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Abstract: The problem of the optimal operation of battery energy storage systems (BESSs) in AC
grids is addressed in this paper from the point of view of multi-objective optimization. A nonlinear
programming (NLP) model is presented to minimize the total emissions of contaminant gasses to the
atmosphere and costs of daily energy losses simultaneously, considering the AC grid complete model.
The BESSs are modeled with their linear relation between the state-of-charge and the active power
injection/absorption. The Pareto front for the multi-objective optimization NLP model is reached
through the general algebraic modeling system, i.e., GAMS, implementing the pondered optimization
approach using weighting factors for each objective function. Numerical results in the IEEE 33-bus
and IEEE 69-node test feeders demonstrate the multi-objective nature of this optimization problem
and the multiple possibilities that allow the grid operators to carry out an efficient operation of their
distribution networks when BESS and renewable energy resources are introduced.

Keywords: energy storage with batteries; distribution networks; economic dispatch approach; energy
purchasing costs; mathematical programming; multi-objective optimization

1. Introduction

The problem of the optimal operation of battery energy storage systems (BESSs)
in electrical distribution has attracted much interest in the last two decades due to the
advances in energy storage and power electronic converter technologies [1-3]. The main
advantages of including these batteries are as follows: (i) possible greenhouse emissions
minimization in power systems fed by fossil generation [4,5]; (ii) improvement of the
voltage profiles and the reduction of the grid power losses [6]; (iii) possible reduction
of power oscillations caused by uncertainties in the renewable energy resources [7-9];
(iv) dynamic active and reactive power compensation using power electronic converters
in electric vehicles [10]; and (v) real-time demand management [11]. The main question
that must be solved when batteries are included in AC grids is as follows: How must these
batteries operate to improve the electrical grid performance? Note that the solution of
this question involves the proposition and solution of an optimal multi-period power flow
model [12], which is known in the literature as the economic dispatch model when the
objective function is concerned with operative cost minimization [2].
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Nowadays, BESSs are real options for improving the electrical performance of distri-
bution networks in medium- and low-voltage levels [1,13], since these devices can facilitate
peak energy consumption fulfillment, enhance the profits from the integration of renew-
ables and distributed energy sources, help power quality management, and generally
reduce distribution network expansion costs [14]. The authors of [15] presented an experi-
mental case with regards of the designing a BESS for urban industrial application in order
to improve local power quality. They considered two cases of study, i.e., reactive power
compensation and rapid variations of the electricity variations caused by a metro train load
and a production of a solar power plant, and they mentioned that these studies were tech-
nically successful. In addition, an evaluation of the BESS assessment in a real distribution
system in Riyadh, Saudi Arabia, was studied by Almehizia et al. [16]. Numerical results
quantify the economic return that BESSs can offer for the electrical distribution grids, thus
showing that improving the decision-making of the electric utility can deal with increasing
load demand and power quality issues.

To analyze BESS in electrical networks with AC or DC operational technologies, one
of the most accepted and currently used models corresponds to the linear representation
between the state-of-charge and the power injection/absorption [17,18]. However, even if
the battery model can be represented using linear equations, nonlinearities appear due to
the nonlinear non-convex behaviors in AC power grids, which are caused by the power
balance equations [1,19]. To address the nonlinear economic dispatch problem involving
BESS and renewable generation in AC grids, various optimization models with different
grades of approximation can be used. The first model corresponds to the adaption of the
classical economic dispatch model for thermal power systems that uses a unique nodal
representation of the system [18]; the second model is the DC approximation of the power
flow equations that works with the angular difference between two adjacent nodes by
assuming that the voltage is equal to 1.0 pu [20]; and the third model corresponds to the
complete AC power flow model that involves active and reactive power balance as well as
voltage magnitudes and angles [21]. Note that the two first models are linear programming
models, i.e., these are convex models, while the third model is nonlinear and non-convex
due to the products among trigonometric functions and voltages in the power balance
equations [22].

In the literature, these models are employed to operate BESS and renewable sources
in power systems from the point of view of the economic dispatch approach. Some of these
works are presented as follows. The authors of [18] presented a unique nodal model for
optimal dispatching batteries in AC microgrids. The resulting linear programming model
is solved using the CPLEX solver, and the numerical results show the effect of the load
and renewable generation behavior in the battery demeanor regarding state-of-charge and
power injection/absorption. Berglund et al. [23] presented a linear-integer programming
model to minimize the total cost of the facility, including the peak power demand and the
energy costs, with the aim of extending battery lifespan. The proposed model uses a unique
nodal representation and its solution is reached by using the GAMS optimization package.
The authors of [2,20,24,25] presented linear programming and integer-linear programming
models for installing and operating BESS in power systems using the DC equivalent of
the AC power flow problem. The main aims of these works are the minimization of the
investment costs in power systems regarding new transmission lines and the reduction
of the greenhouse gas emissions produced by conventional thermal power sources. Most
of these models have been solved using the GAMS software. The authors of [17,26,27]
evaluated the complete AC multi-period optimal power flow model for the operation of
BESS, considering a daily demand curve and renewable generation penetration including
apparent power capabilities of the electronic convertors that are interconnected to the BESS.
The authors of [21] proposed a nonlinear programming model with continuous an integer
variables to install and operate batteries in distribution grids to reduce the total costs of
the power losses during daily operation. The batteries are modeled with a binary behavior
where the power injection is fixed regarding their maximums and minimums. The solution
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of this model is reached by implementing a Chu-Beasley genetic algorithm. The authors
of [1] proposed an optimization approach to locate and operate BESS and distributed
generators in medium- and low-voltage distribution networks, using a hybrid optimization
approach that combines the simulating annealing method in the planning stage and a
conic decomposition in the operation stage. Three test feeders composed of 11, 135, and
230 nodes are used to validate the proposed optimization methodology, considering the
minimization of the investment, operation, and maintenance costs during the planning
period. Numerical results demonstrate the effectiveness and robustness of the optimization
approach regarding the planning period; however, the authors did not consider terms
related to the environmental impact associated with greenhouse gas emissions. In addition,
due to the usage of heuristics in the planning stage, the possibility of finding the global
optimal is not ensured.

After the revision of the state-of-the-art associated with the optimal integration of
BESSs systems in AC distribution grids, the main contributions of this study can be
summarized as follows:

v" The multi-objective formulation of the problem regarding the optimal operation
of BESS in AC radial distribution networks using the branch optimal power flow
representation, considering the simultaneous minimization of the CO, gas emissions
and the costs of the daily energy losses, is presented.

v" The Pareto front is constructed using the multi-objective optimization approach
via pondering factors by exploiting the potentialities of the GAMS software for
nonlinear optimization.

v The different effects that voltage control in the substation and the active and reactive
power injection in the BESSs have in the formation of the Pareto front were evaluated.

It is worth mentioning that the scope of this research is focused on the evaluation of
different operative scenarios for multi-objective operation of BESSs in radial distribution
networks, considering the linear representation of the state-of-charge in batteries and the
amount of active power injected (or absorbed) to (or from) the grid, combined with the
branch optimal power flow formulation, which has clearly not been proposed in the existing
literature. However, it is important to note that even the optimal integration/operation
of BESSs in electrical distribution grids can produce important technical and economical
profits to the distribution system operators. Such an important fact regarding batteries (i.e.,
temperature-dependence and time-degradation) must be considered when batteries are
installed in distribution grids, since the total expected benefit during its lifespan can be
reduced significantly in comparison with ideal operative scenarios. This is an important
area of research that the authors of [28] explored for direct current networks, and it can be
extrapolated to AC grids in future works using our optimization model that serves as a
starting point for future research.

The remainder of this document is organized as follows. Section 2 presents the com-
plete multi-objective formulation of the problem of the optimal operation of BESSs in
AC radial distribution networks by using the branch power flow formulation. Section 3
presents the solution methodology to solve the proposed multi-objective optimization prob-
lem by using the GAMS software that employs the pondering objective functions strategy.
Section 4 shows the main characteristics of the 33-bus test feeder regarding its topology;,
demand behavior, renewable energy penetration, and BESSs’ locations, among others.
Section 5 presents the computational implementation of the proposed multi-objective opti-
mization model to operate BESSs in radial AC grids as well as the main results with their
corresponding analysis and discussion. Section 6 presents the main concluding remarks
derived from this research as well as possible future directions.

2. Multi-Objective Optimization Problem

The problem of the optimal operation of battery energy storage systems in AC grids is
a nonlinear programming (NLP) problem. Here, we adopt the formulation of the power
flow problem for strictly radial distribution networks that was proposed by Farivar and
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Low [19], by extending it to the multi-period domain and including the linear model of the
batteries [29]. The complete formulation of the NLP problem is presented below.

2.1. Objective Functions

To operate a BESS in AC distribution systems, we consider two objective functions:
the minimization of the CO, greenhouse gas emissions and the daily cost of the energy
losses in branches. These objective functions are defined as follows:

minz; = CO$™Sos Y™ 3" py, , @)
teT ieN
. cener.
minzy = Cype & Z Z Rl] ijtr (2)
teT ijel

where z; is the value of the objective function associated with the total emissions of CO,
to the atmosphere by diesel generators, z; is the cost of the total energy losses in all the
branches of the energy, COEmiSSiOrlS is the rate of CO, emissions, py;; is the active power
generation that leaves the substation, i.e., root node, to node i, Cons™®Y i the average cost of
the energy, R;; is the resistance associated with the distribution line that connects nodes i
and j, and ;j; represents the magnitude of the current that flows through the line ij at the
period of time ¢. Observe that A and 7 are the sets that contain all the nodes of the grid

and the periods of time of the study horizon.

2.2. Set of Constraints

The set of constraints associated with the operation of the BESS in electrical AC grids
is composed of two main subsets, which are associated with the conventional power
flow equations and the battery operation characteristics. Equations (3)—(6) present the
conventional power flow equations formulated via branch model as presented in [30]:

— g _ b
Pije — Ryl s — 2 Pikt = Pit = Pjy = Pjus

{jeN, teT} (©)
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qij XIJI,]t Z Qjkt = Qjt — q]ﬁ - ’1?,tf
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{jeN, teT} (4)
Vi = Vi = 2(Ropiie+ Xyae) + (R + X5 ) 5,
{Gj)eL, teT}, ©)
2 2
Piie +4di;, ..
= % {G,j)eL, teT}, (6)

where pj; ; and g;;; are the active and reactive power flows leaving node i to travel towards
node j in a period of time . pj ; and gj ; have the same definition applied to nodes j and k,
respectively. Further, P;; and Q;; are the active and reactive power consumption measures

at node j in a period of time t modeled as constant power loads. p;if and qu are the active
and reactive power generations in the distributed sources in the node j at the period of time
t. Moreover, p;.’,t and q;’, ; correspond to the active and reactive power injections/absorptions
in the battery b connected at node j in the period of time t and V;; and V; ; are the voltage
magnitudes in nodes i and j at the period of time t, respectively.

Remark 1. Observe that the set of constraints in (3)—(6) is nonlinear and non-convex due to the
presence of square variables associated with voltages, currents, and powers. However, the main
complication of this model corresponds to Expression (6), since it defines the hyperbolic relation
between voltages and powers [19].
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The subset of constraints associated with batteries, element capacities, and voltage
regulation bounds is described as follows:

socj’t—soc]t 1 q)]p]tAT {teT,jeN}, (7)
(pj,t)z + (qjt>2 < (s?'ma") L {teT, jeNy, 8)
Pftmm_r’}’, P, {te T, jENY, )
fmm < soc < socb mx LteT,je N}, (10)
pirT < < Pff T {te T, jeNY, (11)
(Pjgf)z + (q‘f’fy < (s]gd’max)2, {teT,jeN}, (12)
VAR <V, < VRS, {te T, jeNY, (13)

where soc;’ ; is the state-of-charge of the BESS connected at node j in the period of time ¢,

b,min

bmin 414 soc;’

and ¢V j is the battery charging/discharging coefficient. Besides, soc:’ j are the
lower and upper limits of the state-of-charge variable (these are lower than one and greater
than zero to increment battery lifespan for Ion-Lithium batteries, these are recommended
to be 10% to 90% [6]). Note that pb MmN and pb "M% are the active power limits of the batteries.

As such, sb max §

j, p]g‘f min and Vit

(DGs) connected at the node j in the time period ¢, 5;

is the upper limit regarding power transference of the BESS installed at node

$4mX 4 re the lower and upper power limits of the distributed generators

gd,max .
is the maximum apparent power

capability of the DG connected at node j, and me and V7 represent the minimum and
maximum voltage regulation bounds adm1531ble in all nodes of the network.

2.3. Interpretation of the Mathematical Model

The multi-objective optimization model defined in (1)—(13) has the following inter-
pretation: Equations (1) and (2) represent the objective functions associated with the
minimization of the CO, greenhouse gas emissions, and the cost of the daily energy losses.
Equations (3) and (4) correspond to the power balance equation at each node of the net-
work, except in the voltage-controlled source. Equations (5) and (6) define the voltage
drop at each branch and the hyperbolic relation between voltages and powers, respectively.
Equation (7) determines the linear relationship between the state-of-charge and the power
injection/absorption at each BESS [18]. Inequality constraints (8)—(10) define the apparent
power circle of the battery, the maximum and minimum bounds associated with the active
power injection/absorption, and state-of charge, respectively. Inequality expressions (11)
and (12) define the distributed generation limits regarding apparent and active power
generations. Finally, Expression (13) is known as the voltage regulation constraint, which
defines the admissible voltage variations in all the nodes of the network.

Remark 2. The solution of the mathematical model, (1)—(13), requires powerful optimization tools
since this is a nonlinear, non-convex optimization problem with multiple variables defined in the
continuous domain. Here, to solve this NLP problem, we adopt the implementation presented in [31],
where the GAMS optimization package has been employed to solve a single-objective optimization
problem regarding BESS selection and location. This implies that, in this paper, we extend the
application of this software for multi-objective optimization problems as described in [2] for power
system applications.

3. Solution Methodology

To resolve the nonlinear programming model defined in (1)—(13), the GAMS software
was selected in this research. This software can solve different single-objective optimization
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problems starting from linear programming, nonlinear programming, and, in general,
mixed-integer nonlinear programming problems [2]. However, we adapted this software
via loops to solve the proposed NLP problem for multi-objective operation of batteries
using the well-known pondering factors approach [32,33]. Table 1 summarizes some
studies that worked with the GAMS software to solve different optimization problems to
demonstrate its potential applications.

Table 1. Engineering optimization problems solved in the software GAMS.

Optimization Problem References
Optimal location and sizing distributed generation in AC grids [34-38]
Distribution system planning [39-41]
Optimal location of capacitor banks in distribution networks [42-44]
Optimal location and operation of battery energy storage systems in [2,17,26,31]
distribution networks e
Efficient design of osmotic generation plants [45-47]
Economic dispatch of thermal plants in power systems [2,48]
Solution of the general engineering problems using GAMS [49-51]

In Table 1, we can observe that, in the literature, there are multiple optimization
problems solved with the GAMS software. This demonstrates that this is an excellent tool
to address complex programming models such as the case of the multi-objective operation
of BESSs in AC grids study in this research.

In general, the implementation of an optimization model in the software GAMS has
the following main steps [50]:

¢ Define the sets associated with the groups of variables of the problem, i.e., set of
periods of time T, set of nodes N\, and set of branches L.
e Define the scalars, parameters (vectors), and tables (matrices), i.e., active and reactive

power demands (P;; and Q;;), resistances and inductances per distribution line (R;;

bmin _ b,max

and Xl-j), and the maximum and minimum bounds of the variables (i.e., p i P

soc?'min, socj.”max, and so on).

*  Define the variables and their natures, i.e., continuous, binary, or discrete.

*  Redact the equation names associated with each of the expressions in the optimization
model, as well as the mathematical formulation of these equations using symbolic structure.

e Select the direction of the optimization, i.e., minimization, and the nature of the

problem for being solved, i.e., NLP.

Remark 3. The implementation of an optimization model in the software GAMS requires some
familiarization with its syntax and general structure, since it works using plain text to formulate the
complete mathematical model. For more details about the GAMS usage, see the works by Soroudi [2]
and Castillo et al. [50].

A schematic implementation of an optimization model using the GAMS software is
depicted using a general flow chart in Figure 1.
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Figure 1. General GAMS implementation for solving NLP optimization problems.

4. Information of the Test Feeders

This section presents the parametric information of the test feeders considered for
validating the multi-objective operation of BESSs in rural distribution grids fed by diesel
sources. The first test feeder corresponds to the IEEE 33-node test feeder and the second
is the IEEE 69-node test feeder. All information regarding both distribution grids is
presented below.

4.1. IEEE 33-Node Test Feeder

The IEEE 33-bus test feeder, which is a radial distribution network composed of
33 buses and 32 distribution lines, is operated at 12.66 kV at the substation bus (i.e., bus 1).
The electrical connection between buses in the 33-bus test feeder is presented in Figure 2
and the parametric information of this test feeder is presented in Table 2. It is important
to highlight that the information presented in this table corresponds to the load peak
consumption in all the nodes of the system, which is surmised of 3715 kW and 2300 kvar.
In addition, it is considered here that this medium-voltage distribution network is located
in a rural area, where the main substation corresponds to a diesel generator, as reported
in [27].
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27 28 29 30 31 32 33
7 8 9 10 11 12 13 14 15 16 17 18

Figure 2. IEEE 33-bus test feeder configuration.

Table 2. IEEE 33-bus test feeder information regarding branches and loads.

Node Node R;; X;i P; Q; Node Node R;; Qi
j i@ @ W (vad i @ K@ BEW
1 2 0.0922 0.0477 100 60 17 18 0.7320  0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640  0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042  1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089  0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512  0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980  0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960  0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030  0.1034 60 25
10 11 0.1966  0.0650 45 30 26 27 0.2842  0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590  0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042  0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075  0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744  0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105  0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410  0.5302 60 40

In this electrical network, the existence of four distributed generators is also consid-
ered: two of them arise from solar photovoltaic technology and two of them work with
wind generation technology. The location of these distributed generators is as follows:
(i) the PV source is installed at node 13 with a capacity of generation defined as 450 kW and
the PV source is located at node 25 with a capability of 1500 kW; and (ii) the WT; source
is connected at the same node as the PV; source with a nominal capacity of 825 kW and
the PV, is sited at node 30 with a rate of generation defined as 1200 kW. The information
associated with the distributed sources and demand is listed in Table 3.
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Table 3. Behavior of the renewable generation and demand for a daily operation.

Time (s) PV (p.w) PV; (p.w) WT; (p.w) WT; (p.w) Dfll)ns;l d
0.0 0 0 0.633118295 0.489955551 0.34
0.5 0 0 0.629764678 0.467954207 0.28
1.0 0 0 0.607259323 0.449443905 0.22
1.5 0 0 0.609254545 0.435019277 0.22
2.0 0 0 0.605557422 0.437220792 0.22
2.5 0 0 0.630055346 0.437621534 0.20
3.0 0 0 0.684246423 0.450949300 0.18
3.5 0 0 0.758357805 0.453259348 0.18
4.0 0 0 0.783719339 0.469610539 0.18
4.5 0 0 0.815243582 0.480546213 0.20
5.0 0 0 0.790557706 0.501783479 0.22
5.5 0 0 0.738679217 0.527600299 0.26
6.0 0 0 0.744958950 0.586555316 0.28
6.5 0 0 0.718989730 0.652552760 0.34
7.0 0.039123365 0.026135642 0.769603567 0.697699990 0.40
7.5 0.045414292 0.051715061 0.822376817 0.774442755 0.50
8.0 0.065587179  0.110148398 0.826492212 0.820205405 0.62
8.5 0.132615282  0.263094042 0.848620129 0.871057775 0.68
9.0 0.236870796  0.431175761 0.876523598 0.876973635 0.72
9.5 0.410356256  0.594273035 0.904128455 0.877065236 0.78
10.0 0.455017818  0.730402039 0.931213527 0.897955131 0.84
10.5 0.542364455 0.830347309 0.955557477 0.903245007 0.86
11.0 0.726440265 0.875407050 0.965504834 0.916903429 0.90
115 0.885104984  0.898815348 0.971037333 0.924757605 0.92
12.0 0.924486326  0.975683083 0.972218577 0.942224932 0.94
12.5 1 1 0.980049847 0.949956724 0.94
13.0 0.982041153 0.978264398 0.981135531 0.963773634 0.90
13.5 0.913674689  0.790055240 0.988644844 0.974977461 0.84
14.0 0.829407079 0.882557147 0.991393173 0.986750539 0.86
14.5 0.691912077 0.603658738 0.998815517 0.995058133 0.90
15.0 0.733063295  0.606324907 1 1 0.90
15.5 0.598435064 0.357393267 0.996070963 0.998107341 0.90
16.0 0.501133849 0.328035635 0.987258076 0.997690423 0.90
16.5 0.299821403 0.142423488 0.976519817 0.993076899 0.90
17.0 0.177117518 0.142023463 0.929542167 0.982629597 0.90
17.5 0.062736095 0.072956701 0.876413965 0.972084487 0.90
18.0 0 0.019081590 0.791155379 0.930225756 0.86
18.5 0 0.008339287 0.691292162 0.891253999 0.84
19.0 0.000333920 0 0.708839248 0.781950905 0.92
19.5 0 0 0.724074349 0.660094138 1.00
20.0 0 0 0.712881960 0.682715246 0.98
20.5 0 0 0.733954043 0.686617947 0.94
21.0 0 0 0.719897641 0.681865563 0.90
21.5 0 0 0.705502389 0.717315757 0.84
22.0 0 0 0.703007456 0.718080346 0.76
22.5 0 0 0.686551618 0.726890145 0.68
23.0 0 0 0.687238555 0.734452193 0.58
23.5 0 0 0.682569771 0.739699146 0.50

It is worth mentioning that the information regarding renewable generation presented
in Table 3 was obtained by using an artificial neural network (ANN) to predict the daily
generation considering a year of historic information that contains data about solar radia-
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tion, wind speed, humidity, pressure, and time. The complete information related to the
implementation of the ANN can be found in [38], and some aspects regarding the ANN
implementation are provided in Appendix A.

Regarding the location and sizing of the BESSs, we consider the information reported
in [27] that includes three batteries allocated in this test feeder: (i) a BESS with an energy
capacity of 1000 kWh that can be charged/discharged in 4 h (Battery Type A); (ii) a BESS
with an energy capacity of 1500 kWh that can be charged /discharged in 4 h (Battery Type B);
and (iii) a BESS with an energy capacity of 2000 kWh that can be charged/discharged
in 5 h (Battery Type C). Observe that the power injection/absorption of the battery can
be calculated by dividing the energy rate by the total charging/discharging time, i.e., for
the Battery Type A, this power injection/absorption is 250 kW. In addition, to define the
location of these batteries, we consider the solution reported in [31] that defines that Battery
Types A-C are located at nodes 14, 31, and 6, respectively.

To evaluate the objective functions associated with the minimization of the greenhouse
emissions and the daily energy loss costs, we consider that the diesel generator located
at node 1 emits about 612.35 kg/MWh and that the average energy costs are assumed
to be US$ 0.1390, as taken from [26], by converting Colombian pesos (COP$ 479.3389) to
American dollars.

4.2. IEEE 69-Node Test Feeder

The IEEE 69-bus test feeder is a radial distribution network composed of 69 buses and
69 distribution lines, which is operated at 12.66 kV at the substation bus (i.e., bus 1). The
electrical connection between buses in the 69-bus test feeder is presented in Figure 3 and the
parametric information of this test feeder is presented in Table 4. It is important to highlight
that the information presented in this table corresponds to the load peak consumption in
all nodes of the system, which surmises 3890.70 kW and 2693.6 kvar. In addition, here, it is
considered that this medium-voltage distribution network is located in a rural area, where
the main substation corresponds to a diesel generator and as reported in [27].

A6 37 38 39 40 41 42 43 44 45 46 ﬂ

b3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A7 48 49 50
5 6 7

Figure 3. IEEE 69-bus test feeder configuration.

In this electrical network, the existence of four distributed generators is also consid-
ered, two of which work with solar photovoltaic technology and two of which work with
wind generation technology. The location of these distributed generators is as follows:
(i) the PV source is installed at node 12 with a capacity of generation defined as 1050 kW
and the PV; source is located at node 22 with a capability of 850 kW; and (ii) the WT;
is sited at node 61 with a rate of generation defined as 760 kW and the WT, source is
connected to the same node as the PV; source with a nominal capacity of 1000 kW. Note
that the information of the distributed sources and demand is listed in Table 3.

As this test feeder is considered an additional BESS regarding the batteries considered
for the IEEE-33 node test feeder (i.e., Battery Type D), as reported in [27], this is a BESS
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with an energy capacity of 3000 kWh that can be charged/discharged in 6 h. The location
of the BESS Types A-D is at nodes 40, 64, 16, and 9, respectively.

Table 4. IEEE 69-bus test feeder information regarding branches and loads.

Node Node R;; X;i P; Q; Node Node R;; Qi

i i@ @ W kvaD i i@ @ BW
1 2 0.0005 0.0012 0 0 3 36 0.0044  0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640  0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053  0.1230 0 0

4 5 0.0251 0.0294 0 0 38 39 0.0304  0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018  0.0021 24 17
6 7 0.3811 0.1941 404 30 40 41 0.7283  0.8509 102 1

7 8 0.0922  0.0470 75 54 41 42 0.3100  0.3623 0 0

8 9 0.0493 0.0251 30 22 42 43 0.0410  0.0478 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092  0.0116 0 0
10 11 0.1872  0.0619 145 104 44 45 0.1089  0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009  0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034  0.0084 0 0
13 14 1.0440 0.3450 8 5 47 48 0.0851  0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898  0.7091 384.7 274.5
15 16 0.1966  0.0650 45 30 49 50 0.0822  0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928  0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319  0.1140 3.6 2.7
18 19 0.3276  0.1083 0 0 9 53 0.1740  0.0886 4.35 35
19 20 0.2106  0.0690 1 0.6 53 54 0.2030  0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813  0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900  0.5337 0 0
23 24 0.3463 0.1145 28 20 57 58 0.7837  0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042  0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861  0.1172 0 0
26 27 0.1732  0.0572 14 10 60 61 0.5075  0.2585 1244 888
3 28 0.0044 0.0108 26 18.6 61 62 0.0974  0.0496 32 23
28 29 0.0640 0.1565 26 18.6 62 63 0.1450  0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105  0.3619 227 162
30 31 0.0702  0.0232 0 0 64 65 1.0410  0.5302 59 42
31 32 0.3510 0.1160 0 0 11 66 0.2012  0.0611 18 13
32 33 0.8390 0.2816 10 10 66 67 0.0047  0.0014 18 13
33 34 1.7080 0.5646 14 14 12 68 0.7394  0.2444 28 20
34 35 1.4740 0.4873 4 4 68 69 0.0047  0.0016 28 20

5. Numerical Simulations

This section shows the computational implementation of the proposed multi-objective
optimization approach to operate BESSs in AC distribution systems considering the minimiza-
tion of the greenhouse gas emissions versus costs of daily energy losses. We implemented this
approach on a personal computer AMD Ryzen 7 3700U, 2.3 GHz, 16 GB RAM with 64-bits
Windows 10 Home Single Language using the GAMS optimization environment.

The construction of the Pareto fronts presented in this section was made by using
the weighting factors methodology that combines both objective functions as follows:
zl b = 921 + (1 — 8)z2, where ¢ = m/20 is the pondering factor. Note that m defines the
number of combined objective function evaluations. In the proposed study, the parameter
m begins from 0 in steps of 1-20. It is worth mentioning that the value of ¢ determines the
number of solutions contained in the Pareto front.
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For numerical purposes, different simulation cases in this section are presented and
applied to the IEEE 33-bust test feeder and the IEEE 69-bus test feeder. For the first
distribution grid, we considered the following cases: (i) effect of the substation voltage
control; (ii) effect of the reactive power compensation with battery converters; and (iii)
effect of the renewable energy variation in the Pareto front conformation. However, for
the IEEE 69-node test feeder, to avoid repeating the analysis made in the IEEE 33-node
test feeder, we only evaluated the operation of the batteries with unity and variable power
factors, given the generators operate in their nominal condition.

5.1. IEEE-Bus Test Feeder

In this subsection, all the simulation scenarios considered for the IEEE-33 bus test
feeder are presented, which include the effect of the substation voltage control, the vari-
able power factor capabilities in batteries, and the possible variation of the renewable
energy resources.

5.1.1. Effect of the Substation Voltage Control

To demonstrate the effect that has the assignation of the substation voltage in a
predefined value, e.g., Vi = 1.00£0, we simulated two cases. The first case considers that
the substation is controlling the voltage magnitude at 1.00 pu and the second case leaves
this voltage magnitudes free, i.e., it can take values from vpjn t0 Umax. Figure 4 presents the
Pareto fronts for both simulation cases.

T T T T T T T T T T T T T T T
B —o— Case 1 —@— Case?2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.5 7 7.5 8 8.5 9 9.5 10 105 11 115 12 125 13 135 14

CO; emissions (tons/day)

Figure 4. Behavior of the greenhouse gas emissions vs. daily energy loss costs depending on the voltage magnitude at the

substation node.

The results in Figure 4 show the following. In the first case, the minimum and maxi-
mum values regarding the costs of energy losses are US$ 132.0450 and US$ 157.1888, which
correspond to total CO, emissions of about 13.8714 and 6.5502 tons/day, respectively. The
difference between the extreme solutions are US$ 25.1438 and 7.3212 tons/day, respectively.
In the second case, the minimum and maximum values regarding the costs of energy losses
are US$ 108.1019 and US$ 129.4134, which correspond to total CO, emissions of about
13.8294 and 6.4853 tons/day, respectively. The difference between the extreme solutions
are US$ 20.6115 and 7.3441 tons/day, respectively. Finally, the main effect of maintaining
the voltage magnitude of the substation in a fixed value (i.e., Case 1), in contrast to the
solution reported by Case 2, is associated with an increment in the daily cost of the energy
losses about US$ 26.4417. However, when CO; emissions are analyzed, we observe that the
average difference is less than 0.0500 tons/day. These results imply that fixing the voltage
substation has a direct effect on the energy losses, and that this effect is negative, as shown
in Figure 4.

The complete list of the objective function pairs is reported in Table 5, based on the
information in Figure 4 from left to right.
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Table 5. Objective function values of the Pareto front in Figure 4.

Sol. No. Case 1 Case 2

CO, Losses CO, Losses

(Tons/day) (US$) (Tons/day) (USS$)
1 13.8713 132.0450 13.8293 108.1019
2 11.6074 133.7900 11.5511 109.5534
3 10.6953 135.5350 10.632 111.0050
4 10.0223 137.2800 9.9557 112.4566
5 9.4704 139.0250 9.4108 113.9082
6 8.9971 140.7700 8.9491 115.3597
7 8.5828 142.5150 8.5438 116.8113
8 8.2202 144.2600 8.1877 118.2629
9 7.8995 146.0050 7.8712 119.7145
10 7.6145 147.7500 7.5868 121.1660
11 7.3612 149.4950 7.3313 122.6176
12 7.1359 151.2400 7.1025 124.0692
13 6.9356 152.9850 6.9008 125.5208
14 6.7571 154.7299 6.7216 126.9723
15 6.5982 156.4749 6.5651 128.4239
16 6.5501 157.1888 6.4852 129.4134

Note that results in Table 5 demonstrate the multi-objective nature of the problem of
the optimal operation of BESSs in AC grids, since the improvement of one of the objectives
implies the deterioration of the other. In addition, observe that Solutions 6-12 can be
considered attractive solutions to be selected by the distribution system operator, since
these are in the intermediate area of the Pareto, which implies that both objectives perform
well regarding their extremes. For example, Solution 9 in Case 1 produces a reduction of
about 43.05% regarding CO, emissions and 7.11% in relation to the maximum energy daily
costs; in Case 2, these reductions are 43.08% and 7.49%, respectively.

5.1.2. Effect of the Reactive Power Compensation with Battery Converters

In the previous subsection, we evaluate the effect of the voltage control in the substa-
tion bus considering unity power factor in the operation of the batteries and distributed
generators. In this simulation case, we consider that the substation has free voltage magni-
tude and the batteries can support reactive power with their converters by assuming that
the DGs will continue working with unity power factor [26]. In Figure 5, the Pareto front
for the operational BESS, considering the variable power factor, is presented.

From the results in Figure 5, we can observe the following to be true. First, the extreme
solutions of the Pareto front correspond to minimum CO; emissions of 6.3136 tons/day
with a maximum daily energy costs of about US$ 59.1780, while the maximum value of
the CO; emissions is 13.9245 tons/day with minimum daily operative costs of US$ 37.5963.
Second, the difference between the extremes corresponds to a reduction of 54.66% regarding
CO; emissions, while the costs of daily energy losses is about 34.47%. Third, when
comparing the Pareto front in Figure 5 with Case 2 in the Pareto front presented in Figure 4,
it is possible to observe that the injection of the reactive power in batteries allows the
reduction of the daily operation costs by about US$ 70 per day, which represents a daily
profit of 54.27% to the grid operator.
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Figure 5. Behavior of the greenhouse gas emissions vs. daily energy loss costs considering reactive power injections in

the BESS.
To illustrate the behavior of the state-of-charge in batteries, we plot this variable for
all the batteries in both extremes (see Figure 6) of the Pareto front in Figure 5.
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Figure 6. Behavior of the state-of-charge in the BESS for the extreme solutions of the Pareto front in Figure 5: (a) minimum
CO; emissions; and (b) minimum daily energy costs.

The behaviors of the BESSs in Figure 6 show that, depending on the objective function
prioritized, the BESSs will work with different charging/discharging profiles along the
day. Depending on the minimization interest, they decide to store or provide energy in
different periods of time (see comparison of batteries in nodes 6 and 14), especially in the
period of time between 14 and 28. In addition, note that, in the case of minimizing the daily
energy costs, the BESSs start to provide energy continuously from the period of time 16 to
the period of time 46, while, in the case of the CO, minimization, these behaviors do not
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occur. This is attributable to the availability of the renewable resources and the demand
behavior, which has two main peaks that require additional power injections from the
BESS to minimize the amount of power injection in the conventional source that is directly
connected with the amount of CO; emissions, as seen in Equation (1).

5.1.3. Effect of the Renewable Energy Variation in the Pareto Front Conformation

To present the effect of the renewable energy variation due to the stochastic nature
of the primary energy resources, i.e., wind speed and solar radiation, we now present a
simulation case where the amount of active power injection from the renewable energy
resources varies from 50% to 100% for each varying level of renewable energy availability.
As such, the Pareto front presented in Figure 7 is obtained, considering unity power factor
in the renewable generation, active, and reactive power injections in the BESS, and the free
behavior in the slack voltage magnitude.

—o— 50% 70% - @- 90%

—o— 100%

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CO; emissions (tons/day)

Figure 7. Performance of the Pareto front for different levels of renewable generation availability.

The following can be noted from the behavior of the Pareto fronts in Figure 6. First,
depending on the availability of the renewable energy resources during a day of operation,
the Pareto front can be very restricted. For instance, in the case of a renewable energy
availability of 50%, the daily operative costs are between US$ 55 and US$ 58, while
CO; emissions are between 20 and 21 tons/day. Second, when the amount of active
power injection with renewable energy resources increases, the behavior of the Pareto
front regarding the CO, emissions presents higher differences in their extremes. For
example, for an availability of 50%, the difference between the extreme solutions is about
1.3506 tons/day, and, for a 90% renewable generation availability, this value is about
2.9869 tons/day. This implies the growing importance of decisions-making regarding
the operation of the distribution network on the part of the distribution company when
the amount power injection from renewable generation increases. Finally, the biggest
effect associated with the availability of the renewable generation to inject active power
corresponds to the amount CO, emissions, since this variable is directly connected to the
total power injection in the slack node, which is then directly connected to the power
injections in the distributed generators. This is particularly true while the daily operative
costs for all the percentages of penetration between the extremes remain the same in the
case of the nominal operation, i.e., 100% of renewable generation availability. These results
imply that the BESS can control the grid losses in better form, since it depends on the
voltage drops in lines, as compared to the the case of the greenhouse emissions, since these
depend directly on the usage of the diesel generator.

5.2. IEEE 69-Bus Test Feeder

For the IEEE 69-bus test feeder, we consider the possibility of operating the BESSs
while considering that the voltage control of the substation is free and can can be moved
from 0.90 to 1.10 pu by maintaining its angle at zero for all periods of time. The Pareto
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front for this test feeder is presented in Figure 8. Note that the extreme solutions in the
Pareto front are the following: (i) the minimum daily energy costs is US$ 65.8980 with
maximum CO; emissions of 18.5373 tons/day; and (ii) the minimum emissions of CO; are
10.9535 tons/day, with a maximum daily costs of energy losses of US$ 89.1888.
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Figure 8. Performance of the Pareto front for the IEEE 69-bus system.

It is worth mentioning that the difference between the extreme solutions in the Pareto
front in Figure 7 is US$ 23.2908 and 7.5838 tons/day. These values imply that, depending
on the distribution system operator, the daily indicators can reduce until these values are
selected as a function of the operative point. In addition, it is possible to observe that the
most promissory solutions that allow minimizing both objective functions are in the region
between 12 and 15 tons/day, since these have daily energy loss costs of between US$ 79
and US$ 71.

6. Conclusions

We studied the problem of operation of a BESS in radial AC grids from the multi-
objective point of view, considering the simultaneous minimization of CO, emissions and
the costs of the daily energy losses. The GAMS software combined with the pondering
objective functions approach were employed to solve the resulting nonlinear, non-convex,
and multi-period optimal power flow problem. Numerical validations demonstrated that
the assignation of the voltage magnitude in the substation bus deteriorates the behavior of
the optimal Pareto front since both objectives present higher values in comparison with the
scenario where voltage magnitude in the substation is left free.

When reactive power injections are available for operating the BESS, considering its
power electronic converters, the objective function regarding energy loss costs is drastically
reduced. This was made possible since these reactive power injections allowed the im-
provement of voltage profiles, which is directly connected with the reduction of magnitude
of the current in branches. This reduction was about 54.27% in comparison to the unity
factor power case.

The effect of the renewable generation availability was tested for different percentages
of active power generation in distributed sources. This demonstrated that the amount of
greenhouse gas emissions is directly connected to the power supply by distributed genera-
tors, while daily energy losses can be effectively controlled for the BESSs by maintaining
these on the extreme values of the nominal operative case, i.e., between US$ 37.5963 and
US$ 59.1780, for all the renewable generation penetration cases evaluated.

In the IEEE 69-bus system, it was observed that the maximum reduction of CO,
emissions is about 40.91% when the daily cost of energy losses has a maximum value,
i.e.,, US$ 89.1888. In the case of energy losses, the maximum reduction is about 26.11%
when the maximum CO, emissions occur. These values correspond to the extreme solu-
tions in the Pareto front in Figure 7, which implies that, depending on the distribution
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system operator’s decision, the maximum improvements possible will be contained in the
aforementioned percentages of reduction.

The following research can be developed as part of future research efforts following
this paper’s contribution. First, the reformulation of the proposed branch multi-period
optimal power flow model for multi-objective operation of the BESS in AC grids with radial
structure into a convex conic representation that ensures the global optimum finding from
the formal mathematical point of view. Second, the application of proposed multi-objective
optimization model to direct current networks with high penetration of renewable energy
resources and batteries. Finally, the inclusion of new battery behaviors in the proposed
optimization model, such as lifespan and deep discharging characteristics, among others,
to approximate the best behavior of these in real operative conditions.
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Appendix A. Renewable Generation Forecasting

The renewable generation dependence on the weather conditions associated with
solar radiation and temperature for photovoltaic plants make this source non-dispatchable,
which clearly affects the grid operation, causing increments in the operative costs, low
voltage profile, and high energy losses [26]. For this reason, to operate electric distribution
networks in rural and urban areas, it is necessary to have an adequate short-term forecasting
approach to estimate the renewable energy output for the next day. In the literature, some
approaches are proposed to predict the renewable energy behavior. These include fuzzy
logic [52], stochastic optimization methods [53], similar day approach [54], and artificial
neural networks [26,55], among others. Here, we employed the methodology proposed
in [26] to forecast the renewable energy for the day-ahead operation of the distribution grid.

It is worth mentioning that, for the sake of simplicity, in the ANN implementation,
we only present information of the PV prediction. However, the complete details for wind
generation forecasting can be seen in [55].

Appendix A.1. Recursive Artificial Neural Network

The application of the ANNSs covers a wide range of problems such as pattern clas-
sification [56], function approximations [57], clustering [58], and data forecasting [59]. In
general, ANNs can be considered as mathematical tools that allow the emulation of the
biological neural system. This implies that these can remember and store information and
learn to predict future behaviors regarding stochastic variables [26].
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The training procedure for an ANN is carried out using an input-output space to
reach a nonlinear mapping of the items. This training methodology is adopted when the
relations among inputs and outputs are unknown. The general nonlinear learning rule
takes the following form:

z(t) = f(z(t—1),..,.z(t —ng),w(t —1),.., w(t — ny)) (A1)

where w defines the input space and z corresponds to the output space, which depends
on the previous 1 values of the variable under forecast. The input and output spaces for
forecasting the PV generation correspond to the temperature and time as well as solar
radiation, respectively [26].

The procedure to train the ANN to forecast the solar radiation was carried out using
MATLARB software and its ntstool package. Note that, for the solar radiation prediction,
two inputs were considered (i.e., temperature and time) along with six delays (1, = 6) and
18 neurons in the hidden layer.

Appendix A.2. Computational Implementation of the Ann

The schematic configuration of the ANN implemented for solar generation forecasting
is presented in Figure A1, which was developed using the ntstool package in MATLAB. All
the information used to train, adjust, and validate the proposed ANN for solar generation
forecasting was taken from [55]. It is worth mentioning that, for training, adjusting, and
validation, we employed 70%, 15%, and 15% of the data, respectively. Finally, Figure A2
presents the solar generation information.
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Figure A1. ANN scheme for solar radiation prediction [55].
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Figure A2. Historical data used for the ANN training process for solar power forecasting.
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