X)

pg,min
S

≤ pg
S

≤ pmax
g

1S x2
min ≤ X ≤ 1S x2

max

X = X⊤⪰0

(17)  

where tr(⋅) is the trace and 1S ∈ Rs×s is a matrix filled by ones. 
Notice that Model 2 is convex since the rank matrix constrain 

rank(X) = 1 was relaxed [20]. 
It can be observed that the result of the SDP is a rank s matrix. 

Therefore, it is necessary to employ a general decomposition to recover 
the vector x from matrix X. To achieve this, it uses the decomposition 
method by means of eigenvalues and eigenvectors [21,22] as follows: 

X =
∑s

k=1
λkWkW⊤

k , (18)  

where λk and Wk represent eigenvalues and their corresponding eigen
vectors in each time period, respectively. If the representation for the 
problem as an SDP is good enough, s − 1 eigenvalues close to zero are 
expected. Therefore, the rank of X is an approximation to one and can be 
achieved as presented below: 

X ≈ λmWmW⊤
m , (19)  

where λm represents the maximum eigenvalue (i.e other eigenvalues are 
close to zero) in each time period. According to this approximation, it is 
possible to recover the vector x as follows: 

x ≈
̅̅̅̅̅
λm

√
W⊤

m , (20) 

The main advantage of this methodology is its efficiency and preci
sion [34]. 

5. Hierarchical control 

The pseudo-code presented in Algorithm 1 shows the coordinate 
control strategy for stabilizing DC networks using PBC theory in 
conjunction with convex optimization. 

This hierarchical control scheme solves the proposed convex OPF 
model recursively each time the DC grid has any change to update the 
control input so that the DC network remains stable. Fig. 5 shows the 
proposed hierarchical control scheme. 

6. Computational validation 

To validate the proposed hierarchical control, we consider a reduced 
version of the CIGRE MT-HVDC system presented in [25]. It is composed 
of six buses and five power electronic interfaces as presented in Fig. 6. 
This system is operated with 400 kV, and we assume that the slack 
source is located at node 1. In addition, the parametric information of 
the overhead lines (OHL) and the cables (CBL) is listed in Table 1. 

Due to the length of the HVDC transmission lines, these are repre
sented with π − equivalents. Table 2 lists the complete information of 
the lines for the HVDC system depicted in Fig. 6. 

The information reported in Table 2 is used to calculate the reduced 
conductance matrix under steady-state conditions (i.e., eliminating 
nodes 6 and 7), which take the following form in per-unit 
representation: 

Fig. 5. Proposed hierarchical control scheme.  

Fig. 6. Five multiterminal HVDC grid developed by the CIGRE B4 work
ing group. 

Table 1 
Parametric information of the OHL and CBL.  

Type Res. (Ω/km) Ind. (H/km) Cap. (F/km) 

OHL 0.0114 0.9356 0.0123 
CBL 0.0095 2.1120 0.1906  
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Y
SS

=

⎡

⎢
⎢
⎢
⎢
⎣

178.348 − 13.693 − 80.445 − 84.211 0
− 13.693 47.9247 − 34.232 0 0
− 80.445 − 34.232 148.361 0 − 33.684
− 84.211 0 0 168.421 − 84.211

0 0 − 33.684 − 84.211 117.895

⎤

⎥
⎥
⎥
⎥
⎦

We consider three load and generation steps as presented in Table 3. 

6.1. OPF Solution 

Next, we compare the effectiveness of the SDP approximation to 
solve the OPF problem with the nonlinear non-convex formulation 
(Model 1) in the general algebraic modeling system (GAMS), and the 
results are contrasted to the solution of Model 2 provided by the CVX 
package from MATLAB. 

Table 4 presents the solution of Model 1 using the Artelys Knitro 
10.3.0 solver as well as the solution of Model 2 provided by CVX. The 
SDP model’s voltages present estimation errors lower than 1 ×10− 3% 
compared to the exact nonlinear model. These results confirm the 
convex model’s accuracy and efficiency in terms of voltage calculation 
for the OPF problem in DC networks, as confirmed by different authors 
in [20–22]. 

The OPF model’s solution using the convex proposed reformulation 
estimates a total power loss of 0.3615 p.u. with a tracking error lower 
than 2 × 10− 4% in comparison to the exact nonlinear non-convex OPF 
model. This validates its application, as reported in [20,21]. 

On the other hand, Table 5 shows the eigenvalues’ behavior of the 
matrix of variables X used in the SDP model. This behavior also confirms 
that relaxing the rank of this matrix for obtaining a convex model is an 
adequate approximation for solving OPF problems since the values in 
Table 3 confirm that there exists a unique eigenvalue λ5 that is different 
from zero. In contrast, the other eigenvalues are closer to zero, as sup
posed in (20). 

An important fact in the proposed secondary/tertiary control stage is 
that it ensures that the solution to the OPF problem is optimal via SDP 
optimization. However, the generation values in PV sources can be 
different from the resource availability since the objective function is to 
minimize the total grid losses, which implies that the best solution 
corresponds to the set of powers that reduces the energy dissipation in 
the resistive effect of the grid. Table 6 presents the power injections in 
the PV node (node 5 in Fig. 6). 

Note that in Table 6 it is possible to observe that in the first period, 
the amount of power injection in the PV sources is about 60.54 % of the 
total power availability, while for the rest of the periods, the PV gen
eration is equal to the maximum power available. It is important to 
mention that if we fixed the generation in T1 as 2550 MW in the PV 
sources, then the total power losses in this period are about 8.8564 MW, 

which implies an increment of 1.4343 MW concerning the optimal so
lution. However, the solution that should be implemented will depend 
on the practices established by the power system operator bases on the 
market conditions regarding the usage of renewable energy resources 
instead of fossil sources. 

6.2. Dynamic performance of the proposed PBC controls 

We considered various numerical simulations using the MATLAB 
simpowersystems toolbox, including the transmission lines’ inductive 
and capacitive effects. The control parameters were adjusted using 
multiple simulations to minimize the steady-state error. The values for 
K p and K I correspond to diagonal matrices with values between, which 
are varied from 0 to 20 for the proportional gains. At the same time, the 
integral gains are varied from 500 to 2500. 

Fig. 7 shows the dynamic performance of the voltages in two network 
nodes. For this purpose, we select nodes 2 (load node) and 5 (generation 
node) since these present the most important voltages variations, as can 
be seen in Table 4. 

The dynamic behavior obtained in Fig. 7 for the load and generation 
nodes allows observing that: (i) the usage of the proportional PBC 
control defined by Eq. (12) injects enough damping to the system in 
order to reduce the system oscillations and possible peaks caused by the 
reference changes; and (ii) the time of stabilization of the voltages in the 
system is highly dependent on the control gain since when the diagonal 
of K p is an equation to time, the time to reach the reference is about 
350 ms, while when the diagonal of the proportional gain is equal to 20, 
this time is reduced until 100 ms. 

The PI action in the PBC control is analyzed in Fig. 8 which presents 
the performance of the voltage at node 5 (i.e., PV generation bus). The 
diagonal of the matrix K p is assigned as 10, and the integral gains vary 

Table 2 
Information the HVDC lines.  

Parameter Z1,2  Z3  Z4  Z5,6  Z7,8,10  Z9  

Rπ (Ω)  3.42 5.70 2.28 4.56 1.90 2.85 
Lπ (H)  0.28 0.46 0.19 0.37 0.42 0.63 
Cπ (F)  1.85 3.08 1.23 2.46 19.06 28.60 
Length (km) 300 500 200 400 200 300 
Type OHL OHL OHL OHL CBL CBL  

Table 3 
Demand and generation information for three periods of time.  

Node T1 (MW) T2 (MW) T3 (MW) Capacitance [μF]  

1 Slack — — — 75 
2 CPT 850 1500 1200 275 
3 CPT 1500 1400 2000 75 
4 CPT 1850 2350 1500 4.5 
5 PV 2550 500 1250 90  

Table 4 
Voltages obtaining by solving Model 1 and Model 2 with GAMS and CVX.  

GAMS-KNITRO 

Period [s] v2 (p.u)  v3 (p.u)  v4 (p.u)  v5 (p.u)  

T1 0.96940387 0.98277874 0.98917412 1.00054847 
T2 0.94812789 0.97359505 0.97524539 0.97910535 
T3 0.95587639 0.97489993 0.98858684 0.99519122 

CVX-MATLAB 
Period [s] v2 (p.u)  v3 (p.u)  v4 (p.u)  v5 (p.u)  
T1 0.96936016 0.98271970 0.98906506 1.00034174 
T2 0.94812784 0.97359505 0.97524544 0.97910548 
T3 0.95592569 0.97496718 0.98870912 0.99543415  

Table 5 
Eigenvalues’ behavior for the SDP convex approximation.  

Period 
[s] 

λ1  λ2  λ3  λ4  λ5  

T1 -3.221×

10− 09  
-2.463×

10− 09  
-2.223×

10− 09  
-9.685×

10− 10  
4.884 

T2 -1.183×

10− 09  
-9.646×

10− 10  
-9.599×

10− 10  
-5.610×

10− 10  
4.757 

T3 -6.196×

10− 10  
-4.972×

10− 10  
-4.464×

10− 10  
-2.598×

10− 12  
4.832  

Table 6 
Power injections in the PV node for all the demand load conditions.  

Period Nominal power (MW) Injected power (MW) ploss (MW)  

T1  2550 1543.7270 7.4222 
T2  500 500 16.9014 
T3  1250 1250 11.8075  
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from 0 to 2000 in steps of 500. The dynamic behavior of the voltage in 
this node shows that the integral gain in the PBC proposed control has 
two main effects: (i) it reduces the required time to reach the voltage 
reference, since, without integral gain, this time is about 150 ms when 
the proportional gain is set as 10; and less than 20 ms when is added the 
integral gain with a value of 2000, and (ii) the overpass of the voltages 
when the reference signal changes are lower when compared to the 
control with and without integral gains. This reduction is approximately 
20 %. 

6.3. Dynamic behavior the system in the presence of a short-circuit 

The proposed passivity-based control guarantees the stable operation 
of the network when a large perturbation occurs inside of the network 
(e.g., short-circuit event). We simulate faults with different fault re

sistances (e.g., 10 Ω ≤ Rf ≤ 50 Ω) at the node that connects lines 1 to 4 
(see Fig. 6). Fig. 10 depicts the dynamic behavior of the voltage at node 
2, which is the node with the largest load connected near the fault point. 
It is important to mention that in all the nodes with converters, the 
maximum variations of the control inputs, i.e., the powers are set as ±
4000 MW. Note that the duration of the fault is 100 ms, and the diagonal 
values of the proportional and integral control actions are set as 20 and 
2000, respectively. 

From Fig. 10, it possible to observe that: (i) for all the different re
sistances of fault, the proposed control allows stabilizing the system, e. 
g., for Rf = 10 Ω the stabilizing time is about 200 ms once the fault event 
is clarified, whereas Rf = 50 Ω the stabilizing time is less than 50 ms; (ii) 
the overpass in the voltage after clarifying the fault is dependent of the 
fault current, i.e., when Rf = 10 Ω the current fault in steady-state 
conditions is about 34.5 kA, which produce a voltage peak of 2.358 p. 
u, whereas for Rf = 50 Ω this current is about 7.7 kA and the maximum 
voltage peak is about 1.048 p.u; and (iii) the oscillations in the voltage 
after clarifying the fault are mainly caused by the effect of integral ac
tion due to the strong variations in the voltage reference and the 
measured signal; which can be attenuated with an adequate selection of 
the control gains. 

6.4. Line disconnection and references updating 

We simulate a possible topology variation in the network, where line 
Z6 is disconnected in both extremes due to the non-correct operation of 
the protective devices. This new configuration of the network makes 
that the initial operative point of the network does not minimize the 
total grid losses, which implies that the references of the voltages pro
vided to each power electronic converter must change to re-optimize the 
total power losses. To do this simulation, let us suppose that the grid 
initially operated with the conditions defined for T1 in Table 3. To show 
that the system ensures the minimization of the power losses by 
updating the voltage references once the grid topology changes, we plot 
the total power generation in the slack source (see Fig. 10), i.e., node 1. 
Note that we assume that the information to solve the new optimization 
problem considering the new topology of the grid takes about 500 ms 
due to communication delays. 

The behavior of the power generation at the slack node guaranteed 
that in steady-state conditions, the total power losses of the network are 
minimized by using the voltages’ references provided by the secondary/ 
tertiary control (i.e., solution of the OPF problem using the slack node). 
This implies that previous to the grid topology changes, the number of 
power losses of the grid is 7.4223 MW (see Fig. 10 before 2 s). During the 
period between 2 s and 2.5 s, the losses are not minimized; nevertheless, 
the proposed control allows stabilizing the system until the SDP model 
will provide the new references. When these references are reassigned to 

Fig. 7. Dynamic voltage performance a load and generation nodes: (a) voltage 
at node 2, and (b) voltage at node 5. 

Fig. 8. Dynamic performance of the voltage in the PV node for different values 
of the integral gain. 

Fig. 9. Dynamic performance of the voltage at node 2 for different short- 
circuit events. 
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the converters, the power generation in the slack node is optimal again, 
which implies that the power losses in steady-state conditions reach the 
desired value, i.e., 8.9856 MW. 

7. Conclusion 

This paper proposed a hybridization of a PBC and convex optimi
zation via SDP to address MT-HVDC networks’ hierarchical control with 
multiple DERs and CPTs. The primary control strategy was based on the 
PBC methods that guarantee global asymptotic stability using Lyapu
nov’s theory in a closed-loop operation. Furthermore, the proposed PBC 
controls were based on proportional and PI actions that allow reaching 
the stabilization control objective by using only local measurements. 
This showed a clear advantage compared to PBC methods reported in 
the literature. Simultaneously, the set point of the PBC methods (the 
secondary/tertiary control stage) was defined with convex optimization, 
which relaxes the nonlinear non-convex model to guarantee uniqueness 
in the OPF solution. Different simulation results showed that the pro
posed hierarchical control strategy’s was efficient and effective for sta
bilizing the DC network varying time load conditions. 

Numerical simulations in the CIGRE five nodes multi-terminal HVDC 
test system demonstrated that the proposed hierarchical control main
tains the system stable even if short-circuit events and grid configuration 
changes occur in the power system. Furthermore, when the 

configuration of the grid changes, the proposed SDP model can update 
all the voltage references in order to carry the test feeder to a new 
optimal operation point which minimizes the total grid losses. 

As future works will be possible to develop the following research: (i) 
apply the model predictive control theory to replace the primary control 
stage to obtain a new control scheme that works with a unique opti
mization stage; (ii) replace the optimization stage based on the SDP 
model by a second-order cone programming equivalent to reduce the 
number of optimization variables, which reduces the computational 
charge of the proposed methodology; (iii) include in the mathematical 
modeling of the grid all the dynamics associated with the transmission 
lines. 
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